Review Article

Triazole-containing Heterocycles: Privileged Scaffolds in Anti-Trypanosoma Cruzi Drug Development

Author(s): Kamdem Boniface Pone*, Sadou Dalhatou , Hugues Kamdem Paumo, Lebogang Maureen Katata-Seru and Elizabeth Igne Ferreira

Volume 23, Issue 1, 2022

Published on: 12 April, 2021

Page: [33 - 59] Pages: 27

DOI: 10.2174/1389450122666210412125643

Price: $65

Abstract

Background: Chagas disease is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi and is transmitted to humans through the excreta of infected blood-sucking triatomine bugs. According to the World Health Organization, 6 to 7 million people are infected with T. cruzi worldwide, mainly in Latin America, with more than 10000 deaths annually.

Aim of the Study: The present study aims to provide comprehensive literature information on the importance of triazole-containing heterocycles in developing anti-Chagas disease agents.

Methodology: The embodied information was acquired without date limitation by December 2020 using various electronic databases including, SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS (American Chemical Society), SciELO (Scientific Electronic Library Online), Google Scholar, Springer, Scopus, and Web of Science.

Results: Upon in vitro studies, more than 100 triazole-containing heterocycles have been predicted as active compounds against the pathogen responsible for the American trypanosomiasis. However, less is known about their in vivo activity in animal models and their clinical studies in humans. Moreover, the pharmacokinetic studies of these bioactive compounds are still pending. Despite the variety of mechanisms of action attributed to most of these molecules, the exact mechanism involved is still controversial. Thus, in vivo experiments, followed by pharmacokinetics, and the mechanism of action of the most active compounds, should be the subject of future investigation.

Conclusion: All in all, recent studies have demonstrated the importance of triazole-containing heterocycles in search of potential candidates for drug development against Chagas disease. Nonetheless, the use of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored triazole derivatives, leading to the development of triazole-containing compounds with new properties and trypanocidal activity.

Keywords: Triazoles, american trypanosomiasis, protozoan parasite, synthesis, drug discovery, neglected disease.

Graphical Abstract

[1]
Ribeiro V, Dias N, Paiva T, et al. Current trends in the pharmacological management of Chagas disease. Int J Parasitol Drugs Drug Resist 2020; 12: 7-17.
[http://dx.doi.org/10.1016/j.ijpddr.2019.11.004] [PMID: 31862616]
[2]
WHO (World Health Organization). Health topics. Chagas disease (American Trypanosomiasis) The fact sheets 2020. Available at: https://www.who.int/health-topics/chagas-disease#tab=tab_2 [Assessed on 30th November 2020].
[3]
Bocchi EA, Bestetti RB, Scanavacca MI, Neto EC, Issa VS. J Am Coll Cardiol 2017; 70: 1511-24.
[http://dx.doi.org/10.1016/j.jacc.2017.08.004]
[4]
Pérez-Molina JA, Molina I. Chagas disease cardiomyopathy treatment remains a challenge - Authors’ reply. Lancet 2018; 391(10136): 2209-10.
[http://dx.doi.org/10.1016/S0140-6736(18)30776-1] [PMID: 29893217]
[5]
Boniface PK, Ferreira EI. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother Res 2019; 33(10): 2473-517.
[http://dx.doi.org/10.1002/ptr.6383] [PMID: 31441148]
[6]
Beltran-Hortelano I, Alcolea V, Font M, Pérez-Silanes S. The role of imidazole and benzimidazole heterocycles in Chagas disease: A review. Eur J Med Chem 2020; 206: 112692.
[http://dx.doi.org/10.1016/j.ejmech.2020.112692] [PMID: 32818869]
[7]
DNDi (Drug for Neglected Diseases Initiative) 2020. Available at: https://dndi.org/diseases/chagas/facts/Accessed on 14th October 2020
[8]
Haider S, Alam MS, Hamid H. 1,2,3-Triazoles: scaffold with medicinal significance. Inflamm Cell Signal 2014; 1: e95.
[9]
Costa AV, Moreira LC, Pinto RT, et al. Synthesis of glycerol-derived 4-alkyl-substituted 1,2,3-triazoles and evaluation of their fungicidal, phytotoxic, and antiproliferative activities. J Braz Chem Soc 2020; 31: 821-32.
[http://dx.doi.org/10.21577/0103-5053.20190246]
[10]
Ram VJ, Sethi A, Nath M, Pratap R. The chemistry of heterocycles. Nomenclature of three-to-five membered heterocycles. Chapter 5-Five Membered Heterocycles 2019; 149-478.
[11]
Aggarwal R, Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 2020; 205: 112652.
[http://dx.doi.org/10.1016/j.ejmech.2020.112652] [PMID: 32771798]
[12]
Campo VL, Sesti-Costa R, Carneiro ZA, Silva JS, Schenkman S, Carvalho I. Design, synthesis and the effect of 1,2,3-triazole sialylmimetic neoglycoconjugates on Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg Med Chem 2012; 20(1): 145-56.
[http://dx.doi.org/10.1016/j.bmc.2011.11.022] [PMID: 22154559]
[13]
de Andrade P, Galo OA, Carvalho MR, et al. 1,2,3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi. Bioorg Med Chem 2015; 23(21): 6815-26.
[http://dx.doi.org/10.1016/j.bmc.2015.10.008] [PMID: 26476667]
[14]
Chaves-Mello F, do V, Quaresma BMS, et al. Novel nitroimidazole derivatives evaluated for their trypanocidal, cytotoxic, and genotoxic activities. Bioorg Med Chem 2017; 25: 6049-59.
[15]
Brand S, Ko EJ, Viayna E, et al. Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi. J Med Chem 2017; 60(17): 7284-99.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00463] [PMID: 28844141]
[16]
Pertino MW, F de la Torre A, Schmeda-Hirschmann G, et al. Synthesis, trypanocidal and anti-leishmania activity of new triazole-lapachol and nor-lapachol hybrids. Bioorg Chem 2020; 103: 104122.
[http://dx.doi.org/10.1016/j.bioorg.2020.104122] [PMID: 32745754]
[17]
Franklim TN, Freire-de-Lima L, de Nazareth Sá Diniz J, et al. Design, synthesis and trypanocidal evaluation of novel 1,2,4-triazoles-3-thiones derived from natural piperine. Molecules 2013; 18(6): 6366-82.
[http://dx.doi.org/10.3390/molecules18066366] [PMID: 23760033]
[18]
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Kaiser M, Chatelain E, Ioset JR. Novel 3-nitro-1H-1,2,4-triazole-based piperazines and 2-amino-1,3-benzothiazoles as antichagasic agents. Bioorg Med Chem 2013; 21(21): 6600-7.
[http://dx.doi.org/10.1016/j.bmc.2013.08.022] [PMID: 24012457]
[19]
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Wilkinson SR, Kaiser M. Novel nitro(triazole/imidazole)-based heteroarylamides/sulfonamides as potential antitrypanosomal agents. Eur J Med Chem 2014; 87: 79-88.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.045] [PMID: 25240098]
[20]
Papadopoulou MV, Bloomer WD, Rosenzweig HS, et al. Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation. Bioorg Med Chem 2015; 23(19): 6467-76.
[http://dx.doi.org/10.1016/j.bmc.2015.08.014] [PMID: 26344593]
[21]
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Wilkinson SR, Szular J, Kaiser M. Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur J Med Chem 2016; 123: 895-904.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.002] [PMID: 27543881]
[22]
Papadopoulou MV, Bloomer WD, Rosenzweig HS, Kaiser M. The antitrypanosomal and antitubercular activity of some nitro(triazole/imidazole)-based aromatic amines. Eur J Med Chem 2017; 138: 1106-13.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.060] [PMID: 28763645]
[23]
Souza ROMA, Miranda LSME. Strategies Towards the synthesis of N-2 substituted 1,2,3-triazoles. An Acad Bras Cienc 2019; 91(Suppl. 1): e20180751.
[http://dx.doi.org/10.1590/0001-3765201820180751] [PMID: 30785471]
[24]
Maddila S, Pagadala R, Jonnalagadda SB. 1,2,4-Triazoles: A review of synthetic approaches and the biological activity. Lett Org Chem 2013; 10: 693-714.
[http://dx.doi.org/10.2174/157017861010131126115448]
[25]
Al-Masoudi IA, Al-Soud YA, Al-Salihi NJ, Al-Masoudi NA. 1,2,4-Triazoles: synthetic approaches and pharmacological importance. Chem Heterocycl Compd 2006; 42(11): 1377-403.
[http://dx.doi.org/10.1007/s10593-006-0255-3]
[26]
Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 2002; 67(9): 3057-64.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[27]
Haldón E, Nicasio MC, Pérez PJ. Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Org Biomol Chem 2015; 13(37): 9528-50.
[http://dx.doi.org/10.1039/C5OB01457C] [PMID: 26284434]
[28]
Huisgen R. 1,3-Dipolar cycloadditions. Proceedings of the Chemical Society. 357.
[29]
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 2002; 41(14): 2596-9.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[30]
Kolb HC, Finn MG, Sharpless KB. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 2001; 40(11): 2004-21.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[31]
Zhou Z, Li S, Zhang Y, Liu M, Li W. Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole. J Am Chem Soc 2005; 127(31): 10824-5.
[http://dx.doi.org/10.1021/ja052280u] [PMID: 16076176]
[32]
Li YC, Qi C, Li SH, et al. 1,1′-Azobis-1,2,3-triazole: a high-nitrogen compound with stable N8 structure and photochromism. J Am Chem Soc 2010; 132(35): 12172-3.
[http://dx.doi.org/10.1021/ja103525v] [PMID: 20715773]
[33]
Boechat N, Ferreira VF, Ferreira SB, et al. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J Med Chem 2011; 54(17): 5988-99.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[34]
Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg Chem 2017; 71: 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[35]
Zhang S, Xu Z, Gao C, et al. Triazole derivatives and their anti-tubercular activity. Eur J Med Chem 2017; 138: 501-13.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[36]
Agard NJ, Prescher JA, Bertozzi CRA. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 2004; 126(46): 15046-7.
[http://dx.doi.org/10.1021/ja044996f] [PMID: 15547999]
[37]
Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 2003; 125(11): 3192-3.
[http://dx.doi.org/10.1021/ja021381e] [PMID: 12630856]
[38]
Ramachary DB, Ramakumar K, Narayana VV. Amino acid-catalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles. Chemistry 2008; 14(30): 9143-7.
[http://dx.doi.org/10.1002/chem.200801325] [PMID: 18767077]
[39]
Li H, Aneja R, Chaiken I. Click chemistry in peptide-based drug design. Molecules 2013; 18(8): 9797-817.
[http://dx.doi.org/10.3390/molecules18089797] [PMID: 23959192]
[40]
Boulton AJ, Katritzky AR. N-Oxides and related compounds. Part XXII. The rearrangement of 4-nitrobenzofuroxans to 7-nitrobenzofuroxans. Rev Roum Chim 1962; 7: 691-7.
[41]
Boulton AJ, Ghosh PB, Katritzky AR. Heterocyclic rearrangements. Part V. Rearrangement of 4-arylazo-and 4-nitroso-benzofuroxans: New syntheses of the benzotriazole and benzofurazan ring systems. J Chem Soc B Phys Org 1966; 1004-11.
[42]
Stollè R. Über die konstitution der osotetrazine und amino-osotriazole. Berichte der deutschen chemischen gesellschaft (A and B Series) 1926; 59: 1742-7.
[43]
Hegarty AF, Quain P, O’Mahony TAF, Scott FL. Mechanism of cyclisation of N-(1,2,4-triazol3-yl)hydrazonyl bromides to mixtures of isomeric triazolo triazoles. J Chem Soc 1974; 2: 997-1004.
[44]
Guru MM, Punniyamurthy T. Copper(II)-catalyzed aerobic oxidative synthesis of substituted 1,2,3- and 1,2,4-triazoles from bisarylhydrazones via C-H functionalization/C-C/N-N/C-N bonds formation. J Org Chem 2012; 77(11): 5063-73.
[http://dx.doi.org/10.1021/jo300592t] [PMID: 22571669]
[45]
Zhu C, Zeng H, Chen F, et al. Copper-catalyzed coupling of oxime acetates and aryldiazonium salts: An azide-free strategy toward N-2-aryl-1,2,3-triazoles. Org Chem Front 2018; 5: 571-6.
[http://dx.doi.org/10.1039/C7QO00874K]
[46]
Kseniya GD, Lesogorova SG, Sukhorukova ES, et al. Synthesis of 2-aryl-1,2,3-triazoles by oxidative cyclization of 2-(arylazo)ethene-1,1- diamines: a one-pot approach. Eur J Org Chem 2016; 2016(11): 2700-10.
[47]
Watanabe T, Umezawa Y, Takahashi Y, Akamatsu Y. Novel pyrrole- and 1,2,3-triazole-based 2,3-oxidosqualene cyclase inhibitors. Bioorg Med Chem Lett 2010; 20(19): 5807-10.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.131] [PMID: 20728352]
[48]
Gonzaga D, Senger MR, da Silva FdeC, Ferreira VF, Silva FP Jr. 1-Phenyl-1H- and 2-phenyl-2H-1,2,3-triazol derivatives: design, synthesis and inhibitory effect on alpha-glycosidases. Eur J Med Chem 2014; 74: 461-76.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.039] [PMID: 24487194]
[49]
Baxter CA, Cleator E, Brands KMJ, et al. The first large scale synthesis of MK-4305: a dual orexin receptor antagonist for the treatment of sleep disorder. Org Process Res Dev 2011; 15: 367-75.
[http://dx.doi.org/10.1021/op1002853]
[50]
Adibekian A, Martin BR, Wang C, et al. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat Chem Biol 2011; 7(7): 469-78.
[http://dx.doi.org/10.1038/nchembio.579] [PMID: 21572424]
[51]
Silva RA, Quintela ED, Mascarin GM, Barrigossi JAF, Lião LM. Compatibility of conventional agrochemicals used in rice crops with the entomopathogenic fungus Metarhizium anisopliae. Sci Agric 2013; 70: 152-60.
[http://dx.doi.org/10.1590/S0103-90162013000300003]
[52]
Desai PS, Indorwala NS. Triazoles used as a corrosion inhibitor for mild steel in hydrochloric acid. Int J Curr Microbiol Appl Sci 2015; 4: 928-38.
[53]
McNeill KS, Cancilla DA. Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities. Bull Environ Contam Toxicol 2009; 82(3): 265-9.
[http://dx.doi.org/10.1007/s00128-008-9626-z] [PMID: 19082516]
[54]
Schulze B, Schubert US. Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles. Chem Soc Rev 2014; 43(8): 2522-71.
[http://dx.doi.org/10.1039/c3cs60386e] [PMID: 24492745]
[55]
Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules 2015; 20(5): 9263-94.
[http://dx.doi.org/10.3390/molecules20059263] [PMID: 26007183]
[56]
Balamurugan S, Yeap GY, Mahmood WAK. Calamitic liquid crystals of 1,2,3-triazole connected to azobenzene: synthesis, characterisation and anisotropic properties. Liq Cryst 2014; 41: 776-83.
[http://dx.doi.org/10.1080/02678292.2014.889231]
[57]
Miladinova PM, Konstantinova TN. Photo stabilizers for polymers-new trends. J Chem Tech Metall 2015; 50: 229-39.
[58]
Rajalekshmi KM, Jaleel CA, Azooz MM, Panneerselvam R. Effect of triazole growth regulators on growth and pigment contents in Plectranthus aromaticus and Plectranthus vettiveroides. Adv Biol Res (Faisalabad) 2009; 3: 117-22.
[59]
Zhang G, Wang Y, Wen X, Ding C, Li Y. Dual-functional click-triazole: a metal chelator and immobilization linker for the construction of a heterogeneous palladium catalyst and its application for the aerobic oxidation of alcohols. Chem Commun (Camb) 2012; 48(24): 2979-81.
[http://dx.doi.org/10.1039/c2cc18023e] [PMID: 22331347]
[60]
El-Khawass SM, Habib NS. Synthesis of 1,2,4-triazole, 12,4-triazolo[3,4-b] [1,3,4] thiadiazole and 1,2,4-triazolo[3,4-b] [1,3,4] thiadiazine derivatives of benzotriazole. J Heterocycl Chem 1989; 26(1): 177-81.
[http://dx.doi.org/10.1002/jhet.5570260131]
[61]
Tarrago G, Marzin C, Najimi D, Pellegrin V. New tetra heterocyclic macrocycles containing triazole, pyrazole, pyridine, and/or furan subunits. Synthesis and cation-binding properties. J Org Chem 1990; 55(2): 420.
[http://dx.doi.org/10.1021/jo00289a008]
[62]
de Mendoza J, Ontoria JM, Ortega MC, Torres T. Synthesis of 3,5-biscarbonyl-1H-1,2,4-triazole derivatives. Synthesis 1992; 4: 398-402.
[http://dx.doi.org/10.1055/s-1992-26122]
[63]
Abdelhamdi AO, Mohamed MA, Zaki YH. Reactions with hydrazononoyl halides 591: Synthesis and antimicrobial activity of 2,3-dihydro-1,3,4-thiazole, triazolino[4,3-a] pyrimidine, and pyrimido[1,2-b] [1,2,4,5]tetrazin-6-one containing benzofuran moiety. Phosphorus Sulfur Silicon Relat Elem 2008; 183: 1746-54.
[http://dx.doi.org/10.1080/10426500701734265]
[64]
Bentiss F, Lagrenee M, Barby D. Accelerated synthesis of 3,5-disubstituted 4-amino-1,2,4-triazoles under microwave irradiation. Tetrahedron Lett 2000; 41: 1539-41.
[http://dx.doi.org/10.1016/S0040-4039(99)02350-3]
[65]
Rostamizadeh S, Tajik H, Yazdanfarahi S. Solid phase synthesis of 1,2,4-triazoles under microwave irradiation. Synth Commun 2003; 33(1): 113-7.
[http://dx.doi.org/10.1081/SCC-120015566]
[66]
Li D, Bao H, You T. Microwave-assisted and efficient one-pot synthesis of substituted 1,2,4-triazoles. Heterocycles 2005; 65(8): 1957-62.
[http://dx.doi.org/10.3987/COM-05-10415]
[67]
Polya JB. Comprehensive Heterocyclic Chemistry. Headington Hill Hall, Oxford, England: Pergamon Press 1984; 5: p. 733.
[68]
Lynn MK, Bossak BH, Sandifer PA, Watson A, Nolan MS. Contemporary autochthonous human Chagas disease in the USA. Acta Trop 2020; 205: 105361.
[http://dx.doi.org/10.1016/j.actatropica.2020.105361] [PMID: 32006523]
[69]
Stevens L, Dorn PL, Hobson J, et al. Vector blood meals and Chagas disease transmission potential, United States. Emerg Infect Dis 2012; 18(4): 646-9.
[http://dx.doi.org/10.3201/eid1804.111396] [PMID: 22469536]
[70]
Lidani KCF, Andrade FA, Bavia L, et al. Chagas disease: From discovery to a worldwide health problem. Front Public Health 2019; 7(166): 13.
[71]
Santos SS, de Araújo RV, Giarolla J, Seoud OE, Ferreira EI. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. Int J Antimicrob Agents 2020; 55(4): 105906.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105906] [PMID: 31987883]
[72]
Dias JCP. Elimination of Chagas disease transmission: perspectives. Mem Inst Oswaldo Cruz 2009; 104(Suppl. 1): 41-5.
[http://dx.doi.org/10.1590/S0074-02762009000900007] [PMID: 19753456]
[73]
Peterson JK, Hashimoto K, Yoshioka K, et al. Chagas disease in Central America: Recent findings and current challenges in vector ecology and control. Curr Trop Med Rep 2019; 6: 76-91.
[http://dx.doi.org/10.1007/s40475-019-00175-0]
[74]
da Silva EN Jr, Menna-Barreto RFS, Pinto MdoC, et al. Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. Eur J Med Chem 2008; 43(8): 1774-80.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.015] [PMID: 18045742]
[75]
da Silva Júnior EN, de Melo IMM, Diogo EBT, et al. On the search for potential anti-Trypanosoma cruzi drugs: synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. Eur J Med Chem 2012; 52: 304-12.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.039] [PMID: 22483633]
[76]
de Castro SL, Emery FS, da Silva Júnior EN. Synthesis of quinoidal molecules: strategies towards bioactive compounds with an emphasis on lapachones. Eur J Med Chem 2013; 69: 678-700.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.057] [PMID: 24095760]
[77]
Diogo EBT, Dias GG, Rodrigues BL, et al. Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: electrochemical studies on the effects of the quinoidal moiety. Bioorg Med Chem 2013; 21(21): 6337-48.
[http://dx.doi.org/10.1016/j.bmc.2013.08.055] [PMID: 24074878]
[78]
Verduzco-Ramirez A, Manzanilla-Davila S, Morales-Guillen ME, et al. Essential metal-based drugs: Correlation between redox potential and biological activity of M2+ with a N2O2 ligand. J Mex Chem Soc 2017; 61(2): 109-19.
[http://dx.doi.org/10.29356/jmcs.v61i2.258]
[79]
Polak A, Richle R. Mode of action of the 2-nitroimidazole derivative benznidazole. Ann Trop Med Parasitol 1978; 72(1): 45-54.
[http://dx.doi.org/10.1080/00034983.1978.11719278] [PMID: 418744]
[80]
Soy D, Aldasoro E, Guerrero L, et al. Population pharmacokinetics of benznidazole in adult patients with Chagas disease. Antimicrob Agents Chemother 2015; 59(6): 3342-9.
[http://dx.doi.org/10.1128/AAC.05018-14] [PMID: 25824212]
[81]
Coronel MVP, Frutos LO, Muñoz EC, Valle DK, Rojas DH. Adverse systemic reaction to benznidazole. Rev Soc Bras Med Trop 2017; 50(1): 145-7.
[http://dx.doi.org/10.1590/0037-8682-0071-2016] [PMID: 28327820]
[82]
Rajão MA, Furtado C, Alves CL, et al. Unveiling benznidazole’s mechanism of action through overexpression of DNA repair proteins in Trypanosoma cruzi. Environ Mol Mutagen 2014; 55(4): 309-21.
[http://dx.doi.org/10.1002/em.21839] [PMID: 24347026]
[83]
Cirqueira ML. Structural studies on Trypanosoma cruzi nitroreductase enzyme: characterization of prodrug activation mechanism for benznidazole and nifurtimox. Dissertation (Master) 2019; 75.
[84]
Marchiori MF, Riul TB, Oliveira Bortot L, et al. Binding of triazole-linked galactosyl arylsulfonamides to galectin-3 affects Trypanosoma cruzi cell invasion. Bioorg Med Chem 2017; 25(21): 6049-59.
[http://dx.doi.org/10.1016/j.bmc.2017.09.042] [PMID: 29032929]
[85]
Zacchi CHC, Federighi SSM, Gadelha FR, Martins FT, Alves RB, de Fatima A. Synthesis of potential anti-Trypanosoma cruzi azole-naftifine analogues by azide-alkyne click reaction. Mendeleev Commun 2018; 28: 195-7.
[http://dx.doi.org/10.1016/j.mencom.2018.03.029]
[86]
Pasko MT, Piscitelli SC, Van Slooten AD. Fluconazole: a new triazole antifungal agent. DICP 1990; 24(9): 860-7.
[http://dx.doi.org/10.1177/106002809002400914] [PMID: 2260347]
[87]
Zimmermann LA, de Moraes MH, da Rosa R, et al. Synthesis and SAR of new isoxazole-triazole bis-heterocyclic compounds as analogues of natural lignans with antiparasitic activity. Bioorg Med Chem 2018; 26(17): 4850-62.
[http://dx.doi.org/10.1016/j.bmc.2018.08.025] [PMID: 30173929]
[88]
Urbina JA, Lira R, Visbal G, Bartrolí J. In vitro antiproliferative effects and mechanism of action of the new triazole derivative UR-9825 against the protozoan parasite Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother 2000; 44(9): 2498-502.
[http://dx.doi.org/10.1128/AAC.44.9.2498-2502.2000] [PMID: 10952601]
[89]
Urbina JA, Payares G, Sanoja C, Lira R, Romanha AJ. In vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease. Int J Antimicrob Agents 2003; 21(1): 27-38.
[http://dx.doi.org/10.1016/S0924-8579(02)00273-X] [PMID: 12507835]
[90]
Urbina JA. Ergosterol biosynthesis and drug development for Chagas disease. Mem Inst Oswaldo Cruz 2009; 104(Suppl. 1): 311-8.
[http://dx.doi.org/10.1590/S0074-02762009000900041] [PMID: 19753490]
[91]
Girault S, Grellier P, Berecibar A, et al. Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): influence of the linker. J Med Chem 2000; 43(14): 2646-54.
[http://dx.doi.org/10.1021/jm990946n] [PMID: 10893302]
[92]
Silva FT, Franco CH, Favaro DC, Freitas-Junior LH, Moraes CB, Ferreira EI. Design, synthesis and antitrypanosomal activity of some nitrofurazone 1,2,4-triazolic bioisosteric analogues. Eur J Med Chem 2016; 121: 553-60.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.065] [PMID: 27318979]
[93]
Thompson AM, O’Connor PD, Marshall AJ, et al. Re-evaluating pretomanid analogues for Chagas disease: Hit-to-lead studies reveal both in vitro and in vivo trypanocidal efficacy. Eur J Med Chem 2020; 207: 112849.
[http://dx.doi.org/10.1016/j.ejmech.2020.112849] [PMID: 33007723]
[94]
Bennani YL. Drug discovery in the next decade: innovation needed ASAP. Drug Discov Today 2011; 16(17-18): 779-92.
[http://dx.doi.org/10.1016/j.drudis.2011.06.004] [PMID: 21704185]
[95]
Freire-de-Lima L, Fonseca LM, Oeltmann T, Mendonça-Previato L, Previato JO. The trans-sialidase, the major Trypanosoma cruzi virulence factor: Three decades of studies. Glycobiology 2015; 25(11): 1142-9.
[http://dx.doi.org/10.1093/glycob/cwv057] [PMID: 26224786]
[96]
Buschiazzo A, Muiá R, Larrieux N, Pitcovsky T, Mucci J, Campetella O. Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. PLoS Pathog 2012; 8(1): e1002474.
[http://dx.doi.org/10.1371/journal.ppat.1002474] [PMID: 22241998]
[97]
Morrone-Pozzuto P, Uhrig ML, Agusti R. Trypanosoma cruzi trans-sialidase alternative substrates: Study of the effect of substitution in C-6 in benzyl β-lactoside. Carbohydr Res 2019; 478: 33-45.
[http://dx.doi.org/10.1016/j.carres.2019.04.003] [PMID: 31054381]
[98]
dC-Rubin, S.S.C.; Schenkman, S. Trypanosoma cruzi trans-sialidase as a multifunctional enzyme in Chagas’ disease. Cell Microbiol 2012; 14(10): 1522-30.
[http://dx.doi.org/10.1111/j.1462-5822.2012.01831.x] [PMID: 22747789]
[99]
Carvalho ST, Sola-Penna M, Oliveira IA, et al. A new class of mechanism-based inhibitors for Trypanosoma cruzi trans-sialidase and their influence on parasite virulence. Glycobiology 2010; 20(8): 1034-45.
[http://dx.doi.org/10.1093/glycob/cwq065] [PMID: 20466651]
[100]
Maya JD, Cassels BK, Iturriaga-Vásquez P, et al. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol A Mol Integr Physiol 2007; 146(4): 601-20.
[http://dx.doi.org/10.1016/j.cbpa.2006.03.004] [PMID: 16626984]
[101]
Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci USA 2008; 105(13): 5022-7.
[http://dx.doi.org/10.1073/pnas.0711014105] [PMID: 18367671]
[102]
Jose Cazzulo J, Stoka V, Turk V. The major cysteine proteinase of Trypanosoma cruzi: a valid target for chemotherapy of Chagas disease. Curr Pharm Des 2001; 7(12): 1143-56.
[http://dx.doi.org/10.2174/1381612013397528] [PMID: 11472258]
[103]
Scarim CB, Jornada DH, Chelucci RC, de Almeida L, Dos Santos JL, Chung MC. Current advances in drug discovery for Chagas disease. Eur J Med Chem 2018; 155: 824-38.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.040] [PMID: 30033393]
[104]
de Oliveira C, Santana LA, Carmona AK, et al. Structure of cruzipain/cruzain inhibitors isolated from Bauhinia bauhinioides seeds. Biol Chem 2001; 382(5): 847-52.
[http://dx.doi.org/10.1515/bchm.2001.382.5.847] [PMID: 11517940]
[105]
Brak K, Doyle PS, McKerrow JH, Ellman JA. Identification of a new class of nonpeptidic inhibitors of cruzain. J Am Chem Soc 2008; 130(20): 6404-10.
[http://dx.doi.org/10.1021/ja710254m] [PMID: 18435536]
[106]
Rocha DA, Silva EB, Fortes IS, Lopes MS, Ferreira RS, Andrade SF. Synthesis and structure-activity relationship studies of cruzain and rhodesain inhibitors. Eur J Med Chem 2018; 157: 1426-59.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.079] [PMID: 30282318]
[107]
Vázquez K, Paulino M, Salas CO, Zarate-Ramos JJ, Vera B, Rivera G. Trypanothione reductase: A target for the development of anti-Trypanosoma cruzi drugs. Mini Rev Med Chem 2017; 17(11): 939-46.
[http://dx.doi.org/10.2174/1389557517666170315145410] [PMID: 28302040]
[108]
Battista T, Colotti G, Ilari A, Fiorillo A. Targeting trypanothione reductase, a key enzyme in the redox trypanosomatid metabolism, to develop new drugs against leishmaniasis and trypanosomiases. Molecules 2020; 25(8): 1-17.
[http://dx.doi.org/10.3390/molecules25081924] [PMID: 32326257]
[109]
Kumar S, Ali MR, Bawa S. Mini review on tricyclic compounds as an inhibitor of trypanothione reductase. J Pharm Bioallied Sci 2014; 6(4): 222-8.
[http://dx.doi.org/10.4103/0975-7406.142943] [PMID: 25400403]
[110]
Cuevas-Hernández RI, Girard RMBM, Martínez-Cerón S, et al. A fluorinated phenylbenzothiazole arrests the Trypanosoma cruzi cell cycle and diminishes the infection of mammalian host cells. Antimicrob Agents Chemother 2020; 64(2): 1-16.
[PMID: 31712204]
[111]
Taylor D. The pharmaceutical industry and the future of drug development.Pharmaceuticals in the Environment. Issues in Environmental Science and Technology 2015; pp. 1-33.
[http://dx.doi.org/10.1039/9781782622345-00001]
[112]
Ghaemi R, Selvaganapathy PR. Microfluidic devices for automation of assays on Drosophila melanogaster for applications in drug discovery and biological studies. Curr Pharm Biotechnol 2016; 17(9): 822-36.
[http://dx.doi.org/10.2174/1389201017666160519112506] [PMID: 27194358]
[113]
Seyhan AA. Lost in translation: the valley of death across preclinical and clinical divide-identification of problems obstacles. Transl Med Commun 2019; 4(18): 1-19.
[http://dx.doi.org/10.1186/s41231-019-0050-7]
[114]
Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 2012; 6(2): 155-76.
[http://dx.doi.org/10.1016/j.molonc.2012.02.004] [PMID: 22440008]
[115]
Roy A. Challenges with risk mitigation in academic drug discovery: finding the best solution. Expert Opin Drug Discov 2019; 14(2): 95-100.
[http://dx.doi.org/10.1080/17460441.2019.1553952] [PMID: 30513005]
[116]
Kiriiri GK, Njogu PM, Mwangi AN. Exploring different approaches to improve the success of drug discovery and development projects: a review. Future J Pharm Sci 2020; 6(27): 1-12.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy