[1]
Arroyo, J.D.; Jourdain, A.A.; Calvo, S.E.; Ballarano, C.A.; Doench, J.G.; Root, D.E.; Mootha, V.K. A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metab., 2016, 24(6), 875-885.
[http://dx.doi.org/10.1016/j.cmet.2016.08.017] [PMID: 27667664]
[http://dx.doi.org/10.1016/j.cmet.2016.08.017] [PMID: 27667664]
[2]
Faccio, A.T.; Ruperez, F.J.; Singh, N.S.; Angulo, S.; Tavares, M.; Bernier, M.; Barbas, C.; Wainer, I.W. Stereochemical and structural effects of (2R,6R)-hydroxynorketamine on the mitochondrial metabolome in PC-12 cells. Biochim. Biophys. Acta Gen., 2018, 1862(6), 1505-1515.
[http://dx.doi.org/10.1016/j.bbagen.2018.03.008] [PMID: 29526507]
[http://dx.doi.org/10.1016/j.bbagen.2018.03.008] [PMID: 29526507]
[3]
Giorgi, C.; Marchi, S.; Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol., 2018, 19(11), 713-730.
[http://dx.doi.org/10.1038/s41580-018-0052-8] [PMID: 30143745]
[http://dx.doi.org/10.1038/s41580-018-0052-8] [PMID: 30143745]
[4]
Bogner, C.; Leber, B.; Andrews, D.W. Apoptosis: embedded in membranes. Curr. Opin. Cell Biol., 2010, 22(6), 845-851.
[http://dx.doi.org/10.1016/j.ceb.2010.08.002] [PMID: 20801011]
[http://dx.doi.org/10.1016/j.ceb.2010.08.002] [PMID: 20801011]
[5]
Pisetsky, D.S. The role of mitochondria in immune-mediated disease: the dangers of a split personality. Arthritis Res. Ther., 2016, 18, 169.
[http://dx.doi.org/10.1186/s13075-016-1063-5] [PMID: 27424174]
[http://dx.doi.org/10.1186/s13075-016-1063-5] [PMID: 27424174]
[6]
Lee, H.-T.; Wu, T.-H.; Lin, C.-S.; Lee, C.-S.; Wei, Y.-H.; Tsai, C.-Y.; Chang, D.-M. The pathogenesis of systemic lupus erythematosus - from the viewpoint of oxidative stress and mitochondrial dysfunction. Mitochondrion, 2016, 30, 1-7.
[http://dx.doi.org/10.1016/j.mito.2016.05.007] [PMID: 27235747]
[http://dx.doi.org/10.1016/j.mito.2016.05.007] [PMID: 27235747]
[7]
Tsokos, G.C. Systemic lupus erythematosus. N. Engl. J. Med., 2011, 365(22), 2110-2121.
[http://dx.doi.org/10.1056/nejmra1100359] [PMID: 22129255]
[http://dx.doi.org/10.1056/nejmra1100359] [PMID: 22129255]
[8]
Liu, Z.; Davidson, A. Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat. Med., 2012, 18(6), 871-882.
[http://dx.doi.org/10.1038/nm.2752] [PMID: 22674006]
[http://dx.doi.org/10.1038/nm.2752] [PMID: 22674006]
[9]
Pan, Q.; Gao, C.; Chen, Y.; Feng, Y.; Liu, W.J.; Liu, H.-F. Update on the role of autophagy in systemic lupus erythematosus: a novel therapeutic target. Biomed. Pharmacother., 2015, 71, 190-193.
[http://dx.doi.org/10.1016/j.biopha.2015.02.017] [PMID: 25960235]
[http://dx.doi.org/10.1016/j.biopha.2015.02.017] [PMID: 25960235]
[10]
Yang, S.-K.; Zhang, H.-R.; Shi, S.-P.; Zhu, Y.-Q.; Song, N.; Dai, Q.; Zhang, W.; Gui, M.; Zhang, H.; Yang, S.K.; Zhang, H.R.; Shi, S.P.; Zhu, Y.Q.; Song, N.; Dai, Q.; Zhang, W.; Gui, M.; Zhang, H. The role of mitochondria in systemic lupus erythematosus: a glimpse of various pathogenetic mechanisms. Curr. Med. Chem., 2020, 27(20), 3346-3361.
[http://dx.doi.org/10.2174/0929867326666181126165139] [PMID: 30479205]
[http://dx.doi.org/10.2174/0929867326666181126165139] [PMID: 30479205]
[11]
Koutsokeras, T.; Healy, T. Systemic lupus erythematosus and lupus nephritis. Nat. Rev. Drug Discov., 2014, 13(3), 173-174.
[http://dx.doi.org/10.1038/nrd4227] [PMID: 24525782]
[http://dx.doi.org/10.1038/nrd4227] [PMID: 24525782]
[12]
Yang, C.; Xue, J.; An, N.; Huang, X.-J.; Wu, Z.-H.; Ye, L.; Li, Z.-H.; Wang, S.-J.; Pan, Q.-J.; Liang, D.; Liu, H.-F. Accelerated glomerular cell senescence in experimental lupus nephritis. Med. Sci. Monit., 2018, 24, 6882-6891.
[http://dx.doi.org/10.12659/msm.909353] [PMID: 30265659]
[http://dx.doi.org/10.12659/msm.909353] [PMID: 30265659]
[13]
Chun, J.; Chung, H.; Wang, X.; Barry, R.; Taheri, Z.M.; Platnich, J.M.; Ahmed, S.B.; Trpkov, K.; Hemmelgarn, B.; Benediktsson, H.; James, M.T.; Muruve, D.A. NLRP3 localizes to the tubular epithelium in human kidney and correlates with outcome in IgA nephropathy. Sci. Rep., 2016, 6, 24667.
[http://dx.doi.org/10.1038/srep24667] [PMID: 27093923]
[http://dx.doi.org/10.1038/srep24667] [PMID: 27093923]
[14]
Liu, D.; Xu, M.; Ding, L.-H.; Lv, L.-L.; Liu, H.; Ma, K.-L.; Zhang, A.-H.; Crowley, S.D.; Liu, B.-C. Activation of the NLRP3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int. J. Biochem. Cell Biol., 2014, 57, 7-19.
[http://dx.doi.org/10.1016/j.biocel.2014.09.018] [PMID: 25281528]
[http://dx.doi.org/10.1016/j.biocel.2014.09.018] [PMID: 25281528]
[15]
Chang, Y.-P.; Ka, S.-M.; Hsu, W.-H.; Chen, A.; Chao, L.K.; Lin, C.-C.; Hsieh, C.-C.; Chen, M.-C.; Chiu, H.-W.; Ho, C.L.; Chiu, Y.-C.; Liu, M.-L.; Hua, K.-F. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J. Cell. Physiol., 2015, 230(7), 1567-1579.
[http://dx.doi.org/10.1002/jcp.24903] [PMID: 25535911]
[http://dx.doi.org/10.1002/jcp.24903] [PMID: 25535911]
[16]
Tsai, Y.-L.; Hua, K.-F.; Chen, A.; Wei, C.-W.; Chen, W.-S.; Wu, C.-Y.; Chu, C.-L.; Yu, Y.-L.; Lo, C.-W.; Ka, S.-M. NLRP3 inflammasome: pathogenic role and potential therapeutic target for IgA nephropathy. Sci. Rep., 2017, 7(1), 41123.
[http://dx.doi.org/10.1038/srep41123] [PMID: 28117341]
[http://dx.doi.org/10.1038/srep41123] [PMID: 28117341]
[17]
Kawai, Y.; Masutani, K.; Torisu, K.; Katafuchi, R.; Tanaka, S.; Tsuchimoto, A.; Mitsuiki, K.; Tsuruya, K.; Kitazono, T. Association between serum albumin level and incidence of end-stage renal disease in patients with immunoglobulin A nephropathy: a possible role of albumin as an antioxidant agent. PLoS One, 2018, 13(5), e0196655.
[http://dx.doi.org/10.1371/journal.pone.0196655] [PMID: 29795559]
[http://dx.doi.org/10.1371/journal.pone.0196655] [PMID: 29795559]
[18]
Nishida, M.; Morimoto, M.; Ohno, K.; Hamaoka, K. IgA nephropathy in a girl with mitochondrial disease. Pediatr. Int., 2015, 57(2), e50-e52.
[http://dx.doi.org/10.1111/ped.12540] [PMID: 25661793]
[http://dx.doi.org/10.1111/ped.12540] [PMID: 25661793]
[19]
Wen, S.; Niedzwiecka, K.; Zhao, W.; Xu, S.; Liang, S.; Zhu, X.; Xie, H.; Tribouillard-Tanvier, D.; Giraud, M.-F.; Zeng, C.; Dautant, A.; Kucharczyk, R.; Liu, Z.; di Rago, J.-P.; Chen, H. Identification of G8969>A in mitochondrial ATP6 gene that severely compromises ATP synthase function in a patient with IgA nephropathy. Sci. Rep., 2016, 6, 36313.
[http://dx.doi.org/10.1038/srep36313] [PMID: 27812026]
[http://dx.doi.org/10.1038/srep36313] [PMID: 27812026]
[20]
Murphy, M.P.; Hartley, R.C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov., 2018, 17(12), 865-886.
[http://dx.doi.org/10.1038/nrd.2018.174] [PMID: 30393373]
[http://dx.doi.org/10.1038/nrd.2018.174] [PMID: 30393373]
[21]
Shah, R.; Ramakrishnan, M.; Vollmar, A.; Harrell, A.; Van Trump, R.; Masoud, A. Henoch-Schonlein purpura presenting as severe gastrointestinal and renal involvement with mixed outcomes in an adult patient. Cureus, 2017, 9(3), e1088.
[http://dx.doi.org/10.7759/cureus.1088] [PMID: 28405538]
[http://dx.doi.org/10.7759/cureus.1088] [PMID: 28405538]