Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Hindering the Synchronization Between miR-486-5p and H19 lncRNA by Hesperetin Halts Breast Cancer Aggressiveness Through Tuning ICAM-1

Author(s): Ramah M. Abdallah , Aisha M. Elkhouly , Raghda A. Soliman , Nehad El Mechawy, Ahmed El Sebaei , Amira A. Motaal , Hesham El-Askary , Rana A. Youness * and Reem A. Assal *

Volume 22, Issue 3, 2022

Published on: 19 April, 2021

Page: [586 - 595] Pages: 10

DOI: 10.2174/1871520621666210419093652

Price: $65

Abstract

Background: Recently, a novel crosstalk between non-coding RNAs (ncRNAs) has been casted. However, this has been seldom investigated in metastatic BC (mBC). H19 and miR-486-5p role in mBC are controversial. ICAM-1 is a recently recognized metastatic engine in mBC. Natural compounds were recently found to alter ncRNAs/target circuits. Yet, Hesperitin’s modulatory role in altering such circuits has never been investigated in mBC.

Objective: The aim of this study is to investigate the impact of hesperitin on miR-486-5p/H19/ICAM-1 axis.

Methods: BC patients (n=20) were recruited in the study. Bioinformatic analysis was performed using different prediction softwares. MDA-MB-231 and MCF-7 cells were cultured and transfected using several oligonucleotides or treated with serial dilutions of hesperitin. RNA was extracted and gene expression analysis was performed using q-RT-PCR. ICAM-1 protein levels were assessed using human ICAM-1 Elisa Kit. Cytotoxic potential of hesperitin against normal cells was assessed by LDH assay. Several functional analysis experiments were performed such as MTT, colony forming and migration assays.

Results: The study showed that miR-486-5p and H19 had paradoxical expression profiles in BC patients. miR- 486-5p mimics and H19 siRNAs repressed ICAM-1 and halted mBC hallmarks. A novel crosstalk between miR- 486-5p and H19 was observed highlighting a bi-directional relationship between them. Hesperetin restored the expression of miR-486-5p, inhibited H19 lncRNA and ICAM-1 expression and selectively regressed mBC cell aggressiveness.

Conclusion: miR-486-5p and H19 are inter-connected upstream regulators for ICAM-1 building up miR-486- 5p/H19/ICAM-1 axis that has been successfully tuned in mBC cells by hesperitin.

Keywords: miR-486-5p, H19, hesperitin, ICAM-1, breast cancer, metastasis.

Graphical Abstract

[1]
Zhang, J.; Xu, H.D.; Xing, X.J.; Liang, Z.T.; Xia, Z.H.; Zhao, Y. CircRNA_069718 promotes cell proliferation and invasion in triple-negative breast cancer by activating Wnt/β-catenin pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5315-5322.
[PMID: 31298383]
[2]
Youness, R.A.; Assal, R.A.; Abdel Motaal, A.; Gad, M.Z. A novel role of sONE/NOS3/NO signaling cascade in mediating hydrogen sulphide bilateral effects on triple negative breast cancer progression. Nitric Oxide, 2018, 80, 12-23.
[http://dx.doi.org/10.1016/j.niox.2018.07.004] [PMID: 30081213]
[3]
Abdel-Latif, M.; Youness, R.A. Why natural killer cells in triple negative breast cancer? World J. Clin. Oncol., 2020, 11(7), 464-476.
[http://dx.doi.org/10.5306/wjco.v11.i7.464] [PMID: 32821652]
[4]
Khaled, N.; Bidet, Y. New insights into the implication of epigenetic alterations in the EMT of triple negative breast cancer. Cancers (Basel), 2019, 11(4)E559
[http://dx.doi.org/10.3390/cancers11040559] [PMID: 31003528]
[5]
Gatti, V.; Bongiorno-Borbone, L.; Fierro, C.; Annicchiarico-Petruzzelli, M.; Melino, G.; Peschiaroli, A. p63 at the crossroads between stemness and metastasis in breast cancer. Int. J. Mol. Sci., 2019, 20(11)E2683
[http://dx.doi.org/10.3390/ijms20112683] [PMID: 31159154]
[6]
Figenschau, S.L.; Knutsen, E.; Urbarova, I.; Fenton, C.; Elston, B.; Perander, M.; Mortensen, E.S.; Fenton, K.A. ICAM1 expression is induced by proinflammatory cytokines and associated with TLS formation in aggressive breast cancer subtypes. Sci. Rep., 2018, 8(1), 11720.
[http://dx.doi.org/10.1038/s41598-018-29604-2] [PMID: 30082828]
[7]
Wei, R.R.; Sun, D.N.; Yang, H.; Yan, J.; Zhang, X.; Zheng, X.L.; Fu, X.H.; Geng, M.Y.; Huang, X.; Ding, J. CTC clusters induced by heparanase enhance breast cancer metastasis. Acta Pharmacol. Sin., 2018, 39(8), 1326-1337.
[http://dx.doi.org/10.1038/aps.2017.189] [PMID: 29417941]
[8]
El Kilany, F.H.; Youness, R.A.; Assal, R.A.; Gad, M.Z. miR-744/eNOS/NO axis: A novel target to halt triple negative breast cancer progression. Breast Dis., 2021, 40(3), 161-169.
[http://dx.doi.org/10.3233/BD-200454] [PMID: 33749631]
[9]
Nafea, H.; Youness, R.A.; Abou-Aisha, K.; Gad, M.Z. LncRNA HEIH/miR-939-5p interplay modulates triple-negative breast cancer progression through NOS2-induced nitric oxide production. J. Cell. Physiol., 2021, 236(7), 5362-5372.
[http://dx.doi.org/10.1002/jcp.30234] [PMID: 33368266]
[10]
El Din, G.S.; Youness, R.A.; Assal, R.A.; Gad, M.Z. miRNA-506-3p directly regulates rs10754339 (A/G) in the immune checkpoint protein B7-H4 in breast cancer. MicroRNA, 2020, 9(5), 346-353.
[http://dx.doi.org/10.2174/2211536609666201209152949] [PMID: 33297930]
[11]
Youness, R.A.; Rahmoon, M.A.; Assal, R.A.; Gomaa, A.I.; Hamza, M.T.; Waked, I.; El Tayebi, H.M.; Abdelaziz, A.I. Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression. Growth Factors, 2016, 34(3-4), 128-140.
[http://dx.doi.org/10.1080/08977194.2016.1200571] [PMID: 27388576]
[12]
Shaalan, Y.M.; Handoussa, H.; Youness, R.A.; Assal, R.A.; El-Khatib, A.H.; Linscheid, M.W.; El Tayebi, H.M.; Abdelaziz, A.I. Destabilizing the interplay between miR-1275 and IGF2BPs by Tamarix articulata and quercetin in hepatocellular carcinoma. Nat. Prod. Res., 2018, 32(18), 2217-2220.
[http://dx.doi.org/10.1080/14786419.2017.1366478] [PMID: 28817968]
[13]
Rahmoon, M.A.; Youness, R.A.; Gomaa, A.I.; Hamza, M.T.; Waked, I.; El Tayebi, H.M.; Abdelaziz, A.I. MiR-615-5p depresses natural killer cells cytotoxicity through repressing IGF-1R in hepatocellular carcinoma patients. Growth Factors, 2017, 35(2-3), 76-87.
[http://dx.doi.org/10.1080/08977194.2017.1354859] [PMID: 28747084]
[14]
Aboelenein, H.R.; Hamza, M.T.; Marzouk, H.; Youness, R.A.; Rahmoon, M.; Salah, S.; Abdelaziz, A.I. Reduction of CD19 autoimmunity marker on B cells of paediatric SLE patients through repressing PU.1/TNF-α/BAFF axis pathway by miR-155. Growth Factors, 2017, 35(2-3), 49-60.
[http://dx.doi.org/10.1080/08977194.2017.1345900] [PMID: 28683581]
[15]
Youness, R.A.; El-Tayebi, H.M.; Assal, R.A.; Hosny, K.; Esmat, G.; Abdelaziz, A.I. MicroRNA-486-5p enhances hepatocellular carcinoma tumor suppression through repression of IGF-1R and its downstream mTOR, STAT3 and c-Myc. Oncol. Lett., 2016, 12(4), 2567-2573.
[http://dx.doi.org/10.3892/ol.2016.4914] [PMID: 27698829]
[16]
ElKhouly, A.M.; Youness, R.A.; Gad, M.Z. MicroRNA-486-5p and microRNA-486-3p: Multifaceted pleiotropic mediators in oncological and non-oncological conditions. Noncoding RNA Res., 2020, 5(1), 11-21.
[http://dx.doi.org/10.1016/j.ncrna.2020.01.001] [PMID: 31993547]
[17]
Awad, A.R.; Youness, R.A.; Ibrahim, M.; Motaal, A.A.; El-Askary, H.I.; Assal, R.A.; Gad, M.Z. An acetylated derivative of vitexin halts MDA-MB-231 cellular progression and improves its immunogenic profile through tuning miR- 20a-MICA/B axis. Nat. Prod. Res., 2021, 35(18), 3126-3130.
[http://dx.doi.org/10.1080/14786419.2019.1686372] [PMID: 31691589]
[18]
Mekky, R.Y.; El-Ekiaby, N.; El Sobky, S.A.; Elemam, N.M.; Youness, R.A.; El-Sayed, M.; Hamza, M.T.; Esmat, G.; Abdelaziz, A.I. Epigallocatechin gallate (EGCG) and miR-548m reduce HCV entry through repression of CD81 receptor in HCV cell models. Arch. Virol., 2019, 164(6), 1587-1595.
[http://dx.doi.org/10.1007/s00705-019-04232-x] [PMID: 30949812]
[19]
Youness, R.A.; Gad, A.Z.; Sanber, K.; Ahn, Y.J.; Lee, G.J.; Khallaf, E.; Hafez, H.M.; Motaal, A.A.; Ahmed, N.; Gad, M.Z. Targeting hydrogen sulphide signaling in breast cancer. J. Adv. Res., 2020, 27, 177-190.
[http://dx.doi.org/10.1016/j.jare.2020.07.006] [PMID: 33318876]
[20]
Youness, R.A.; Gad, M.Z. Long non-coding RNAs: functional regulatory players in breast cancer. Noncoding RNA Res., 2019, 4(1), 36-44.
[http://dx.doi.org/10.1016/j.ncrna.2019.01.003] [PMID: 30891536]
[21]
Li, C.; Zheng, X.; Li, W.; Bai, F.; Lyu, J.; Meng, Q.H. Serum miR-486-5p as a diagnostic marker in cervical cancer: with investigation of potential mechanisms. BMC Cancer, 2018, 18(1), 61.
[http://dx.doi.org/10.1186/s12885-017-3753-z] [PMID: 29316891]
[22]
Gao, Z.J.; Yuan, W.D.; Yuan, J.Q.; Yuan, K.; Wang, Y. miR-486-5p functions as an oncogene by targeting PTEN in non-small cell lung cancer. Pathol. Res. Pract., 2018, 214(5), 700-705.
[http://dx.doi.org/10.1016/j.prp.2018.03.013] [PMID: 29567332]
[23]
Yoshimura, H.; Matsuda, Y.; Yamamoto, M.; Kamiya, S.; Ishiwata, T. Expression and role of long non-coding RNA H19 in carcinogenesis. Front. Biosci., 2018, 23, 614-625.
[http://dx.doi.org/10.2741/4608] [PMID: 28930564]
[24]
Elkhouly, A.; Youness, R.; Gad, M. LncRNA H19/miR-486-5p/miR-17-5p: a novel immunoregulatory loop regulating TNBC cellular recognition by cytotoxic T lymphocytes and natural killer cells. Eur. J. Cancer, 2020, 138, S56-S57.
[http://dx.doi.org/10.1016/S0959-8049(20)31228-4]
[25]
Conigliaro, A.; Costa, V.; Lo Dico, A.; Saieva, L.; Buccheri, S.; Dieli, F.; Manno, M.; Raccosta, S.; Mancone, C.; Tripodi, M.; De Leo, G.; Alessandro, R. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol. Cancer, 2015, 14, 155.
[http://dx.doi.org/10.1186/s12943-015-0426-x] [PMID: 26272696]
[26]
Sun, X.; Guo, Q.; Wei, W.; Robertson, S.; Yuan, Y.; Luo, X. Current progress on MicroRNA-based gene delivery in the treatment of osteoporosis and osteoporotic fracture. Int. J. Endocrinol., 2019, 20196782653
[http://dx.doi.org/10.1155/2019/6782653] [PMID: 30962808]
[27]
Youness, R.A. A methoxylated quercetin glycoside harnesses HCC tumor progression in a TP53/miR-15/miR-16 dependent manner. Nat. Prod. Res., 2020, 34(10), 1475-1480.
[PMID: 30526087]
[28]
Grosso, G. Effects of polyphenol-rich foods on human health. Nutrients, 2018, 10(8)E1089
[http://dx.doi.org/10.3390/nu10081089] [PMID: 30110959]
[29]
Ferreira de Oliveira, J.M.P.; Santos, C.; Fernandes, E. Therapeutic potential of hesperidin and its aglycone hesperetin: cell cycle regulation and apoptosis induction in cancer models. Phytomedicine, 2020, 73152887
[http://dx.doi.org/10.1016/j.phymed.2019.152887] [PMID: 30975541]
[30]
Muhammad, T.; Ikram, M.; Ullah, R.; Rehman, S.U.; Kim, M.O. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients, 2019, 11(3)E648
[http://dx.doi.org/10.3390/nu11030648] [PMID: 30884890]
[31]
Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers (Basel), 2018, 11(1)E28
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[32]
Li, Q. Hesperetin induces apoptosis in human glioblastoma cells via p38 MAPK activation. Nutr. Cancer, 2020, 72(3), 538-545.
[PMID: 31295040]
[33]
Hazafa, A. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr. Cancer, 2020, 72(3), 386-397.
[PMID: 31287738]
[34]
Zhang, F.; Yu, W.; Hargrove, J.L.; Greenspan, P.; Dean, R.G.; Taylor, E.W.; Hartle, D.K. Inhibition of TNF-alpha induced ICAM-1, VCAM-1 and E-selectin expression by selenium. Atherosclerosis, 2002, 161(2), 381-386.
[http://dx.doi.org/10.1016/S0021-9150(01)00672-4] [PMID: 11888521]
[35]
Ahmed Youness, R.; Amr Assal, R.; Mohamed Ezzat, S.; Zakaria Gad, M.; Abdel Motaal, A. A methoxylated quercetin glycoside harnesses HCC tumor progression in a TP53/miR-15/miR-16 dependent manner. Nat. Prod. Res., 2020, 34(10), 1475-1480.
[http://dx.doi.org/10.1080/14786419.2018.1509326] [PMID: 30526087]
[36]
Youness, R.A.; Hafez, H.M.; Khallaf, E.; Assal, R.A.; Abdel Motaal, A.; Gad, M.Z. The long noncoding RNA sONE represses triple-negative breast cancer aggressiveness through inducing the expression of miR-34a, miR-15a, miR-16, and let-7a. J. Cell. Physiol., 2019, 234(11), 20286-20297.
[http://dx.doi.org/10.1002/jcp.28629] [PMID: 30968427]
[37]
Harjunpää, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S.C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol., 2019, 10, 1078.
[http://dx.doi.org/10.3389/fimmu.2019.01078] [PMID: 31231358]
[38]
Shen, J.; Liu, Z.; Todd, N.W.; Zhang, H.; Liao, J.; Yu, L.; Guarnera, M.A.; Li, R.; Cai, L.; Zhan, M.; Jiang, F. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer, 2011, 11, 374.
[http://dx.doi.org/10.1186/1471-2407-11-374] [PMID: 21864403]
[39]
Liu, C.; Li, M.; Hu, Y.; Shi, N.; Yu, H.; Liu, H.; Lian, H. miR-486-5p attenuates tumor growth and lymphangiogenesis by targeting neuropilin-2 in colorectal carcinoma. OncoTargets Ther., 2016, 9, 2865-2871.
[PMID: 27284245]
[40]
Oh, H.K.; Tan, A.L.; Das, K.; Ooi, C.H.; Deng, N.T.; Tan, I.B.; Beillard, E.; Lee, J.; Ramnarayanan, K.; Rha, S.Y.; Palanisamy, N.; Voorhoeve, P.M.; Tan, P. Genomic loss of miR-486 regulates tumor progression and the OLFM4 antiapoptotic factor in gastric cancer. Clin. Cancer Res., 2011, 17(9), 2657-2667.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3152] [PMID: 21415212]
[41]
Dong, Y.; Wang, A. Aberrant DNA methylation in hepatocellular carcinoma tumor suppression. (Review) Oncol. Lett., 2014, 8(3), 963-968.
[http://dx.doi.org/10.3892/ol.2014.2301] [PMID: 25120642]
[42]
Liu, A.; Liu, L.; Lu, H. LncRNA XIST facilitates proliferation and epithelial-mesenchymal transition of colorectal cancer cells through targeting miR-486-5p and promoting neuropilin-2. J. Cell. Physiol., 2019, 234(8), 13747-13761.
[http://dx.doi.org/10.1002/jcp.28054] [PMID: 30656681]
[43]
Xing, Z.; Zhang, Z.; Gao, Y.; Zhang, X.; Kong, X.; Zhang, J.; Bai, H. The lncRNA LINC01194/miR-486-5p axis facilitates malignancy in non-small cell lung cancer via regulating CDK4. OncoTargets Ther., 2020, 13, 3151-3163.
[http://dx.doi.org/10.2147/OTT.S235037] [PMID: 32346298]
[44]
Hofmann, P.; Sommer, J.; Theodorou, K.; Kirchhof, L.; Fischer, A.; Li, Y.; Perisic, L.; Hedin, U.; Maegdefessel, L.; Dimmeler, S.; Boon, R.A. Long non-coding RNA H19 regulates endothelial cell aging via inhibition of STAT3 signalling. Cardiovasc. Res., 2019, 115(1), 230-242.
[http://dx.doi.org/10.1093/cvr/cvy206] [PMID: 30107531]
[45]
Choi, E.J. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr. Cancer, 2007, 59(1), 115-119.
[http://dx.doi.org/10.1080/01635580701419030] [PMID: 17927510]
[46]
Busch, C.; Burkard, M.; Leischner, C.; Lauer, U.M.; Frank, J.; Venturelli, S. Epigenetic activities of flavonoids in the prevention and treatment of cancer.Clin. Epigenetics, 2015, 7, 64.,
[http://dx.doi.org/10.1186/s13148-015-0095-z] [PMID: 26161152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy