Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Review of the Synthesis of Nitric Oxide Donor and Donor Derivatives with Pharmacological Activities

Author(s): Kexin Wang, Yue Wang, Hualin Zhang, Xintong Li and Weina Han*

Volume 22, Issue 6, 2022

Published on: 14 January, 2022

Page: [873 - 883] Pages: 11

DOI: 10.2174/1389557521666210412161801

Price: $65

conference banner
Abstract

Endogenous nitric oxide (NO) is an important effector molecule and signal transduction molecule, which participates in the regulation of multiple functions in organisms, involving various a variety of physiological and pathological processes, especially playing a very important role in the cardiovascular, immune, and nervous systems. NO is a gaseous substance with a short half-life in the body and is unstable in aqueous solutions. Therefore, many researchers focus on the release and activity of NO donors and their derivatives. However, NO donors can release free NO or NO analogues under physiological conditions to meet the human need. NO donors can be coupled with the corresponding active basic nucleus, so that they have the biological activity derived from both the basic nucleus and the NO donors, thus performing better bioactivity. This paper reviewed the routes of synthesis and advance activities of NO donor derivatives.

Keywords: NO donor, NO donor derivatives, synthetic route, mechanism, signal transduction molecule, free radical.

Graphical Abstract

[1]
Okuda, K.; Ito, A.; Uehara, T. Regulation of histone deacetylase 6 activity via s-nitrosylation. Biol. Pharm. Bull., 2015, 38(9), 1434-1437.
[http://dx.doi.org/10.1248/bpb.b15-00364] [PMID: 26328501]
[2]
Kanamaru, Y.; Takada, T.; Saura, R. Effect of nitric oxide on mouse clonal osteogenic cell, MC3T3-E1, proliferation in vitro. The Kobe journal of medical ences., 2001, 47(1), 1-11.
[3]
Moncada, S. The L-arginine: Nitric oxide pathway, cellular transduction and immunological roles. Adv. Second Messenger Phosphoprotein Res., 1993, 28, 97-99.
[http://dx.doi.org/10.1056/NEJM199312303292706] [PMID: 8398422]
[4]
Satya, P. Gupta.; Harish, K.; Basheerulla, S. Quantitative structure-activity relationship studies on nitric oxide synthase inhibitors. Curr. Enzym. Inhib., 2016, 12(1), 67-80.
[http://dx.doi.org/10.2174/1573408012666151126185958]
[5]
Iwata, M.; Suzuki, S.; Asai, Y.; Inoue, T.; Takagi, K. Involvement of nitric oxide in a rat model of carrageenin-induced pleurisy. Mediators Inflamm., 2010, 2010(4), 682879.
[http://dx.doi.org/10.1155/2010/682879] [PMID: 20592757]
[6]
Pérez-Ruiz, A.; Montes, R.; Velasco, F.; López-Pedrera, C.; Antonio Páramo, J.; Orbe, J.; Hermida, J.; Rocha, E. Regulation by nitric oxide of endotoxin-induced tissue factor and plasminogen activator inhibitor-1 in endothelial cells. Thromb. Haemost., 2002, 88(6), 1060-1065.
[http://dx.doi.org/10.1055/s-0037-1613355] [PMID: 12529760]
[7]
Peña, E.; Padro, T.; Molins, B.; Vilahur, G.; Badimon, L. Proteomic signature of thrombin-activated platelets after in vivo nitric oxide-donor treatment: Coordinated inhibition of signaling (phosphatidylinositol 3-kinase-γ, 14-3-3ζ, and growth factor receptor-bound protein 2) and cytoskeleton protein translocation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(11), 2560-2569.
[http://dx.doi.org/10.1161/ATVBAHA.111.231852] [PMID: 21836071]
[8]
Persson, K.; Whiss, P.A.; Nyhlén, K.; Jacobsson-Strier, M.; Glindell, M.; Andersson, R.G. Nitric oxide donors and angiotensin-converting enzyme inhibitors act in concert to inhibit human angiotensin-converting enzyme activity and platelet aggregation in vitro. Eur. J. Pharmacol., 2000, 406(1), 15-23.
[http://dx.doi.org/10.1016/S0014-2999(00)00647-6] [PMID: 11011027]
[9]
Wang, S.; Shiva, S.; Poczatek, M.H.; Darley-Usmar, V.; Murphy-Ullrich, J.E. Nitric oxide and cGMP-dependent protein kinase regulation of glucose-mediated thrombospondin 1-dependent transforming growth factor-beta activation in mesangial cells. J. Biol. Chem., 2002, 277(12), 9880-9888.
[http://dx.doi.org/10.1074/jbc.M108360200] [PMID: 11784717]
[10]
S Kwiecien, S. ; Pawlik, M.W.; Brzozowski, T.; Konturek, P.C.; Sliwowski, Z.; Pawlik, W.W.; Konturek, S.J. Nitric oxide (NO)-releasing aspirin and (NO) donors in protection of gastric mucosa against stress. J. Physiol. Pharmacol., 2008, 59(2)(Suppl. 2), 103-115.
[http://dx.doi.org/10.2170/physiolsci.RP006108] [PMID: 18812632]
[11]
Coruzzi, G.; Adami, M.; Morini, G.; Pozzoli, C.; Cena, C.; Bertinaria, M.; Gasco, A. Antisecretory and gastroprotective activities of compounds endowed with H2 antagonistic and nitric oxide (NO) donor properties. J. Physiol. Paris, 2000, 94(1), 5-10.
[http://dx.doi.org/10.1016/S0928-4257(99)00109-6] [PMID: 10761682]
[12]
Alimoradi, H.; Greish, K.; Gamble, A.B.; Giles, G.I. Controlled Delivery of Nitric Oxide for Cancer Therapy. Pharm. Nanotechnol., 2019, 7(4), 279-303.
[http://dx.doi.org/10.2174/2211738507666190429111306] [PMID: 31595847]
[13]
Chen, Y.; Ji, H.; Lai, Y.S. Advances in Research on Anti-tumor Effect of Nitric Oxide Donor Compounds. Pharmaceut. Prog., 2009, 10, 438-445.
[http://dx.doi.org/10.3969/j.issn.1001-5094.2009.10.002]
[14]
Francisco, S. Lozano.; Gonzalez-Sarmiento, R. Systemic inflammatory response, bacterial translocation and nitric oxide donors. Inflamm. Allergy Drug Targets, 2007, 6(2), 139-141.
[15]
Genevieve, M.; Mascharak, P. Emerging antimicrobial applications of Nitric Oxide (NO) and NO-Releasing materials. Anti-Infective Agents. Med. Chem., 2010, 9(4), 187-197.
[http://dx.doi.org/10.2174/187152110794785086]
[16]
Serafim, R.; Prim, M.C.I.; Trossini, G. H, G.; Ferreira, I. Nitric oxide: State of the art in drug design. Curr. Med. Chem., 2012, 19-386.
[http://dx.doi.org/10.2174/092986712803414321]
[17]
Bian, H.Y. Design, synthesis and biological activity of novel multi-target anti-tumor retinoic acid derivatives; Shandong University, 2011.
[18]
Abdel-Hafez, S.M. Abuo-Rahma, Gel-D.; Abdel-Aziz, M.; Radwan, M.F.; Farag, H.H. Design, synthesis and biological investigation of certain pyrazole-3-carboxylic acid derivatives as novel carriers for nitric oxide. Bioorg. Med. Chem., 2009, 17(11), 3829-3837.
[http://dx.doi.org/10.1016/j.bmc.2009.04.037] [PMID: 19419878]
[19]
Biava, M.; Battilocchio, C.; Poce, G.; Alfonso, S.; Consalvi, S.; Di Capua, A.; Calderone, V.; Martelli, A.; Testai, L.; Sautebin, L.; Rossi, A.; Ghelardini, C.; Di Cesare Mannelli, L.; Giordani, A.; Persiani, S.; Colovic, M.; Dovizio, M.; Patrignani, P.; Anzini, M. Enhancing the pharmacodynamic profile of a class of selective COX-2 inhibiting nitric oxide donors. Bioorg. Med. Chem., 2014, 22(2), 772-786.
[http://dx.doi.org/10.1016/j.bmc.2013.12.008] [PMID: 24373735]
[20]
Dai, Y.; Feng, X.H. Synthesis and antitumor activity of curcumin and furazan nitrogen oxide conjugate. Shizhen Tradit. Chin. Med., 2018, 29(10), 2331-2333. CNKI:SUN:SZGY.0.2018-10-009
[21]
Dong, X.; Du, L.; Pan, Z.; Liu, T.; Yang, B.; Hu, Y. Synthesis and biological evaluation of novel hybrid chalcone derivatives as vasorelaxant agents. Eur. J. Med. Chem., 2010, 45(9), 3986-3992.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.054] [PMID: 20566231]
[22]
Piazza, G.A.; Keeton, A.B.; Tinsley, H.N.; Whitt, J.D.; Gary, B.D.; Mathew, B.; Singh, R.; Grizzle, W.E.; Reynolds, R.C. NSAIDs: Old drugs reveal new anticancer targets. Pharmaceuticals (Basel), 2010, 3(5), 1652-1667.
[http://dx.doi.org/10.3390/ph3051652] [PMID: 27713322]
[23]
Ma, F.; Yun, X.Y. Research progress of azodiol sulfonium salts as no donor drugs Journal of Inner Mongolia Medical University. J. Inner Mongolia Med. Univ., 2013, 35(S2), 421-425.
[24]
Chakrapani, H.; Goodblatt, M.M.; Udupi, V.; Malaviya, S.; Shami, P.J.; Keefer, L.K.; Saavedra, J.E. Synthesis and in vitro anti-leukemic activity of structural analogues of JS-K, an anti-cancer lead compound. Bioorg. Med. Chem. Lett., 2008, 18(3), 950-953.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.044] [PMID: 18178089]
[25]
Kaur, J.; Bhardwaj, A.; Huang, Z.; Narang, D.; Chen, T.Y.; Plane, F.; Knaus, E.E. Synthesis and biological investigations of nitric oxide releasing nateglinide and meglitinide type II antidiabetic prodrugs: In-vivo antihyperglycemic activities and blood pressure lowering studies. J. Med. Chem., 2012, 55(17), 7883-7891.
[http://dx.doi.org/10.1021/jm300997w] [PMID: 22916833]
[26]
Abuo-Rahma. Gel-D.; Abdel-Aziz, M.; Beshr, E.A.; Ali, T.F. 1,2,4-Triazole/oxime hybrids as new strategy for nitric oxide donors: Synthesis, anti-inflammatory, ulceroginicity and antiproliferative activities. Eur. J. Med. Chem., 2014, 71, 185-198.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.006] [PMID: 24308998]
[27]
Wang, B.; Li, N.; Liu, T.; Wang, Y.G.; Wang, X.J.; Sun, J. Research progress on synthesis methods of nitric oxide donor compounds. Org. Chem., 2017, 37(04), 777-797.
[http://dx.doi.org/10.6023/cjoc201610035]
[28]
Sakhaei, Z.; Kundu, S.; Donnelly, J.M.; Bertke, J.A.; Kim, W.Y.; Warren, T.H. Nitric oxide release via oxygen atom transfer from nitrite at copper(ii). Chem. Communicat. (Cambridge, England), 2016, 53(3), 549-552.
[http://dx.doi.org/10.1039/C6CC08745K]
[29]
Rapozzi, V.; Bonavida, B.; Xodo, L.E. Pivotal role of Nitric Oxide (NO) induction by photodynamic therapy in tumor cells: Modification of the NF-κB/Snail/RKIP survival/anti-apoptotic loop. For. Immunopathol. Dis. Therap., 2011, 2(3), 205-214.
[http://dx.doi.org/10.1615/ForumImmunDisTher.2011004418]
[30]
Filep, J.G.; Baron, C.; Lachance, S.; Perreault, C.; Chan, J.S. Involvement of nitric oxide in target-cell lysis and DNA fragmentation induced by murine natural killer cells. Blood, 1996, 87(12), 5136-5143.
[http://dx.doi.org/10.1182/blood.V87.12.5136.bloodjournal87125136] [PMID: 8652826]
[31]
Wang, Y.; Ding, H.; Xiao, G.F. Advances in nitric oxide-mediated tumor therapy. Cancer, 2004, 23(4), 476-479.
[http://dx.doi.org/10.3321/j.issn:1000-467X.2004.04.025]
[32]
Zhou, L.; Liu, Z.G. Advances in the study of anti-tumor mechanism of ursolic acid. Med. Bull. (NY), 2011, (04), 490-494.
[http://dx.doi.org/10.3870/yydb.2011.04.031]
[33]
Zhang, T.; He, B.E.; Yuan, H.; Feng, G.L.; Chen, F.L.; Wu, A.Z.; Zhang, L.L.; Lin, H.R.; Zhuo, Z.J.; Wang, T. Synthesis and antitumor evaluation in vitro of NO-Donating ursolic acid-benzylidene derivatives. Chem. Biodivers., 2019, 16(6), e1900111.
[34]
Huang, J.; Feng, W.; Li, S. Berberine exerts anti-cancer activity by modulating Adenosine Monophosphate-Activated Protein Kinase (AMPK) and the Phosphatidylinositol 3-Kinase/Protein Kinase B (PI3K/AKT) signaling pathways. Curr. Pharm. Des., 2020, 27(4), 565-574.
[http://dx.doi.org/10.2174/1381612826666200928155728] [PMID: 32988344]
[35]
Chen, J.; Wang, T.; Xu, S.; Lin, A.; Yao, H.; Xie, W.; Zhu, Z.; Xu, J. Design, synthesis and biological evaluation of novel nitric oxide-donating protoberberine derivatives as antitumor agents. Eur. J. Med. Chem., 2017, 132, 173-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.027] [PMID: 28359045]
[36]
Li, D.; Han, T.; Liao, J.; Hu, X.; Xu, S.; Tian, K.; Gu, X.; Cheng, K.; Li, Z.; Hua, H.; Xu, J. Oridonin, a Promising ent-Kaurane diterpenoid lead compound. Int. J. Mol. Sci., 2016, 17(9), 1395.
[http://dx.doi.org/10.3390/ijms17091395] [PMID: 27563888]
[37]
Xu, S.; Wang, G.; Lin, Y.; Zhang, Y.; Pei, L.; Yao, H.; Hu, M.; Qiu, Y.; Huang, Z.; Zhang, Y.; Xu, J. Novel anticancer oridonin derivatives possessing a diazen-1-ium-1,2-diolate nitric oxide donor moiety: Design, synthesis, biological evaluation and nitric oxide release studies. Bioorg. Med. Chem. Lett., 2016, 26(12), 2795-2800.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.068] [PMID: 27158140]
[38]
Liu, Y.; Wang, T.; Ling, Y.; Bao, N.; Shi, W.; Chen, L.; Sun, J. Design, synthesis and cytotoxic evaluation of nitric oxide-releasing derivatives of isosteviol. Chem. Biol. Drug Des., 2017, 90(3), 473-477.
[http://dx.doi.org/10.1111/cbdd.12956] [PMID: 28122177]
[39]
Ai, Y.; Kang, F.; Huang, Z.; Xue, X.; Lai, Y.; Peng, S.; Tian, J.; Zhang, Y. Synthesis of CDDO-amino acid-nitric oxide donor trihybrids as potential antitumor agents against both drug-sensitive and drug-resistant colon cancer. J. Med. Chem., 2015, 58(5), 2452-2464.
[http://dx.doi.org/10.1021/jm5019302] [PMID: 25675144]
[40]
Liu, J.; Zhu, Z.; Tang, J.; Lin, Q.; Chen, L.; Sun, J. Design and synthesis of NO-releasing betulinic acid derivatives as potential anticancer agents. Anticancer. Agents Med. Chem., 2017, 17(2), 241-249.
[http://dx.doi.org/10.2174/1871520616666160926115747] [PMID: 27671295]
[41]
Wang, C.; Xia, G.; Liu, X.; Zhang, R.; Chai, Y.; Zhang, J.; Li, X.; Yang, Y.; Wang, J.; Liu, M. Synthesis and antitumor activity of ATB-429 derivatives containing a nitric oxide-releasing moiety. Bioorg. Med. Chem. Lett., 2016, 26(9), 2355-2359.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.012] [PMID: 26995527]
[42]
Gazzano, E.; Chegaev, K.; Rolando, B.; Blangetti, M.; Annaratone, L.; Ghigo, D.; Fruttero, R.; Riganti, C. Overcoming multidrug resistance by targeting mitochondria with NO-donating doxorubicins. Bioorg. Med. Chem., 2016, 24(5), 967-975.
[http://dx.doi.org/10.1016/j.bmc.2016.01.021] [PMID: 26822567]
[43]
Lei, M.D.; Zheng, L.L.; Zhang, L.; Chen, X.Y. Synthesis and antitumor activity of nitric oxide donor derivatives of α - Ivy saponins. Modern Med. Clinic, 2019, 34(01), 1-4.
[44]
Li, X.H.; Wang, X.M.; Xu, C.J.; Huang, J.K.; He, L.Q.; Ling, Y. Design, synthesis and antitumor activity of no donor gemcitabine derivatives. Pharmaceut. Clin. Res., 2015, 23(02), 97-103.
[45]
Vallance, P. Endothelial function and nitric oxide: Clinical relevance. Heart, 2001, 85(3), 342-350.
[46]
Tousoulis, D.; Kampoli, A.M.; Tentolouris, C.; Papageorgiou, N.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol., 2012, 10(1), 4-18.
[http://dx.doi.org/10.2174/157016112798829760] [PMID: 22112350]
[47]
Kurowska, E.M.; Carroll, K.K. Hypocholesterolemic properties of nitric oxide. In vivo and in vitro studies using nitric oxide donor. Biochimica et Biophysica Acta (BBA) -. Lipids Lipid Metabol., 1998, 1392(1), 41-50.
[http://dx.doi.org/10.1016/S0005-2760(97)00215-4] [PMID: 9593815]
[48]
Miranda, K.M.; Nagasawa, H.T.; Toscano, J.P. Donors of HNO. Curr. Top. Med. Chem., 2005, 5(7), 649-664.
[http://dx.doi.org/10.2174/1568026054679290] [PMID: 16101426]
[49]
Lei, S.; Zhang, P.; Li, W.; Gao, M.; He, X.; Zheng, J.; Li, X.; Wang, X.; Wang, N.; Zhang, J.; Qi, C.; Lu, H.; Chen, X.; Liu, Y. Pre- and posttreatment with edaravone protects CA1 hippocampus and enhances neurogenesis in the subgranular zone of dentate gyrus after transient global cerebral ischemia in rats. ASN Neuro, 2014, 6(6), 99-102.
[http://dx.doi.org/10.1177/1759091414558417] [PMID: 25388889]
[50]
Chiazza, F.; Chegaev, K.; Rogazzo, M.; Cutrin, J.C.; Benetti, E.; Lazzarato, L.; Fruttero, R.; Collino, M. A nitric oxide-donor furoxan moiety improves the efficacy of edaravone against early renal dysfunction and injury evoked by ischemia/reperfusion. Oxid. Med. Cell. Longev., 2015, 2015, 804659.
[http://dx.doi.org/10.1155/2015/804659] [PMID: 25834700]
[51]
İlhan, S.; Yılmaz, N.; Nacar, E.; Motor, S.; Oktar, S.; Şahna, E. The effect of caffeic acid phenethyl ester on isoproterenol-induced myocardial injury in hypertensive rats. Anadolu Kardiyol. Derg., 2014, 14(7), 576-582.
[http://dx.doi.org/10.5152/akd.2014.4825] [PMID: 25036319]
[52]
Minjie, X.; Dixiong, H.; Jiawei, H.E.; Luo, J.; Wang, T. Synthesis and in vitro nitric oxide release properties of caffeic acid nitric oxide donor derivatives. J. Guangzhou Univ. Tradit. Chin. Med., 2016, 33(02), 248-251. CNKI:SUN:REST.0.2016-02-025
[53]
Zhang, Y.C.; Yao, H.Q.; Zhou, J.P.; Wu, X.M.; Xu, J.Y. Design, synthesis and antihypertensive activity of n-phenyl-1h-pyrrole carboxylic acid with no donor. Chin. J. Phar., 2015, 50(24), 2160-2165.
[54]
Vasamsetti, S.B.; Karnewar, S.; Gopoju, R.; Gollavilli, P.N.; Narra, S.R.; Kumar, J.M.; Kotamraju, S. Resveratrol attenuates monocyte-to-macrophage differentiation and associated inflammation via modulation of intracellular GSH homeostasis: Relevance in atherosclerosis. Free Radic. Biol. Med., 2016, 96(96), 392-405.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.05.003] [PMID: 27156686]
[55]
Dutra, L.A.; Guanaes, J.F.O.; Johmann, N.; Lopes Pires, M.E.; Chin, C.M.; Marcondes, S.; Dos Santos, J.L. Synthesis, antiplatelet and antithrombotic activities of resveratrol derivatives with NO-donor properties. Bioorg. Med. Chem. Lett., 2017, 27(11), 2450-2453.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.007] [PMID: 28400236]
[56]
Paulo, M.; Banin, T.M.; de Andrade, F.A.; Bendhack, L.M. Enhancing vascular relaxing effects of nitric oxide-donor ruthenium complexes. Future Med. Chem., 2014, 6(7), 825-838.
[http://dx.doi.org/10.4155/fmc.14.26] [PMID: 24941875]
[57]
Digiacomo, M.; Martelli, A.; Testai, L.; Lapucci, A.; Breschi, M.C.; Calderone, V.; Rapposelli, S. Synthesis and evaluation of multi-functional NO-donor/insulin-secretagogue derivatives for the treatment of type II diabetes and its cardiovascular complications. Bioorg. Med. Chem., 2015, 23(3), 422-428.
[http://dx.doi.org/10.1016/j.bmc.2014.12.043] [PMID: 25577707]
[58]
Wu, H.Y.; Tang, Y.; Gao, L.Y.; Sun, W.X.; Hua, Y.; Yang, S.B.; Zhang, Z.P.; Liao, G.Y.; Zhou, Q.G.; Luo, C.X.; Zhu, D.Y. The synergetic effect of edaravone and borneol in the rat model of ischemic stroke. Eur. J. Pharmacol., 2014, 740, 522-531.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.035] [PMID: 24975100]
[59]
Feng, G.L.; Zhao, Z.H.; Luo, J.; Xiao, S.L.; Wang, T. Synthesis of natural borneol derivatives from no donor. J. Shunde Polytech., 2016, 14(01), 1-4.
[http://dx.doi.org/10.3969/j.issn.1672-6138.2016.01.001]
[60]
Zhang, Y.; Xu, J.; Li, Y.; Yao, H.; Wu, X. Design, synthesis and pharmacological evaluation of novel NO-releasing benzimidazole hybrids as potential antihypertensive candidate. Chem. Biol. Drug Des., 2015, 85(5), 541-548.
[http://dx.doi.org/10.1111/cbdd.12442] [PMID: 25283264]
[61]
Monti, M.; Ciccone, V.; Pacini, A.; Roggeri, R.; Monzani, E.; Casella, L.; Morbidelli, L. Anti-hypertensive property of a nickel-piperazine/NO donor in spontaneously hypertensive rats. Pharmacol. Res., 2016, 107, 352-359.
[http://dx.doi.org/10.1016/j.phrs.2016.03.033] [PMID: 27063892]
[62]
Knox, C.D.; de Kam, P.J.; Azer, K.; Wong, P.; Ederveen, A.G.; Shevell, D.; Morabito, C.; Meehan, A.G.; Liu, W.; Reynders, T.; Denef, J.F.; Mitselos, A.; Jonathan, D.; Gutstein, D.E.; Mitra, K.; Sun, S.Y.; Lo, M.M.; Cully, D.; Ali, A. Discovery and clinical evaluation of MK-8150, A novel nitric oxide donor with a unique mechanism of nitric oxide release. J. Am. Heart Assoc., 2016, 5(9), e003493.
[http://dx.doi.org/10.1161/JAHA.116.003493] [PMID: 27561272]
[63]
Zuo, T.; Yue, Y.; Wang, X.; Li, H.; Yan, S. Luteolin relieved DSS-induced colitis in mice via HMGB1-TLR-NF-κB signaling pathway. Inflammation, 2021, 44, 570-579.
[http://dx.doi.org/10.1007/s10753-020-01354-2] [PMID: 33015735]
[64]
Huang, H.F.; Liu, H.R.; Li, Y.L.; Wang, Y.Y. Zhou, Gang.; Liu, Hongbing Effects of nitric oxide donor derivatives of methyl ferulate on renal function in diabetic rats. Guangdong Med. J., 2016, 37(05), 655-657. CNKI:SUN:GAYX.0.2016-05-010
[65]
Yi, W.B.; Wang, Q.Q.; Huang, X.D. Study on anti diabetic vascular complications of luteolin nitric oxide donor derivatives; XiangtanUniversity, 2014.
[66]
Xie, Y.; Shao, L.; Wang, Q.; Bai, Y.; Chen, Z.; Li, N.; Xu, Y.; Li, Y.; Yang, G.; Bian, X. Synthesis, nitric oxide release, and dipeptidyl peptidase-4 inhibition of sitagliptin derivatives as new multifunctional antidiabetic agents. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3731-3735.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.019] [PMID: 30343953]
[67]
Bai, R.; Yang, X.; Zhu, Y.; Zhou, Z.; Xie, W.; Yao, H.; Jiang, J.; Liu, J.; Shen, M.; Wu, X.; Xu, J. Novel nitric oxide-releasing isochroman-4-one derivatives: Synthesis and evaluation of antihypertensive activity. Bioorg. Med. Chem., 2012, 20(23), 6848-6855.
[http://dx.doi.org/10.1016/j.bmc.2012.09.043] [PMID: 23084434]
[68]
Mu, L.; Feng, S.S.; Go, M.L. Study of synthesis and cardiovascular activity of some furoxan derivatives as potential NO-donors. Chem. Pharm. Bull. (Tokyo), 2000, 48(6), 808-816.
[http://dx.doi.org/10.1248/cpb.48.808] [PMID: 10866141]
[69]
Huang, Q.; Rui, E.Y.; Cobbs, M.; Dinh, D.M.; Gukasyan, H.J.; Lafontaine, J.A.; Mehta, S.; Patterson, B.D.; Rewolinski, D.A.; Richardson, P.F.; Edwards, M.P. Design, synthesis, and evaluation of NO-donor containing carbonic anhydrase inhibitors to lower intraocular pressure. J. Med. Chem., 2015, 58(6), 2821-2833.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00043] [PMID: 25728019]
[70]
Hibbard, H.A.J.; Reynolds, M.M. Fluorescent nitric oxide donor for the detection and killing of Pseudomonas aeruginosa. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(12), 2009-2018.
[http://dx.doi.org/10.1039/C8TB02552E] [PMID: 32254805]
[71]
Su, B.N.; Chang, L.C.; Park, E.J.; Cuendet, M.; Santarsiero, B.D.; Mesecar, A.D.; Mehta, R.G.; Fong, H.H.; Pezzuto, J.M.; Kinghorn, A.D. Bioactive constituents of the seeds of Brucea javanica. Planta Med., 2002, 68(8), 730-733.
[http://dx.doi.org/10.1055/s-2002-33798] [PMID: 12221597]
[72]
Tang, W.; Xie, J.; Xu, S.; Lv, H.; Lin, M.; Yuan, S.; Bai, J.; Hou, Q.; Yu, S. Novel nitric oxide-releasing derivatives of brusatol as anti-inflammatory agents: Design, synthesis, biological evaluation, and nitric oxide release studies. J. Med. Chem., 2014, 57(18), 7600-7612.
[http://dx.doi.org/10.1021/jm5007534] [PMID: 25179783]
[73]
Hassan, G.S.; Hegazy, G.H.; Ibrahim, N.M.; Fahim, S.H. New ibuprofen derivatives as H2S and NO donors as safer anti-inflammatory agents. Future Med. Chem., 2019, 11(23), 3029-3045.
[http://dx.doi.org/10.4155/fmc-2018-0467] [PMID: 31680552]
[74]
Florentino, I.F.; Silva, D.P.B.; Silva, D.M. Potential anti-inflammatory effect of LQFM-021 in carrageenan-induced inflammation: The role of nitric oxide. Nitric Oxide: Biol. Chem., 2017, 69, 35-44.
[http://dx.doi.org/10.1016/j.niox.2017.04.006]
[75]
Bertinaria, M.; Rolando, B.; Giorgis, M.; Montanaro, G.; Marini, E.; Collino, M.; Benetti, E.; Daniele, P.G.; Fruttero, R.; Gasco, A. Carnosine analogues containing NO-donor substructures: Synthesis, physico-chemical characterization and preliminary pharmacological profile. Eur. J. Med. Chem., 2012, 54, 103-112.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.032] [PMID: 22626653]
[76]
Abdellatif, K.R.; Abdelall, E.K.; Bakr, R.B. Nitric Oxide-NASIDS donor prodrugs as hybrid safe anti-inflammatory agents. Curr. Top. Med. Chem., 2017, 17(8), 941-955.
[http://dx.doi.org/10.2174/1568026616666160927153435] [PMID: 27697053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy