Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Effects of Sambucus ebulus Extract on Cell Proliferation and Viability of Triple- Negative Breast Cancer: An In Vitro and In Vivo Study

Author(s): Vahid F. Omrani, Ameneh Koochaki , Sahar Behzad , Vahid Kia, Peyman Ghasemi, Javad Razaviyan , Hamid Reza Moosavian , Maysam Rezapour , Mohammad Vasei , Mohsen Asouri and Samira Mohammadi-Yeganeh *

Volume 22, Issue 7, 2022

Published on: 04 January, 2022

Page: [1386 - 1396] Pages: 11

DOI: 10.2174/1871520621666210412113944

Price: $65

Abstract

Background: Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancer (BC) cases and is a severe type of BC. Since medicinal herbs containing biocompatible substances that are accepted by patient more than chemical therapeutics, they can be considered a safe option for treating BC.

Objective: This study evaluated the effect of Sambucus Ebulus (S. ebulus) extract on a model of TNBC.

Methods: S. ebulus extract was prepared using petroleum ether, ethyl acetate, and methanol. The petroleum ether extract was fractionated and analyzed using vacuum liquid chromatography and GC-MS, respectively. MDAMB- 231 and MCF-10A were used as TNBC and normal breast cells, respectively. Flowcytometry and MTT assays were performed to evaluate cell cycle, apoptosis, and viability of the cells. Gene expression analysis was performed using RT-qPCR. Nude mouse allograft tumor models were used, and pathological sections were evaluated.

Results: The findings indicated that S. ebulus extract remarkably decreased cell proliferation and viability. The extract had no toxicity to the normal breast cells but efficiently killed the cancer cells. Cell cycle- and apoptosisrelated gene expression showed that fraction 4 of S. ebulus extract significantly increased the expression of Bax, Bak, P53, and c-MYC.

Conclusion: This study showed satisfactory results of the effect of S. ebulus extract on clearing BC cells both in vitro and in vivo. Thus, S. ebulus extract may be a safe herbal compound for eliminating BC cells without toxicity to host cells.

Keywords: Sambucus Ebulus (S. ebulus), triple-negative breast cancer, mouse model, cell proliferation, cell toxicity, BAX.

Graphical Abstract

[1]
Purushothaman, A.; Nandhakumar, E.; Shanthi, P.; Sachidanandam, T.P. Shemamruthaa, a herbal formulation induces apoptosis in breast cancer cells and inhibits tumor progression in rats. J. Evid. Based Complementary Altern. Med., 2016, 21(4), NP1-NP10.
[http://dx.doi.org/10.1177/2156587215607779] [PMID: 26416955]
[2]
Meng, H.; Peng, N.; Yu, M.; Sun, X.; Ma, Y.; Yang, G.; Wang, X. Treatment of triple-negative breast cancer with Chinese herbal medicine: A prospective cohort study protocol. Medicine (Baltimore), 2017, 96(44), e8408.
[http://dx.doi.org/10.1097/MD.0000000000008408] [PMID: 29095272]
[3]
Arzi, L.; Hoshyar, R.; Jafarzadeh, N.; Riazi, G.; Sadeghizadeh, M. Anti-metastatic properties of a potent herbal combination in cell and mice models of triple negative breast cancer. Life Sci., 2020, 243, 117245.
[http://dx.doi.org/10.1016/j.lfs.2019.117245] [PMID: 31926253]
[4]
Koduru, S.; Sowmyalakshmi, S.; Kumar, R.; Gomathinayagam, R.; Rohr, J.; Damodaran, C. Identification of a potent herbal molecule for the treatment of breast cancer. BMC Cancer, 2009, 9(1), 41-52.
[http://dx.doi.org/10.1186/1471-2407-9-41] [PMID: 19183448]
[5]
Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Nematollahi, M.H. Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast Cancer cell line: a Nano-herbal treatment for Cancer. Daru, 2018, 26(1), 11-17.
[http://dx.doi.org/10.1007/s40199-018-0207-3] [PMID: 30159762]
[6]
Choi, Y.K.; Cho, S-G.; Woo, S-M.; Yun, Y.J.; Park, S.; Shin, Y.C.; Ko, S-G. Herbal extract SH003 suppresses tumor growth and metastasis of MDA-MB-231 breast cancer cells by inhibiting STAT3-IL-6 signaling. Mediators Inflamm., 2014.
[http://dx.doi.org/10.1155/2014/492173]
[7]
Rashrash, M.; Schommer, J.C.; Brown, L.M. Prevalence and predictors of herbal medicine use among adults in the United States. J. Patient Exp., 2017, 4(3), 108-113.
[http://dx.doi.org/10.1177/2374373517706612] [PMID: 28959715]
[8]
Asadi-Samani, M.; Kooti, W.; Aslani, E.; Shirzad, H. A systematic review of Iran’s medicinal plants with anticancer effects. J. Evid. Based Complementary Altern. Med., 2016, 21(2), 143-153.
[http://dx.doi.org/10.1177/2156587215600873] [PMID: 26297173]
[9]
Jabbari, M.; Daneshfard, B.; Emtiazy, M.; Khiveh, A.; Hashempur, M.H. Biological Effects and Clinical Applications of Dwarf Elder. Biological Effects and Clinical Applications of Dwarf Elder (Sambucus ebulus L): A Review. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 996-1001.
[http://dx.doi.org/10.1177/2156587217701322] [PMID: 28397551]
[10]
Wang, H.; Oo Khor, T.; Shu, L.; Su, Z.-Y.; Fuentes, F.; Lee, J.-H.; Tony Kong, A.-N. Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-Cancer Agents Med. Chem. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2012, 12(10), 1281-1305.
[11]
Mazandarani, M.; Jamshidi, M.; Azad, A. Investigation of secondary metabolites of Sambucus ebulus L. in two natural regions of Mazandaran province. North of Iran. J. Plant Envromental Physiol., 2011, 6(1), 58-67.
[12]
Tasinov, O.; Kiselova-Kaneva, Y.; Ivanova, D. Sambucus ebulus - from traditional medicine to recent studies. Scripta Scientifica Medica, 2013, 45(2), 36-42.
[http://dx.doi.org/10.14748/ssm.v45i2.319]
[13]
Schwaiger, S.; Zeller, I.; Pölzelbauer, P.; Frotschnig, S.; Laufer, G.; Messner, B.; Pieri, V.; Stuppner, H.; Bernhard, D. Identification and pharmacological characterization of the anti-inflammatory principal of the leaves of dwarf elder (Sambucus ebulus L.). J. Ethnopharmacol., 2011, 133(2), 704-709.
[http://dx.doi.org/10.1016/j.jep.2010.10.049] [PMID: 21040770]
[14]
Citores, L.; de Benito, F.M.; Iglesias, R.; Miguel Ferreras, J.; Argüéso, P.; Jiménez, P.; Méndez, E.; Girbés, T. Presence of polymerized and free forms of the non-toxic type 2 ribosome-inactivating protein ebulin and a structurally related new homodimeric lectin in fruits of Sambucus ebulus L. Planta, 1998, 204(3), 310-319.
[http://dx.doi.org/10.1007/s004250050261] [PMID: 9530875]
[15]
Saravi, S.S.; Shokrzadeh, M.; Shirazi, F.H. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective effects of vitamins C and E against its cytotoxicity on normal cell lines. Afr. J. Biotechnol., 2013, 12(21), 3360-3365.
[16]
Ebadi, A.G.; Hisoriev, H. Review on distribution of Sambucus ebulus L. in the North of Iran. Am.-Eurasian J. Agric. Environ. Sci., 2011, 10(3), 351-353.
[17]
Mohammadi-Yeganeh, S.; Paryan, M.; Arefian, E.; Vasei, M.; Ghanbarian, H.; Mahdian, R.; Karimipoor, M.; Soleimani, M. MicroRNA-340 inhibits the migration, invasion, and metastasis of breast cancer cells by targeting Wnt pathway. Tumour Biol., 2016, 37(7), 8993-9000.
[http://dx.doi.org/10.1007/s13277-015-4513-9] [PMID: 26758430]
[18]
Tavazoie, S.F.; Alarcón, C.; Oskarsson, T.; Padua, D.; Wang, Q.; Bos, P.D.; Gerald, W.L.; Massagué, J. Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008, 451(7175), 147-152.
[http://dx.doi.org/10.1038/nature06487] [PMID: 18185580]
[19]
Earle, C.C.; Landrum, M.B.; Souza, J.M.; Neville, B.A.; Weeks, J.C.; Ayanian, J.Z. Aggressiveness of cancer care near the end of life: is it a quality-of-care issue? J. Clin. Oncol., 2008, 26(23), 3860-3866.
[http://dx.doi.org/10.1200/JCO.2007.15.8253] [PMID: 18688053]
[20]
Di Gioia, D.; Stieber, P.; Schmidt, G.P.; Nagel, D.; Heinemann, V.; Baur-Melnyk, A. Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase. Br. J. Cancer, 2015, 112(5), 809-818.
[http://dx.doi.org/10.1038/bjc.2015.8] [PMID: 25647014]
[21]
Tungsukruthai, S.; Petpiroon, N.; Chanvorachote, P. Molecular mechanisms of breast cancer metastasis and potential anti-metastatic compounds. Anticancer Res., 2018, 38(5), 2607-2618.
[PMID: 29715080]
[22]
van Hoesel, A.Q.; Sato, Y.; Elashoff, D.A.; Turner, R.R.; Giuliano, A.E.; Shamonki, J.M.; Kuppen, P.J.; van de Velde, C.J.; Hoon, D.S. Assessment of DNA methylation status in early stages of breast cancer development. Br. J. Cancer, 2013, 108(10), 2033-2038.
[http://dx.doi.org/10.1038/bjc.2013.136] [PMID: 23652305]
[23]
Kooti, W.; Servatyari, K.; Behzadifar, M.; Asadi-Samani, M.; Sadeghi, F.; Nouri, B.; Zare Marzouni, H. Effective medicinal plant in cancer treatment, part 2: review study. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 982-995.
[http://dx.doi.org/10.1177/2156587217696927] [PMID: 28359161]
[24]
Wong, J.H.; Sze, S.C.W.; Ng, T.B.; Cheung, R.C.F.; Tam, C.; Zhang, K.Y.; Dan, X.; Chan, Y.S.; Shing Cho, W.C.; Ng, C.C.W.; Waye, M.M.Y.; Liang, W.; Zhang, J.; Yang, J.; Ye, X.; Lin, J.; Ye, X.; Wang, H.; Liu, F.; Chan, D.W.; Ngan, H.Y.S.; Sha, O.; Li, G.; Tse, R.; Tse, T.F.; Chan, H. Apoptosis and anti-cancer drug discovery: the power of medicinal fungi and plants. Curr. Med. Chem., 2018, 25(40), 5613-5630.
[http://dx.doi.org/10.2174/0929867324666170720165005] [PMID: 28730971]
[25]
Esghaei, M.; Ghaffari, H.; Rahimi Esboei, B.; Ebrahimi Tapeh, Z.; Bokharaei Salim, F.; Motevalian, M. Evaluation of anticancer activity of camellia sinensis in the caco-2 colorectal cancer cell line. Asian Pac. J. Cancer Prev., 2018, 19(6), 1697-1701.
[PMID: 29938468]
[26]
Cao, H.X.; Zhu, K.X.; Fan, J.G.; Qiao, L. Garlic-derived allyl sulfides in cancer therapy. Anticancer. Agents Med. Chem., 2014, 14(6), 793-799.
[http://dx.doi.org/10.2174/1871520614666140521120811] [PMID: 24851880]
[27]
Kakouri, E.; Hatziagapiou, K.; Bethanis, K.; Nikola, O.A.; Lambrou, G.I.; Tarantilis, P.A. Tumor-suppressing properties of Crocus sativus L.: nature as an anti-cancer agent. Crit. Rev. Oncog., 2017, 22(3-4), 263-273.
[http://dx.doi.org/10.1615/CritRevOncog.2017024841] [PMID: 29604903]
[28]
Zhong, Z.; Yu, H.; Wang, S.; Wang, Y.; Cui, L. Anti-cancer effects of Rhizoma Curcumae against doxorubicin-resistant breast cancer cells. Chin. Med., 2018, 13, 44.
[http://dx.doi.org/10.1186/s13020-018-0203-z] [PMID: 30181769]
[29]
Heidari-Kharaji, M.; Fallah-Omrani, V.; Badirzadeh, A.; Mohammadi-Ghalehbin, B.; Nilforoushzadeh, M.A.; Masoori, L.; Montakhab-Yeganeh, H.; Zare, M. Sambucus ebulus extract stimulates cellular responses in cutaneous leishmaniasis. Parasite Immunol., 2019, 41(1), e12605.
[http://dx.doi.org/10.1111/pim.12605] [PMID: 30472741]
[30]
Rahimi-Esboei, B.; Ebrahimzadeh, M.A.; Gholami, Sh.; Falah-Omrani, V. Anti-giardial activity of Sambucus ebulus. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(15), 2047-2050.
[PMID: 23884825]
[31]
Salehzadeh, A.; Asadpour, L.; Naeemi, A.S.; Houshmand, E. Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(5), 38-40.
[http://dx.doi.org/10.4314/ajtcam.v11i5.6] [PMID: 25395702]
[32]
Shokrzadeh, M.; Saravi, S.S.; Mirzayi, M. Cytotoxic effects of ethyl acetate extract of Sambucus ebulus compared with etoposide on normal and cancer cell lines. Pharmacogn. Mag., 2009, 5(20), 316.
[http://dx.doi.org/10.4103/0973-1296.58152]
[33]
Otsuki, N.; Dang, N.H.; Kumagai, E.; Kondo, A.; Iwata, S.; Morimoto, C. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects. J. Ethnopharmacol., 2010, 127(3), 760-767.
[http://dx.doi.org/10.1016/j.jep.2009.11.024] [PMID: 19961915]
[34]
Pluta, P.; Smolewski, P.; Pluta, A.; Cebula-Obrzut, B.; Wierzbowska, A.; Nejc, D.; Robak, T.; Kordek, R.; Gottwald, L.; Piekarski, J.; Jeziorski, A. Significance of bax expression in breast cancer patients. Pol. Przegl. Chir., 2011, 83(10), 549-553.
[http://dx.doi.org/10.2478/v10035-011-0087-4] [PMID: 22189282]
[35]
Xiang, W.; Yang, C-Y.; Bai, L. MCL-1 inhibition in cancer treatment. OncoTargets Ther., 2018, 11, 7301-7314.
[http://dx.doi.org/10.2147/OTT.S146228] [PMID: 30425521]
[36]
Ramya, N.; Priyadharshini, X.; Prakash, R.; Dhivya, R. Anti-cancer activity of Trachyspermum ammi against MCF7 cell lines mediates by p53 and Bcl-2 mRNA levels. J Phytopharmacol, 2017, 6, 78-83.
[37]
Reed, J. C. Bcl-2–family proteins and hematologic malignancies: History and future prospects. blood 2008, 111(7), 3322-3330.
[38]
García-Aranda, M.; Pérez-Ruiz, E.; Redondo, M. Bcl-2 Inhibition to overcome resistance to chemo- and immunotherapy. Int. J. Mol. Sci., 2018, 19(12), 3950.
[http://dx.doi.org/10.3390/ijms19123950] [PMID: 30544835]
[39]
Wertz, I.E.; Kusam, S.; Lam, C.; Okamoto, T.; Sandoval, W.; Anderson, D.J.; Helgason, E.; Ernst, J.A.; Eby, M.; Liu, J.; Belmont, L.D.; Kaminker, J.S.; O’Rourke, K.M.; Pujara, K.; Kohli, P.B.; Johnson, A.R.; Chiu, M.L.; Lill, J.R.; Jackson, P.K.; Fairbrother, W.J.; Seshagiri, S.; Ludlam, M.J.; Leong, K.G.; Dueber, E.C.; Maecker, H.; Huang, D.C.; Dixit, V.M. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature, 2011, 471(7336), 110-114.
[http://dx.doi.org/10.1038/nature09779] [PMID: 21368834]
[40]
Osaki, S.; Tazawa, H.; Hasei, J.; Yamakawa, Y.; Omori, T.; Sugiu, K.; Komatsubara, T.; Fujiwara, T.; Sasaki, T.; Kunisada, T.; Yoshida, A.; Urata, Y.; Kagawa, S.; Ozaki, T.; Fujiwara, T. Ablation of MCL1 expression by virally induced microRNA-29 reverses chemoresistance in human osteosarcomas. Sci. Rep., 2016, 6, 28953.
[http://dx.doi.org/10.1038/srep28953] [PMID: 27356624]
[41]
Lopez, J.; Tait, S.W.G. Mitochondrial apoptosis: killing cancer using the enemy within. Br. J. Cancer, 2015, 112(6), 957-962.
[http://dx.doi.org/10.1038/bjc.2015.85] [PMID: 25742467]
[42]
Xu, J.; Chen, Y.; Olopade, O.I. MYC and Breast Cancer. Genes Cancer, 2010, 1(6), 629-640.
[http://dx.doi.org/10.1177/1947601910378691] [PMID: 21779462]
[43]
Ma, Z.; Yang, Y.; Di, S.; Feng, X.; Liu, D.; Jiang, S.; Hu, W.; Qin, Z.; Li, Y.; Lv, J.; Fan, C.; Yan, X.; Li, X. Pterostilbene exerts anticancer activity on non-small-cell lung cancer via activating endoplasmic reticulum stress. Sci. Rep., 2017, 7(1), 8091.
[http://dx.doi.org/10.1038/s41598-017-08547-0] [PMID: 28808300]
[44]
Wong, F.C.; Woo, C.C.; Hsu, A.; Tan, B.K. The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways. PLoS One, 2013, 8(10), e78021.
[http://dx.doi.org/10.1371/journal.pone.0078021] [PMID: 24205071]
[45]
Fukumitsu, N.; Okumura, T.; Numajiri, H.; Takizawa, D.; Ohnishi, K.; Mizumoto, M.; Aihara, T.; Ishikawa, H.; Tsuboi, K.; Sakurai, H. Follow-up study of liver metastasis from breast cancer treated by proton beam therapy. Mol. Clin. Oncol., 2017, 7(1), 56-60.
[http://dx.doi.org/10.3892/mco.2017.1283] [PMID: 28685076]
[46]
Galluzzi, L.; Vitale, I.; Vacchelli, E.; Kroemer, G. Cell death signaling and anticancer therapy. Front. Oncol., 2011, 1, 5.
[http://dx.doi.org/10.3389/fonc.2011.00005] [PMID: 22655227]
[47]
Kaufmann, S.H.; Vaux, D.L. Alterations in the apoptotic machinery and their potential role in anticancer drug resistance. Oncogene, 2003, 22(47), 7414-7430.
[http://dx.doi.org/10.1038/sj.onc.1206945] [PMID: 14576849]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy