Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Sleep, Narcolepsy, and Sodium Oxybate

Author(s): Mortimer Mamelak*

Volume 20, Issue 2, 2022

Page: [272 - 291] Pages: 20

DOI: 10.2174/1570159X19666210407151227

Price: $65

Abstract

Sodium oxybate (SO) has been in use for many decades to treat narcolepsy with cataplexy. It functions as a weak GABAB agonist but also as an energy source for the brain as a result of its metabolism to succinate and as a powerful antioxidant because of its capacity to induce the formation of NADPH. Its actions at thalamic GABAB receptors can induce slow-wave activity, while its actions at GABAB receptors on monoaminergic neurons can induce or delay REM sleep. By altering the balance between monoaminergic and cholinergic neuronal activity, SO uniquely can induce and prevent cataplexy. The formation of NADPH may enhance sleep’s restorative process by accelerating the removal of the reactive oxygen species (ROS), which accumulate during wakefulness. SO improves alertness in normal subjects and in patients with narcolepsy. SO may allay severe psychological stress - an inflammatory state triggered by increased levels of ROS and characterized by cholinergic supersensitivity and monoaminergic deficiency. SO may be able to eliminate the inflammatory state and correct the cholinergic/ monoaminergic imbalance.

Keywords: Sleep, narcolepsy, sodium oxybate, sleep homeostasis, depression, oxidative stress.

Graphical Abstract

[1]
Abad, V.C. An evaluation of sodium oxybate as a treatment option for narcolepsy. Expert Opin. Pharmacother., 2019, 20(10), 1189-1199.
[http://dx.doi.org/10.1080/14656566.2019.1617273] [PMID: 31136215]
[2]
Paul, R. Cataplexy. Pract. Neurol., 2019, 19(1), 21-27.
[http://dx.doi.org/10.1136/practneurol-2018-002001] [PMID: 30355740]
[3]
Borgen, L.A.; Okerholm, R.A.; Lai, A.; Scharf, M.B. The pharmacokinetics of sodium oxybate oral solution following acute and chronic administration to narcoleptic patients. J. Clin. Pharmacol., 2004, 44(3), 253-257.
[http://dx.doi.org/10.1177/0091270003262795] [PMID: 14973300]
[4]
Scharf, M.B.; Lai, A.A.; Branigan, B.; Stover, R.; Berkowitz, D.B. Pharmacokinetics of gammahydroxybutyrate (GHB) in narcoleptic patients. Sleep, 1998, 21(5), 507-514.
[http://dx.doi.org/10.1093/sleep/21.5.507] [PMID: 9703591]
[5]
Mamelak, M.; Escriu, J.M.; Stokan, O. Sleep-inducing effects of gammahydroxybutyrate. Lancet, 1973, 2(7824), 328-329.
[http://dx.doi.org/10.1016/S0140-6736(73)90839-8] [PMID: 4124818]
[6]
Ahmed, M.; Bassetti, C.; Becker, P.; Michael, B.; Black, J.; Bogan, R. Further evidence supporting the use of sodium oxybate for the treatment of cataplexy: a double-blind, placebo-controlled study in 228 patients. Sleep Med., 2005, 6(5), 415-421.
[http://dx.doi.org/10.1016/j.sleep.2005.03.010] [PMID: 16099718]
[7]
Broughton, R.; Mamelak, M. Gamma hydroxy butyrate in the treatment of compound narcolepsy: a preliminary report;; Guilleminault, C.; Dement, W.C.; Passouant, P., Eds.; Narcolepsy, New York, Spectrum,. , 1976, pp. 659-666.
[8]
Broughton, R.; Mamelak, M. The treatment of narcolepsy-cataplexy with nocturnal gamma-hydroxybutyrate. Can. J. Neurol. Sci., 1979, 6(1), 1-6.
[http://dx.doi.org/10.1017/S0317167100119304] [PMID: 264152]
[9]
Broughton, R.; Mamelak, M. Effects of nocturnal gamma-hydroxybutyrate on sleep/waking patterns in narcolepsy-cataplexy. Can. J. Neurol. Sci., 1980, 7(1), 23-31.
[PMID: 7388696]
[10]
Scharf, M.B.; Brown, D.; Woods, M.; Brown, L.; Hirschowitz, J. The effects and effectiveness of γ-hydroxybutyrate in patients with narcolepsy. J. Clin. Psychiatry, 1985, 46(6), 222-225.
[PMID: 3888969]
[11]
Scrima, L.; Hartman, P.G.; Johnson, F.H., Jr; Hiller, F.C. Efficacy of gamma-hydroxybutyrate versus placebo in treating narcolepsy-cataplexy: double-blind subjective measures. Biol. Psychiatry, 1989, 26(4), 331-343.
[http://dx.doi.org/10.1016/0006-3223(89)90048-6] [PMID: 2669980]
[12]
Scrima, L.; Hartman, P.G.; Johnson, F.H., Jr; Thomas, E.E.; Hiller, F.C. The effects of γ-hydroxybutyrate on the sleep of narcolepsy patients: a double-blind study. Sleep, 1990, 13(6), 479-490.
[http://dx.doi.org/10.1093/sleep/13.6.479] [PMID: 2281247]
[13]
A randomized, double blind, placebo-controlled multicenter trial comparing the effects of three doses of orally administered sodium oxybate with placebo for the treatment of narcolepsy. Sleep, 2002, 25(1), 42-49.
[PMID: 11833860]
[14]
Lammers, G.J.; Arends, J.; Declerck, A.C.; Ferrari, M.D.; Schouwink, G.; Troost, J. Gammahydroxybutyrate and narcolepsy: a double-blind placebo-controlled study. Sleep, 1993, 16(3), 216-220.
[http://dx.doi.org/10.1093/sleep/16.3.216] [PMID: 8506453]
[15]
Bernasconi, R.; Mathivet, P.; Otten, U.; Bettler, B.; Bischoff, S.; Marescaux, C. Part of the pharmacological actions of gamma-hydroxybutyrate are mediated by GABAB receptors. Gamma-hydroxybutyrate Mol. Funct. Clin. Asp.; Tunnicliff, G.; Cash, C.D.; Taylor, Fr; Eds.; Lonon New York,. , 2002, pp. 28-63.
[16]
Burman, K.J.; Ige, A.O.; White, J.H.; Marshall, F.H.; Pangalos, M.N.; Emson, P.C.; Minson, J.B.; Llewellyn-Smith, I.J. GABAB receptor subunits, R1 and R2, in brainstem catecholamine and serotonin neurons. Brain Res., 2003, 970(1-2), 35-46.
[http://dx.doi.org/10.1016/S0006-8993(02)04269-5] [PMID: 12706246]
[17]
Madden, T.E.; Johnson, S.W. Gamma-hydroxybutyrate is a GABAB receptor agonist that increases a potassium conductance in rat ventral tegmental dopamine neurons. J. Pharmacol. Exp. Ther., 1998, 287(1), 261-265.
[PMID: 9765346]
[18]
Kohlmeier, K.A.; Vardar, B.; Christensen, M.H. γ-Hydroxybutyric acid induces actions via the GABAB receptor in arousal and motor control-related nuclei: implications for therapeutic actions in behavioral state disorders. Neuroscience, 2013, 248, 261-277.
[http://dx.doi.org/10.1016/j.neuroscience.2013.06.011] [PMID: 23791974]
[19]
Crunelli, V.; Leresche, N. Action of gamma-hydroxybutyrate on neuronal excitability and underlying membrane conductances. Gamma-hydroxybutyrate Mol Funct Clin Asp; Tunnicliff, G.; Cash, C.D.; Taylor, Fr; Eds.; Lonon New York,. , 2002, pp. 75-110.
[20]
Williams, S.R.; Turner, J.P.; Crunelli, V. Gamma-hydroxybutyrate promotes oscillatory activity of rat and cat thalamocortical neurons by a tonic GABAB, receptor-mediated hyperpolarization. Neuroscience, 1995, 66(1), 133-141.
[http://dx.doi.org/10.1016/0306-4522(94)00604-4] [PMID: 7637863]
[21]
Steriade, M.; McCormick, DA.; Sejnowski, TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science, 1993, 262(5134), 679-685.
[http://dx.doi.org/10.1126/science.8235588] [PMID: 8235588]
[22]
Cui, S.Y.; Li, S.J.; Cui, X.Y.; Zhang, X.Q.; Yu, B.; Sheng, Z.F.; Huang, Y.L.; Cao, Q.; Xu, Y.P.; Lin, Z.G.; Yang, G.; Song, J.Z.; Ding, H.; Wang, Z.J.; Zhang, Y.H. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation. J. Neurochem., 2016, 136(3), 609-619.
[http://dx.doi.org/10.1111/jnc.13431] [PMID: 26558357]
[23]
Shi, S.; Ueda, H.R. Ca2+ -Dependent Hyperpolarization Pathways in Sleep Homeostasis and Mental Disorders. BioEssays, 2018, 40(1), 1-15.
[http://dx.doi.org/10.1002/bies.201700105] [PMID: 29205420]
[24]
Tatsuki, F.; Sunagawa, G.A.A.; Shi, S.; Susaki, E.A.A.; Yukinaga, H.; Perrin, D.; Sumiyama, K.; Ukai-Tadenuma, M.; Fujishima, H.; Ohno, R.; Tone, D.; Ode, K.L.; Matsumoto, K.; Ueda, H.R. Involvement of Ca(2+)-dependent hyperpolarization in sleep duration in mammals. Neuron, 2016, 90(1), 70-85.
[http://dx.doi.org/10.1016/j.neuron.2016.02.032] [PMID: 26996081]
[25]
Tatsuki, F.; Ode, K.L.; Ueda, H.R. Ca2+-dependent hyperpolarization hypothesis for mammalian sleep. Neurosci. Res., 2017, 118, 48-55.
[http://dx.doi.org/10.1016/j.neures.2017.03.012] [PMID: 28433628]
[26]
Gauthier, P.; Arnaud, C.; Gandolfo, G.; Gottesmann, C. Influence of a GABA(B) receptor antagonist on the sleep-waking cycle in the rat. Brain Res., 1997, 773(1-2), 8-14.
[http://dx.doi.org/10.1016/S0006-8993(97)00643-4] [PMID: 9409699]
[27]
Juhász, G.; Emri, Z.; Kékesi, K.A.; Salfay, O.; Crunelli, V. Blockade of thalamic GABAB receptors decreases EEG synchronization. Neurosci. Lett., 1994, 172(1-2), 155-158.
[http://dx.doi.org/10.1016/0304-3940(94)90685-8] [PMID: 8084524]
[28]
Borbély, A.A.; Daan, S.; Wirz-Justice, A.; Deboer, T. The two-process model of sleep regulation: a reappraisal. J. Sleep Res., 2016, 25(2), 131-143.
[http://dx.doi.org/10.1111/jsr.12371] [PMID: 26762182]
[29]
Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol., 1982, 1(3), 195-204.
[PMID: 7185792]
[30]
Walsh, J.K.; Hall-Porter, J.M.; Griffin, K.S.; Dodson, E.R.; Forst, E.H.; Curry, D.T.; Eisenstein, R.D.; Schweitzer, P.K. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. Sleep, 2010, 33(9), 1217-1225.
[http://dx.doi.org/10.1093/sleep/33.9.1217] [PMID: 20857869]
[31]
Vienne, J.; Bettler, B.; Franken, P.; Tafti, M. Differential effects of GABAB receptor subtypes, γ-hydroxybutyric Acid, and Baclofen on EEG activity and sleep regulation. J. Neurosci., 2010, 30(42), 14194-14204.
[http://dx.doi.org/10.1523/JNEUROSCI.3145-10.2010] [PMID: 20962240]
[32]
Vienne, J.; Lecciso, G.; Constantinescu, I.; Schwartz, S.; Franken, P.; Heinzer, R.; Tafti, M. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. Sleep (Basel), 2012, 35(8), 1071-1083.
[http://dx.doi.org/10.5665/sleep.1992] [PMID: 22851803]
[33]
Albers, H.E.; Walton, J.C.; Gamble, K.L.; McNeill, J.K., IV; Hummer, D.L. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front. Neuroendocrinol., 2017, 44, 35-82.
[http://dx.doi.org/10.1016/j.yfrne.2016.11.003] [PMID: 27894927]
[34]
Dornbierer, D.A.; Baur, D.M.; Stucky, B.; Quednow, B.B.; Kraemer, T.; Seifritz, E.; Bosch, O.G.; Landolt, H.P. Neurophysiological signature of gamma-hydroxybutyrate augmented sleep in male healthy volunteers may reflect biomimetic sleep enhancement: a randomized controlled trial. Neuropsychopharmacology, 2019, 44(11), 1985-1993.
[http://dx.doi.org/10.1038/s41386-019-0382-z] [PMID: 30959514]
[35]
Büchele, F.; Hackius, M.; Schreglmann, S.R.; Omlor, W.; Werth, E.; Maric, A.; Imbach, L.L.; Hägele-Link, S.; Waldvogel, D.; Baumann, C.R. Sodium oxybate for excessive daytime sleepiness and sleep disturbance in Parkinson disease: A randomized clinical trial. JAMA Neurol., 2018, 75(1), 114-118.
[http://dx.doi.org/10.1001/jamaneurol.2017.3171] [PMID: 29114733]
[36]
Huang, Y.S.; Guilleminault, C. Narcolepsy: action of two γ-aminobutyric acid type B agonists, baclofen and sodium oxybate. Pediatr. Neurol., 2009, 41(1), 9-16.
[http://dx.doi.org/10.1016/j.pediatrneurol.2009.02.008] [PMID: 19520267]
[37]
Ondo, W.G.; Perkins, T.; Swick, T.; Hull, K.L., Jr; Jiminez, J. Ernesto MEd, G., Tippy, S., Pardi D. Sodium oxybate for excessive daytime sleepiness in Parkinson’s disease: An open label polysomnigraphic study. Arch. Neurol., 2008, 65(10), 1337-1340.
[http://dx.doi.org/10.1001/archneur.65.10.1337] [PMID: 18852348]
[38]
Swick, T.J. Sodium oxybate: a potential new pharmacological option for the treatment of fibromyalgia syndrome. Ther. Adv. Musculoskelet. Dis., 2011, 3(4), 167-178.
[http://dx.doi.org/10.1177/1759720X11411599] [PMID: 22870476]
[39]
Marzano, C.; Ferrara, M.; Curcio, G.; De Gennaro, L. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep. J. Sleep Res., 2010, 19(2), 260-268.
[http://dx.doi.org/10.1111/j.1365-2869.2009.00776.x] [PMID: 19845849]
[40]
Black, J.; Swick, T.; Bogan, R.; Lai, C.; Carter, L.P. Impact of sodium oxybate, modafinil, and combination treatment on excessive daytime sleepiness in patients who have narcolepsy with or without cataplexy. Sleep Med., 2016, 24, 57-62.
[http://dx.doi.org/10.1016/j.sleep.2016.07.010] [PMID: 27810187]
[41]
Plazzi, G.; Pizza, F.; Vandi, S.; Aricò, D.; Bruni, O.; Dauvilliers, Y.; Ferri, R. Impact of acute administration of sodium oxybate on nocturnal sleep polysomnography and on multiple sleep latency test in narcolepsy with cataplexy. Sleep Med., 2014, 15(9), 1046-1054.
[http://dx.doi.org/10.1016/j.sleep.2014.04.020] [PMID: 25087195]
[42]
van Schie, M.K.M.; Werth, E.; Lammers, G.J.; Overeem, S.; Baumann, C.R.; Fronczek, R. Improved vigilance after sodium oxybate treatment in narcolepsy: a comparison between in-field and in-laboratory measurements. J. Sleep Res., 2016, 25(4), 486-496.
[http://dx.doi.org/10.1111/jsr.12386] [PMID: 26909768]
[43]
Black, J.; Houghton, W.C. Sodium oxybate improves excessive daytime sleepiness in narcolepsy. Sleep, 2006, 29(7), 939-946.
[http://dx.doi.org/10.1093/sleep/29.7.939] [PMID: 16895262]
[44]
Boscolo-Berto, R.; Viel, G.; Montagnese, S.; Raduazzo, D.I.; Ferrara, S.D.; Dauvilliers, Y. Narcolepsy and effectiveness of gamma-hydroxybutyrate (GHB): a systematic review and meta-analysis of randomized controlled trials. Sleep Med. Rev., 2012, 16(5), 431-443.
[http://dx.doi.org/10.1016/j.smrv.2011.09.001] [PMID: 22055895]
[45]
Mamelak, M.; Black, J.; Montplaisir, J.; Ristanovic, R. A pilot study on the effects of sodium oxybate on sleep architecture and daytime alertness in narcolepsy. Sleep, 2004, 27(7), 1327-1334.
[http://dx.doi.org/10.1093/sleep/27.7.1327] [PMID: 15586785]
[46]
Metcalf, D.R.; Emde, R.N.; Stripe, J.T. An EEG-behavioral study of sodium hydroxybutyrate in humans. Electroencephalogr. Clin. Neurophysiol., 1966, 20(5), 506-512.
[http://dx.doi.org/10.1016/0013-4694(66)90107-6] [PMID: 4143689]
[47]
Tung, A.; Bergmann, B.M.; Herrera, S.; Cao, D.; Mendelson, W.B. Recovery from sleep deprivation occurs during propofol anesthesia. Anesthesiology, 2004, 100(6), 1419-1426.
[http://dx.doi.org/10.1097/00000542-200406000-00014] [PMID: 15166561]
[48]
Pal, D.; Lipinski, W.J.; Walker, A.J.; Turner, A.M.; Mashour, G.A. State-specific effects of sevoflurane anesthesia on sleep homeostasis: selective recovery of slow wave but not rapid eye movement sleep. Anesthesiology, 2011, 114(2), 302-310.
[http://dx.doi.org/10.1097/ALN.0b013e318204e064] [PMID: 21239972]
[49]
Nelson, A.B.; Faraguna, U.; Tononi, G.; Cirelli, C. Effects of anesthesia on the response to sleep deprivation. Sleep, 2010, 33(12), 1659-1667.
[http://dx.doi.org/10.1093/sleep/33.12.1659] [PMID: 21120128]
[50]
Yamada, Y.; Yamamoto, J.; Fujiki, A.; Hishikawa, Y.; Kaneko, Z. Effect of butyrolactone and gamma-hydroxybutyrate on the EEG and sleep cycle in man. Electroencephalogr. Clin. Neurophysiol., 1967, 22(6), 558-562.
[http://dx.doi.org/10.1016/0013-4694(67)90064-8] [PMID: 4164970]
[51]
Godbout, R.; Montplaisir, J. Effects of gamma-hydroxybutyrate on sleep. Gamma-hydroxybutyrate Mol Funct Clin Asp; Tunnicliff, G.; Cash, C.D.; Taylor, Fr; Eds.; Lonon New York,. , 2002, pp. 120-131.
[52]
Lapierre, O.; Montplaisir, J.; Poirier, G. GHB REM-induction test: a possible biological marker for depression. Sleep Res., 1989, 18, 368.
[53]
Lapierre, O.; Montplaisir, J.; Lamarre, M.; Bedard, M.A. The effect of gamma-hydroxybutyrate on nocturnal and diurnal sleep of normal subjects: further considerations on REM sleep-triggering mechanisms. Sleep, 1990, 13(1), 24-30.
[http://dx.doi.org/10.1093/sleep/13.1.24] [PMID: 2406848]
[54]
Mamelak, M.; Escriu, J.M.; Stokan, O. The effects of gamma-hydroxybutyrate on sleep. Biol. Psychiatry, 1977, 12(2), 273-288.
[PMID: 192353]
[55]
Price, P.A.; Schachter, M.; Smith, S.J.; Baxter, R.C.; Parkes, J.D. Gamma-Hydroxybutyrate in narcolepsy. Ann. Neurol., 1981, 9(2), 198.
[http://dx.doi.org/10.1002/ana.410090217] [PMID: 7235637]
[56]
Brown, R.E.; Basheer, R.; McKenna, J.T.; Strecker, R.E.; McCarley, R.W. Control of sleep and wakefulness. Physiol. Rev., 2012, 92(3), 1087-1187.
[http://dx.doi.org/10.1152/physrev.00032.2011] [PMID: 22811426]
[57]
Burgess, C.R.; Scammell, T.E. Narcolepsy: neural mechanisms of sleepiness and cataplexy. J. Neurosci., 2012, 32(36), 12305-12311.
[http://dx.doi.org/10.1523/JNEUROSCI.2630-12.2012] [PMID: 22956821]
[58]
Héricé, C.; Patel, A.A.; Sakata, S. Circuit mechanisms and computational models of REM sleep. Neurosci. Res., 2019, 140, 77-92.
[http://dx.doi.org/10.1016/j.neures.2018.08.003] [PMID: 30118737]
[59]
Jones, BE. Principal cell types of sleep–wake regulatory circuits. Curr. Opin. Neurobiol., 2017, 44, 101-109.
[http://dx.doi.org/10.1016/j.conb.2017.03.018] [PMID: 28433001]
[60]
Luppi, P.H.; Gervasoni, D.; Verret, L.; Goutagny, R.; Peyron, C.; Salvert, D.; Leger, L.; Fort, P. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J. Physiol. Paris, 2006, 100(5-6), 271-283.
[http://dx.doi.org/10.1016/j.jphysparis.2007.05.006] [PMID: 17689057]
[61]
Peever, J.; Fuller, P.M. The Biology of REM Sleep. Curr. Biol., 2017, 27(22), R1237-R1248.
[http://dx.doi.org/10.1016/j.cub.2017.10.026] [PMID: 29161567]
[62]
Scammell, T.E.; Arrigoni, E.; Lipton, J.O. Neural circuitry of wakefulness and sleep. Neuron, 2017, 93(4), 747-765.
[http://dx.doi.org/10.1016/j.neuron.2017.01.014] [PMID: 28231463]
[63]
Weber, F.; Chung, S.; Beier, K.T.; Xu, M.; Luo, L.; Dan, Y. Control of REM sleep by ventral medulla GABAergic neurons. Nature, 2015, 526(7573), 435-438.
[http://dx.doi.org/10.1038/nature14979] [PMID: 26444238]
[64]
Toossi, H.; Del Cid-Pellitero, E.; Jones, B.E. Homeostatic regulation through GABA and acetylcholine muscarinic receptors of motor trigeminal neurons following sleep deprivation. Brain Struct. Funct., 2017, 222(7), 3163-3178.
[http://dx.doi.org/10.1007/s00429-017-1392-4] [PMID: 28299422]
[65]
Torontali, Z.A.; Fraigne, J.J.; Sanghera, P.; Horner, R.; Peever, J. The Sublaterodorsal Tegmental Nucleus Functions to Couple Brain State and Motor Activity during REM Sleep and Wakefulness. Curr. Biol., 2019, 29(22), 3803-3813.e5.
[http://dx.doi.org/10.1016/j.cub.2019.09.026] [PMID: 31679942]
[66]
Kashiwagi, M.; Hayashi, Y. Life without dreams: muscarinic receptors are required to regulate REM sleep in mice. Cell Rep., 2018, 24(9), 2211-2212.
[http://dx.doi.org/10.1016/j.celrep.2018.08.044] [PMID: 30157417]
[67]
Jouvet, M. Recherches sur les strutures nerveuse et les mecanismes responsables des differentes phases du sommeil physioligique. Arch. Ital. Biol., 1962, 100, 125-206.
[PMID: 14452612]
[68]
Niwa, Y.; Kanda, G.N.; Yamada, R.G.; Shi, S.; Sunagawa, G.A.; Ukai-Tadenuma, M.; Fujishima, H.; Matsumoto, N.; Masumoto, K.H.; Nagano, M.; Kasukawa, T.; Galloway, J.; Perrin, D.; Shigeyoshi, Y.; Ukai, H.; Kiyonari, H.; Sumiyama, K.; Ueda, H.R. Muscarinic Acetylcholine Receptors Chrm1 and Chrm3 Are Essential for REM Sleep. Cell Rep., 2018, 24(9), 2231-2247.e7.
[http://dx.doi.org/10.1016/j.celrep.2018.07.082] [PMID: 30157420]
[69]
Kodama, T.; Takahashi, Y.; Honda, Y. Enhancement of acetylcholine release during paradoxical sleep in the dorsal tegmental field of the cat brain stem. Neurosci. Lett., 1990, 114(3), 277-282.
[http://dx.doi.org/10.1016/0304-3940(90)90576-U] [PMID: 2402335]
[70]
Jasper, H.H.; Tessier, J. Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science, 1971, 172(3983), 601-602.
[http://dx.doi.org/10.1126/science.172.3983.601] [PMID: 4324472]
[71]
Williams, J.A.; Comisarow, J.; Day, J.; Fibiger, H.C.; Reiner, P.B. State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J. Neurosci., 1994, 14(9), 5236-5242.
[http://dx.doi.org/10.1523/JNEUROSCI.14-09-05236.1994] [PMID: 8083733]
[72]
Thakkar, M.M.; Strecker, R.E.; McCarley, R.W. Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study. J. Neurosci., 1998, 18(14), 5490-5497.
[http://dx.doi.org/10.1523/JNEUROSCI.18-14-05490.1998] [PMID: 9651229]
[73]
Goutagny, R.; Luppi, P.H.; Salvert, D.; Lapray, D.; Gervasoni, D.; Fort, P. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience, 2008, 152(3), 849-857.
[http://dx.doi.org/10.1016/j.neuroscience.2007.12.014] [PMID: 18308473]
[74]
Sapin, E.; Lapray, D.; Bérod, A.; Goutagny, R.; Léger, L.; Ravassard, P.; Clément, O.; Hanriot, L.; Fort, P.; Luppi, P.H. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One, 2009, 4(1)e4272
[http://dx.doi.org/10.1371/journal.pone.0004272] [PMID: 19169414]
[75]
Zhong, P.; Zhang, Z.; Barger, Z.; Ma, C.; Liu, D.; Ding, X.; Dan, Y. Control of non-rem sleep by midbrain neurotensinergic neurons. Neuron, 2019, 104(4), 795-809.e6.
[http://dx.doi.org/10.1016/j.neuron.2019.08.026] [PMID: 31582313]
[76]
Weber, F.; Hoang Do, J.P.; Chung, S.; Beier, K.T.; Bikov, M.; Saffari Doost, M.; Dan, Y. Regulation of REM and Non-REM Sleep by Periaqueductal GABAergic Neurons. Nat. Commun., 2018, 9(1), 354.
[http://dx.doi.org/10.1038/s41467-017-02765-w] [PMID: 29367602]
[77]
Toossi, H.; Del Cid-Pellitero, E.; Jones, B.E. Homeostatic changes in GABA and acetylcholine muscarinic receptors on GABAergic neurons in the mesencephalic reticular formation following sleep deprivation. eNeuro,, 2018, 4(6)ENEURO.0269-17.2017.
[http://dx.doi.org/10.1523/ENEURO.0269-17.2017] [PMID: 29302615]
[78]
Kaur, S.; Thankachan, S.; Begum, S.; Liu, M.; Blanco-Centurion, C.; Shiromani, P.J. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice. PLoS One, 2009, 4(7)e6346
[http://dx.doi.org/10.1371/journal.pone.0006346] [PMID: 19623260]
[79]
Sakurai, T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat. Rev. Neurosci., 2007, 8(3), 171-181.
[http://dx.doi.org/10.1038/nrn2092] [PMID: 17299454]
[80]
Torterolo, P.; Chase, M.H. The hypocretins (orexins) mediate the “phasic” components of REM sleep: A new hypothesis. Sleep Sci., 2014, 7(1), 19-29.
[http://dx.doi.org/10.1016/j.slsci.2014.07.021] [PMID: 26483897]
[81]
Mignot, E.; Lammers, G.J.; Ripley, B.; Okun, M.; Nevsimalova, S.; Overeem, S.; Vankova, J.; Black, J.; Harsh, J.; Bassetti, C.; Schrader, H.; Nishino, S. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol., 2002, 59(10), 1553-1562.
[http://dx.doi.org/10.1001/archneur.59.10.1553] [PMID: 12374492]
[82]
Taheri, S.; Zeitzer, J.M.; Mignot, E. The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu. Rev. Neurosci., 2002, 25, 283-313.
[http://dx.doi.org/10.1146/annurev.neuro.25.112701.142826] [PMID: 12052911]
[83]
Kluge, M.; Schüssler, P.; Dresler, M.; Yassouridis, A.; Steiger, A. Sleep onset REM periods in obsessive compulsive disorder. Psychiatry Res., 2007, 152(1), 29-35.
[http://dx.doi.org/10.1016/j.psychres.2006.04.003] [PMID: 17316824]
[84]
Mamelak, M. Narcolepsy and depression and the neurobiology of gammahydroxybutyrate. Prog. Neurobiol., 2009, 89(2), 193-219.
[http://dx.doi.org/10.1016/j.pneurobio.2009.07.004] [PMID: 19654034]
[85]
Steiger, A.; Pawlowski, M. Depression and sleep. Int. J. Mol. Sci., 2019, 20(3), 1-14.
[http://dx.doi.org/10.3390/ijms20030607] [PMID: 30708948]
[86]
Wilson, S.; Argyropoulos, S. Antidepressants and sleep: a qualitative review of the literature. Drugs, 2005, 65(7), 927-947.
[http://dx.doi.org/10.2165/00003495-200565070-00003] [PMID: 15892588]
[87]
Denis, D.; French, C.C.; Gregory, A.M. A systematic review of variables associated with sleep paralysis. Sleep Med. Rev., 2018, 38, 141-157.
[http://dx.doi.org/10.1016/j.smrv.2017.05.005] [PMID: 28735779]
[88]
Takeuchi, T.; Miyasita, A.; Sasaki, Y.; Inugami, M.; Fukuda, K. Isolated sleep paralysis elicited by sleep interruption. Sleep, 1992, 15(3), 217-225.
[http://dx.doi.org/10.1093/sleep/15.3.217] [PMID: 1621022]
[89]
Kiyashchenko, L.I.; Mileykovskiy, B.Y.; Maidment, N.; Lam, H.A.; Wu, M.F.; John, J.; Peever, J.; Siegel, J.M. Release of hypocretin (orexin) during waking and sleep states. J. Neurosci., 2002, 22(13), 5282-5286.
[http://dx.doi.org/10.1523/JNEUROSCI.22-13-05282.2002] [PMID: 12097478]
[90]
Takakusaki, K.; Takahashi, K.; Saitoh, K.; Harada, H.; Okumura, T.; Kayama, Y.; Koyama, Y. Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J. Physiol., 2005, 568(Pt 3), 1003-1020.
[http://dx.doi.org/10.1113/jphysiol.2005.085829] [PMID: 16123113]
[91]
Li, S.B.; de Lecea, L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology, 2020, 167(January)107993
[http://dx.doi.org/10.1016/j.neuropharm.2020.107993] [PMID: 32135427]
[92]
Saper, C.B. The central circadian timing system. Curr. Opin. Neurobiol., 2013, 23(5), 747-751.
[http://dx.doi.org/10.1016/j.conb.2013.04.004] [PMID: 23706187]
[93]
Saper, C.B.; Cano, G.; Scammell, T.E. Homeostatic, circadian, and emotional regulation of sleep. J. Comp. Neurol., 2005, 493(1), 92-98.
[http://dx.doi.org/10.1002/cne.20770] [PMID: 16254994]
[94]
Fruhstorfer, B.; Mignot, E.; Bowersox, S.; Nishino, S.; Dement, W.C.; Guilleminault, C. Canine narcolepsy is associated with an elevated number of α 2-receptors in the locus coeruleus. Brain Res., 1989, 500(1-2), 209-214.
[http://dx.doi.org/10.1016/0006-8993(89)90315-6] [PMID: 2557958]
[95]
Mignot, E.; Guilleminault, C.; Bowersox, S.; Rappaport, A.; Dement, W.C. Role of central alpha-1 adrenoceptors in canine narcolepsy. J. Clin. Invest., 1988, 82(3), 885-894.
[http://dx.doi.org/10.1172/JCI113694] [PMID: 2843574]
[96]
Bowersox, S.S.; Kilduff, T.S.; Faull, K.F.; Zeller-DeAmicis, L.; Dement, W.C.; Ciaranello, R.D. Brain dopamine receptor levels elevated in canine narcolepsy. Brain Res., 1987, 402(1), 44-48.
[http://dx.doi.org/10.1016/0006-8993(87)91045-6] [PMID: 3828787]
[97]
Aldrich, M.S.; Hollingsworth, Z.; Penney, J.B. Autoradiographic studies of post-mortem human narcoleptic brain. Neurophysiol. Clin., 1993, 23(1), 35-45.
[http://dx.doi.org/10.1016/S0987-7053(05)80281-3] [PMID: 8383284]
[98]
Eisensehr, I.; Linke, R.; Tatsch, K.; von Lindeiner, H.; Kharraz, B.; Gildehaus, F.J.; Eberle, R.; Pollmacher, T.; Schuld, A.; Noachtar, S. Alteration of the striatal dopaminergic system in human narcolepsy. Neurology, 2003, 60(11), 1817-1819.
[http://dx.doi.org/10.1212/01.WNL.0000069608.84542.46] [PMID: 12796537]
[99]
Khan, N.; Antonini, A.; Parkes, D.; Dahlitz, M.J.; Meier-Ewert, K.; Weindl, A.; Leenders, K.L. Striatal dopamine D2 receptors in patients with narcolepsy measured with PET and 11C-raclopride. Neurology, 1994, 44(11), 2102-2104.
[http://dx.doi.org/10.1212/WNL.44.11.2101] [PMID: 7969966]
[100]
Kish, S.J.; Mamelak, M.; Slimovitch, C.; Dixon, L.M.; Lewis, A.; Shannak, K.; DiStefano, L.; Chang, L.J.; Hornykiewicz, O. Brain neurotransmitter changes in human narcolepsy. Neurology, 1992, 42(1), 229-234.
[http://dx.doi.org/10.1212/WNL.42.1.229] [PMID: 1370862]
[101]
MacFarlane, J.G.; List, S.J.; Moldofsky, H.; Firnau, G.; Chen, J.J.; Szechtman, H.; Garnett, S.; Nahmias, C. Dopamine D2 receptors quantified in vivo in human narcolepsy. Biol. Psychiatry, 1997, 41(3), 305-310.
[http://dx.doi.org/10.1016/S0006-3223(96)00003-0] [PMID: 9024953]
[102]
Rinne, J.O.; Hublin, C.; Partinen, M.; Ruottinen, H.; Ruotsalainen, U.; Någren, K.; Lehikoinen, P.; Laihinen, A. Positron emission tomography study of human narcolepsy: no increase in striatal dopamine D2 receptors. Neurology, 1995, 45(9), 1735-1738.
[http://dx.doi.org/10.1212/WNL.45.9.1735] [PMID: 7675236]
[103]
Heckman, C.J.; Mottram, C.; Quinlan, K.; Theiss, R.; Schuster, J. Motoneuron excitability: the importance of neuromodulatory inputs. Clin. Neurophysiol., 2009, 120(12), 2040-2054.
[http://dx.doi.org/10.1016/j.clinph.2009.08.009] [PMID: 19783207]
[104]
Kiyashchenko, L.I.; Mileykovskiy, B.Y.; Lai, Y.Y.; Siegel, J.M. Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. J. Neurophysiol., 2001, 85(5), 2008-2016.
[http://dx.doi.org/10.1152/jn.2001.85.5.2008] [PMID: 11353017]
[105]
Yamuy, J.; Fung, S.J.; Xi, M.; Chase, M.H. Hypocretinergic control of spinal cord motoneurons. J. Neurosci., 2004, 24(23), 5336-5345.
[http://dx.doi.org/10.1523/JNEUROSCI.4812-03.2004] [PMID: 15190106]
[106]
Aldrich, M.S.; Rogers, A.E. Exacerbation of human cataplexy by prazosin. Sleep, 1989, 12(3), 254-256.
[http://dx.doi.org/10.1093/sleep/12.3.254] [PMID: 2740697]
[107]
Mignot, E.; Guilleminault, C.; Bowersox, S.; Rappaport, A.; Dement, W.C. Effect of α 1-adrenoceptors blockade with prazosin in canine narcolepsy. Brain Res., 1988, 444(1), 184-188.
[http://dx.doi.org/10.1016/0006-8993(88)90927-4] [PMID: 2834022]
[108]
Nishino, S.; Fruhstorfer, B.; Arrigoni, J.; Guilleminault, C.; Dement, W.C.; Mignot, E. Further characterization of the alpha-1 receptor subtype involved in the control of cataplexy in canine narcolepsy. J. Pharmacol. Exp. Ther., 1993, 264(3), 1079-1084.
[PMID: 8095546]
[109]
Lopez, R.; Dauvilliers, Y. Pharmacotherapy options for cataplexy. Expert Opin. Pharmacother., 2013, 14(7), 895-903.
[http://dx.doi.org/10.1517/14656566.2013.783021] [PMID: 23521426]
[110]
Nishino, S.; Mignot, E. Pharmacological aspects of human and canine narcolepsy. Prog. Neurobiol., 1997, 52(1), 27-78.
[http://dx.doi.org/10.1016/S0301-0082(96)00070-6] [PMID: 9185233]
[111]
Ristanovic, R.K.; Liang, H.; Hornfeldt, C.S.; Lai, C. Exacerbation of cataplexy following gradual withdrawal of antidepressants: manifestation of probable protracted rebound cataplexy. Sleep Med., 2009, 10(4), 416-421.
[http://dx.doi.org/10.1016/j.sleep.2008.04.004] [PMID: 18753005]
[112]
Chaumette, T.; Chapuy, E.; Berrocoso, E.; Llorca-Torralba, M.; Bravo, L.; Mico, J.A.; Chalus, M.; Eschalier, A.; Ardid, D.; Marchand, F.; Sors, A. Effects of S 38093, an antagonist/inverse agonist of histamine H3 receptors, in models of neuropathic pain in rats. Eur. J. Pain, 2018, 22(1), 127-141.
[http://dx.doi.org/10.1002/ejp.1097] [PMID: 28877402]
[113]
Lin, J.S.; Dauvilliers, Y.; Arnulf, I.; Bastuji, H.; Anaclet, C.; Parmentier, R.; Kocher, L.; Yanagisawa, M.; Lehert, P.; Ligneau, X.; Perrin, D.; Robert, P.; Roux, M.; Lecomte, J.M.; Schwartz, J.C. An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin-/- mice and patients. Neurobiol. Dis., 2008, 30(1), 74-83.
[http://dx.doi.org/10.1016/j.nbd.2007.12.003] [PMID: 18295497]
[114]
Eggermann, E.; Serafin, M.; Bayer, L.; Machard, D.; Saint-Mleux, B.; Jones, B.E.; Mühlethaler, M. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience, 2001, 108(2), 177-181.
[http://dx.doi.org/10.1016/S0306-4522(01)00512-7] [PMID: 11734353]
[115]
Fadel, J.; Burk, J.A. Orexin/hypocretin modulation of the basal forebrain cholinergic system: Role in attention. Brain Res., 2010, 1314, 112-123.
[http://dx.doi.org/10.1016/j.brainres.2009.08.046] [PMID: 19699722]
[116]
Lee, M.G.; Hassani, O.K.; Alonso, A.; Jones, B.E. Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J. Neurosci., 2005, 25(17), 4365-4369.
[http://dx.doi.org/10.1523/JNEUROSCI.0178-05.2005] [PMID: 15858062]
[117]
Inutsuka, A Yamanaka, A The physiological role of orexin / hypocretin neurons in the regulation of sleep / wakefulness and neuroendocrine functions., 2013, 4, 1-10.
[118]
Burlet, S.; Tyler, C.J.; Leonard, C.S. Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy. J. Neurosci., 2002, 22(7), 2862-2872.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02862.2002] [PMID: 11923451]
[119]
Kim, J.; Nakajima, K.; Oomura, Y.; Wayner, M.J.; Sasaki, K. Electrophysiological effects of orexins/hypocretins on pedunculopontine tegmental neurons in rats: an in vitro study. Peptides, 2009, 30(2), 191-209.
[http://dx.doi.org/10.1016/j.peptides.2008.09.023] [PMID: 18977258]
[120]
Nishino, S; Tafti, M; Reid, MS Muscle atonia is triggered by cholinergic stimulation of the basal forebrain: Implication for the pathophysiology of canine narcolepsy. J Neurosci., 1995, 15(7 I), 4806-4814.
[121]
Boehme, R.E.; Baker, T.L.; Mefford, I.N.; Barchas, J.D.; Dement, W.C.; Ciaranello, R.D. Narcolepsy: cholinergic receptor changes in an animal model. Life Sci., 1984, 34(19), 1825-1828.
[http://dx.doi.org/10.1016/0024-3205(84)90675-1] [PMID: 6539848]
[122]
Sharples, S.A.; Koblinger, K.; Humphreys, J.M.; Whelan, P.J. Dopamine: a parallel pathway for the modulation of spinal locomotor networks. Front. Neural Circuits, 2014, 8(JUNE), 55.
[http://dx.doi.org/10.3389/fncir.2014.00055] [PMID: 24982614]
[123]
Han, P.; Nakanishi, S.T.; Tran, M.A.; Whelan, P.J. Dopaminergic modulation of spinal neuronal excitability. J. Neurosci., 2007, 27(48), 13192-13204.
[http://dx.doi.org/10.1523/JNEUROSCI.1279-07.2007] [PMID: 18045913]
[124]
Rivera-Oliver, M.; Moreno, E.; Álvarez-Bagnarol, Y.; Ayala-Santiago, C.; Cruz-Reyes, N.; Molina-Castro, G.C.; Clemens, S.; Canela, E.I.; Ferré, S.; Casadó, V.; Díaz-Ríos, M. Adenosine A1-Dopamine D1 receptor heteromers control the excitability of the spinal motoneuron. Mol. Neurobiol., 2019, 56(2), 797-811.
[http://dx.doi.org/10.1007/s12035-018-1120-y] [PMID: 29797183]
[125]
Schwarz, P.B.; Peever, J.H. Dopamine triggers skeletal muscle tone by activating D1-like receptors on somatic motoneurons. J. Neurophysiol., 2011, 106(3), 1299-1309.
[http://dx.doi.org/10.1152/jn.00230.2011] [PMID: 21653722]
[126]
Wisor, J.P.; Nishino, S.; Sora, I.; Uhl, G.H.; Mignot, E.; Edgar, D.M. Dopaminergic role in stimulant-induced wakefulness. J. Neurosci., 2001, 21(5), 1787-1794.
[http://dx.doi.org/10.1523/JNEUROSCI.21-05-01787.2001] [PMID: 11222668]
[127]
Trulson, M.E.; Preussler, D.W.; Howell, G.A. Activity of substantia nigra units across the sleep-waking cycle in freely moving cats. Neurosci. Lett., 1981, 26(2), 183-188.
[http://dx.doi.org/10.1016/0304-3940(81)90346-3] [PMID: 7301205]
[128]
Dahan, L.; Astier, B.; Vautrelle, N.; Urbain, N.; Kocsis, B.; Chouvet, G. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology, 2007, 32(6), 1232-1241.
[http://dx.doi.org/10.1038/sj.npp.1301251] [PMID: 17151599]
[129]
Eban-Rothschild, A.; Rothschild, G.; Giardino, W.J.; Jones, J.R.; de Lecea, L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat. Neurosci., 2016, 19(10), 1356-1366.
[http://dx.doi.org/10.1038/nn.4377] [PMID: 27595385]
[130]
Lu, J.; Jhou, T.C.; Saper, C.B. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J. Neurosci., 2006, 26(1), 193-202.
[http://dx.doi.org/10.1523/JNEUROSCI.2244-05.2006] [PMID: 16399687]
[131]
Chuhma, N.; Mingote, S.; Yetnikoff, L.; Kalmbach, A.; Ma, T.; Ztaou, S.; Sienna, A.C.; Tepler, S.; Poulin, J.F.; Ansorge, M.; Awatramani, R.; Kang, U.J.; Rayport, S. Dopamine neuron glutamate cotransmission evokes a delayed excitation in lateral dorsal striatal cholinergic interneurons. eLife, 2018, 7, 1-29.
[http://dx.doi.org/10.7554/eLife.39786] [PMID: 30295607]
[132]
Chuhma, N.; Mingote, S.; Moore, H.; Rayport, S. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron, 2014, 81(4), 901-912.
[http://dx.doi.org/10.1016/j.neuron.2013.12.027] [PMID: 24559678]
[133]
Giorgi, O.; Rubio, M.C. Decreased 3H-L-quinuclidinyl benzilate binding and muscarine receptor subsensitivity after chronic gamma-butyrolactone treatment. Naunyn Schmiedebergs Arch. Pharmacol., 1981, 318(1), 14-18.
[http://dx.doi.org/10.1007/BF00503306] [PMID: 7329448]
[134]
Nomura, Y.; Kajiyama, H.; Nakata, Y.; Segawa, T. Muscarinic cholinergic binding in striatal and mesolimbic areas of the rat: reduction by 6-hydroxydopa. Eur. J. Pharmacol., 1979, 58(2), 125-131.
[http://dx.doi.org/10.1016/0014-2999(79)90003-7] [PMID: 499342]
[135]
Honda, K.; Riehl, J.; Mignot, E.; Nishino, S. Dopamine D3 agonists into the substratia nigra aggravates cataplexy but does not modify sleep. Neuroreport, 1999, 10(14), 3111-3118.
[http://dx.doi.org/10.1097/00001756-199909290-00043] [PMID: 10549832]
[136]
Reid, M.S.; Tafti, M.; Nishino, S.; Sampathkumaran, R.; Siegel, J.M.; Mignot, E. Local administration of dopaminergic drugs into the ventral tegmental area modulates cataplexy in the narcoleptic canine. Brain Res., 1996, 733(1), 83-100.
[http://dx.doi.org/10.1016/0006-8993(96)00541-0] [PMID: 8891251]
[137]
Burgess, C.R.; Tse, G.; Gillis, L.; Peever, J.H. Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy. Sleep, 2010, 33(10), 1295-1304.
[http://dx.doi.org/10.1093/sleep/33.10.1295] [PMID: 21061851]
[138]
Hut, R.A.; Van der Zee, E.A. The cholinergic system, circadian rhythmicity, and time memory. Behav. Brain Res., 2011, 221(2), 466-480.
[http://dx.doi.org/10.1016/j.bbr.2010.11.039] [PMID: 21115064]
[139]
Mash, D.C.; Flynn, D.D.; Kalinoski, L.; Potter, L.T. Circadian variations in radioligand binding to muscarine receptors in rat brain dependent upon endogenous agonist occupation. Brain Res., 1985, 331(1), 35-38.
[http://dx.doi.org/10.1016/0006-8993(85)90712-7] [PMID: 2985199]
[140]
Perry, E.K.; Perry, R.H.; Tomlinson, B.E. Circadian variations in cholinergic enzymes and muscarinic receptor binding in human cerebral cortex. Neurosci. Lett., 1977, 4(3-4), 185-189.
[http://dx.doi.org/10.1016/0304-3940(77)90136-7] [PMID: 19604942]
[141]
Carskadon, M.A.; Dement, W.C. Sleep studies on a 90-minute day. Electroencephalogr. Clin. Neurophysiol., 1975, 39(2), 145-155.
[http://dx.doi.org/10.1016/0013-4694(75)90004-8] [PMID: 50211]
[142]
Kimura, M.; Curzi, M.L.; Romanowsi, C.P. REM sleep alteration and depression. Arch. Ital. Biol., 2014, 152(2-3), 111-117.
[PMID: 25828683]
[143]
Nollet, M.; Hicks, H.; McCarthy, A.P.; Wu, H.; Möller-Levet, C.S.; Laing, E.E.; Malki, K.; Lawless, N.; Wafford, K.A.; Dijk, D.J.; Winsky-Sommerer, R. REM sleep’s unique associations with corticosterone regulation, apoptotic pathways, and behavior in chronic stress in mice. Proc. Natl. Acad. Sci. USA, 2019, 116(7), 2733-2742.
[http://dx.doi.org/10.1073/pnas.1816456116] [PMID: 30683720]
[144]
Fernandez, S.P.; Broussot, L.; Marti, F.; Contesse, T.; Mouska, X.; Soiza-Reilly, M.; Marie, H.; Faure, P.; Barik, J. Mesopontine cholinergic inputs to midbrain dopamine neurons drive stress-induced depressive-like behaviors. Nat. Commun., 2018, 9(1), 4449.
[http://dx.doi.org/10.1038/s41467-018-06809-7] [PMID: 30361503]
[145]
Calvo, J.M.; Simón-Arceo, K.; Fernández-Mas, R. Prolonged enhancement of REM sleep produced by carbachol microinjection into the amygdala. Neuroreport, 1996, 7(2), 577-580.
[http://dx.doi.org/10.1097/00001756-199601310-00048] [PMID: 8730833]
[146]
Dulawa, S.C.; Janowsky, D.S. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol. Psychiatry, 2019, 24(5), 694-709.
[http://dx.doi.org/10.1038/s41380-018-0219-x] [PMID: 30120418]
[147]
Palagini, L.; Baglioni, C.; Ciapparelli, A.; Gemignani, A.; Riemann, D. REM sleep dysregulation in depression: state of the art. Sleep Med. Rev., 2013, 17(5), 377-390.
[http://dx.doi.org/10.1016/j.smrv.2012.11.001] [PMID: 23391633]
[148]
Giles, D.E.; Kupfer, D.J.; Roffwarg, H.P.; Rush, A.J.; Biggs, M.M.; Etzel, B.A. Polysomnographic parameters in first-degree relatives of unipolar probands. Psychiatry Res., 1989, 27(2), 127-136.
[http://dx.doi.org/10.1016/0165-1781(89)90128-5] [PMID: 2710861]
[149]
Comings, DE.; Wu, S.; Rostamkhani, M.; McGue, M.; Iacono, WG.; MacMurray, JP. Association of the muscarinic cholinergic 2 receptor (CHRM2) gene with major depression in women. Am. J. Med. Genet., 2002, 114(5), 527-529.
[150]
Lauer, C.J.; Modell, S. Schreiber,w., Krieg, J-C., Holsbauer F. Prediction of the 0development of a first major depressive episode with a rapid eye movement induction test 0using the cholinergic agonist RS-86. J. Clin. Psychopharmacol., 2004, 24(3), 356-357.
[http://dx.doi.org/10.1097/01.jcp.0000125744.22031.3a] [PMID: 15118498]
[151]
Schreiber, W.; Lauer, C.J.; Krumrey, K.; Holsboer, F.; Krieg, J.C. Cholinergic REM sleep induction test in subjects at high risk for psychiatric disorders. Biol. Psychiatry, 1992, 32(1), 79-90.
[http://dx.doi.org/10.1016/0006-3223(92)90144-O] [PMID: 1391297]
[152]
Furey, M.L.; Drevets, W.C. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch. Gen. Psychiatry, 2006, 63(10), 1121-1129.
[http://dx.doi.org/10.1001/archpsyc.63.10.1121] [PMID: 17015814]
[153]
Poland, R.E.; McCracken, J.T.; Lutchmansingh, P.; Lesser, I.M.; Tondo, L.; Edwards, C.; Boone, K.B.; Lin, K.M. Differential response of rapid eye movement sleep to cholinergic blockade by scopolamine in currently depressed, remitted, and normal control subjects. Biol. Psychiatry, 1997, 41(9), 929-938.
[http://dx.doi.org/10.1016/S0006-3223(96)00183-7] [PMID: 9110098]
[154]
Witkin, J.M.; Overshiner, C.; Li, X.; Catlow, J.T.; Wishart, G.N.; Schober, D.A.; Heinz, B.A.; Nikolayev, A.; Tolstikov, V.V.; Anderson, W.H.; Higgs, R.E.; Kuo, M.S.; Felder, C.C. M1 and m2 muscarinic receptor subtypes regulate antidepressant-like effects of the rapidly acting antidepressant scopolamine. J. Pharmacol. Exp. Ther., 2014, 351(2), 448-456.
[http://dx.doi.org/10.1124/jpet.114.216804] [PMID: 25187432]
[155]
Sudo, Y.; Suhara, T.; Honda, Y.; Nakajima, T.; Okubo, Y.; Suzuki, K.; Nakashima, Y.; Yoshikawa, K.; Okauchi, T.; Sasaki, Y.; Matsushita, M. Muscarinic cholinergic receptors in human narcolepsy: a PET study. Neurology, 1998, 51(5), 1297-1302.
[http://dx.doi.org/10.1212/WNL.51.5.1297] [PMID: 9818849]
[156]
Kilduff, T.S.; Bowersox, S.S.; Kaitin, K.I.; Baker, T.L.; Ciaranello, R.D.; Dement, W.C. Muscarinic cholinergic receptors and the canine model of narcolepsy. Sleep, 1986, 9(1 Pt 2), 102-106.
[http://dx.doi.org/10.1093/sleep/9.1.102] [PMID: 3704431]
[157]
Reid, M.S.; Nishino, S.; Tafti, M.; Siegel, J.M.; Dement, W.C.; Mignot, E. Neuropharmacological characterization of basal forebrain cholinergic stimulated cataplexy in narcoleptic canines. Exp. Neurol., 1998, 151(1), 89-104.
[http://dx.doi.org/10.1006/exnr.1998.6787] [PMID: 9582257]
[158]
Wang, H.Y.; Kuo, Z.C.; Fu, Y.S.; Chen, R.F.; Min, M.Y.; Yang, H.W. GABAB receptor-mediated tonic inhibition regulates the spontaneous firing of locus coeruleus neurons in developing rats and in citalopram-treated rats. J. Physiol., 2015, 593(1), 161-180.
[http://dx.doi.org/10.1113/jphysiol.2014.281378] [PMID: 25556794]
[159]
Szabo, S.T.; Gold, M.S.; Goldberger, B.A.; Blier, P. Effects of sustained gamma-hydroxybutyrate treatments on spontaneous and evoked firing activity of locus coeruleus norepinephrine neurons. Biol. Psychiatry, 2004, 55(9), 934-939.
[http://dx.doi.org/10.1016/j.biopsych.2003.12.013] [PMID: 15110737]
[160]
Aston-Jones, G.; Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 2005, 28, 403-450.
[http://dx.doi.org/10.1146/annurev.neuro.28.061604.135709] [PMID: 16022602]
[161]
Erhardt, S.; Andersson, B.; Nissbrandt, H.; Engberg, G. Inhibition of firing rate and changes in the firing pattern of nigral dopamine neurons by γ-hydroxybutyric acid (GHBA) are specifically induced by activation of GABA(B) receptors. Naunyn Schmiedebergs Arch. Pharmacol., 1998, 357(6), 611-619.
[http://dx.doi.org/10.1007/PL00005215] [PMID: 9686936]
[162]
Hishikawa, Y.; Sumitsuji, N.; Matsumoto, K.; Kaneko, Z. H-reflex and EMG of the mental and hyoid muscles during sleep, with special reference to narcolepsy. Electroencephalogr. Clin. Neurophysiol., 1965, 18(5), 487-492.
[http://dx.doi.org/10.1016/0013-4694(65)90129-X] [PMID: 14276042]
[163]
Hodes, R.; Dement, W.C. Depression of electrically induced (‘H-reflexes”) in man during low voltage EEG ’sleep. Electroencephalogr. Clin. Neurophysiol., 1964, 17(6), 617-629.
[http://dx.doi.org/10.1016/0013-4694(64)90229-9] [PMID: 14240854]
[164]
Mamelak, M.; Sowden, K. The effect of gammahydroxybutyrate on the H-reflex: pilot study. Neurology, 1983, 33(11), 1497-1500.
[http://dx.doi.org/10.1212/WNL.33.11.1497] [PMID: 6314181]
[165]
Kaufman, E.E. Metabolism and distribution of gammahydroxybutyrate in the brain. Gammahydroxybutyrate: Molecular, functional and clinival aspects; Tunnicliff, G; Cash, C.D., Ed.; Taylor and Francis: London, and New York, 2002, pp. 1-16.
[166]
Bukato, G.; Kochan, Z.; Swierczyński, J. Different regulatory properties of the cytosolic and mitochondrial forms of malic enzyme isolated from human brain. Int. J. Biochem. Cell Biol., 1995, 27(10), 1003-1008.
[http://dx.doi.org/10.1016/1357-2725(95)00080-9] [PMID: 7496989]
[167]
Vogel, R.; Wiesinger, H.; Hamprecht, B.; Dringen, R. The regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required. Neurosci. Lett., 1999, 275(2), 97-100.
[http://dx.doi.org/10.1016/S0304-3940(99)00748-X] [PMID: 10568508]
[168]
Laborit, H. Sodium-4-hydroxybutyrate. Int. J. Neuropharmacol., 1964, 3, 433-451.
[http://dx.doi.org/10.1016/0028-3908(64)90074-7] [PMID: 14334876]
[169]
Taberner, P.V.; Rick, J.T.; Kerkut, G.A. The action of gamma-hydroxybutyric acid on cerebral glucose metabolism. J. Neurochem., 1972, 19(2), 245-254.
[http://dx.doi.org/10.1111/j.1471-4159.1972.tb01334.x] [PMID: 5010074]
[170]
Andrabi, M.; Andrabi, M.M.; Kunjunni, R.; Sriwastva, M.K.; Bose, S.; Sagar, R.; Srivastava, A.K.; Mathur, R.; Jain, S.; Subbiah, V. Lithium acts to modulate abnormalities at behavioral, cellular, and molecular levels in sleep deprivation-induced mania-like behavior. Bipolar Disord., 2020, 22(3), 266-280.
[http://dx.doi.org/10.1111/bdi.12838] [PMID: 31535429]
[171]
Alzoubi, K.H.; Al Mosabih, H.S.; Mahasneh, A.F. The protective effect of edaravone on memory impairment induced by chronic sleep deprivation. Psychiatry Res., 2019, 281(June)112577
[http://dx.doi.org/10.1016/j.psychres.2019.112577] [PMID: 31586841]
[172]
Ramanathan, L.; Hu, S.; Frautschy, S.A.; Siegel, J.M. Short-term total sleep deprivation in the rat increases antioxidant responses in multiple brain regions without impairing spontaneous alternation behavior. Behav. Brain Res., 2010, 207(2), 305-309.
[http://dx.doi.org/10.1016/j.bbr.2009.10.014] [PMID: 19850085]
[173]
Silva, R.H.; Abílio, V.C.; Takatsu, A.L.; Kameda, S.R.; Grassl, C.; Chehin, A.B.; Medrano, W.A.; Calzavara, M.B.; Registro, S.; Andersen, M.L.; Machado, R.B.; Carvalho, R.C. Ribeiro, Rde.A.; Tufik, S.; Frussa-Filho, R. Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology, 2004, 46(6), 895-903.
[http://dx.doi.org/10.1016/j.neuropharm.2003.11.032] [PMID: 15033349]
[174]
Villafuerte, G; Miguel-Puga, A; Murillo Rodríguez, E; Machado, S; Manjarrez, E; Arias-Carrión, O. Sleep deprivation and oxidative stress in animal models: A systematic review., Oxid Med Cell Longev, 2015,. 2015.
[http://dx.doi.org/10.1155/2015/234952]
[175]
Harkness, J.H.; Bushana, P.N.; Todd, R.P.; Clegern, W.C.; Sorg, B.A.; Wisor, J.P. Sleep disruption elevates oxidative stress in parvalbumin-positive cells of the rat cerebral cortex. Sleep (Basel), 2019, 42(1), 1-15.
[http://dx.doi.org/10.1093/sleep/zsy201] [PMID: 30371896]
[176]
Pimentel, D.; Donlea, J.M.; Talbot, C.B.; Song, S.M.; Thurston, A.J.F.; Miesenböck, G. Operation of a homeostatic sleep switch. Nature, 2016, 536(7616), 333-337.http://www.nature.com/authors/editorial_policies/license.html#terms
[http://dx.doi.org/10.1038/nature19055] [PMID: 27487216]
[177]
Kempf, A.; Song, S.M.; Talbot, C.B.; Miesenböck, G. A potassium channel β-subunit couples mitochondrial electron transport to sleep. Nature, 2019, 568(7751), 230-234.
[http://dx.doi.org/10.1038/s41586-019-1034-5] [PMID: 30894743]
[178]
Hill, V.M.; O’Connor, R.M.; Sissoko, G.B.; Irobunda, I.S.; Leong, S.; Canman, J.C.; Stavropoulos, N.; Shirasu-Hiza, M. A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol., 2018, 16(7)e2005206
[http://dx.doi.org/10.1371/journal.pbio.2005206] [PMID: 30001323]
[179]
Ikeda, M.; Ikeda-Sagara, M.; Okada, T.; Clement, P.; Urade, Y.; Nagai, T.; Sugiyama, T.; Yoshioka, T.; Honda, K.; Inoué, S. Brain oxidation is an initial process in sleep induction. Neuroscience, 2005, 130(4), 1029-1040.
[http://dx.doi.org/10.1016/j.neuroscience.2004.09.057] [PMID: 15652998]
[180]
Sakamoto, H.; Kitahara, J.; Nakagawa, Y. Effect of intracellular glutathione on the production of prostaglandin D2 in RBL-2H3 cells oxidized by tert-butyl hydroperoxide. J. Biochem., 1999, 125(1), 90-95.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022274] [PMID: 9880802]
[181]
Sun, G.Y.; Xu, J.; Jensen, M.D.; Yu, S.; Wood, W.G.; González, F.A.; Simonyi, A.; Sun, A.Y.; Weisman, G.A. Phospholipase A2 in astrocytes: responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Mol. Neurobiol., 2005, 31(1-3), 27-41.
[http://dx.doi.org/10.1385/MN:31:1-3:027] [PMID: 15953810]
[182]
Bredow, S.; Guha-Thakurta, N.; Taishi, P.; Obál, F., Jr; Krueger, J.M. Diurnal variations of tumor necrosis factor alpha mRNA and alpha-tubulin mRNA in rat brain. Neuroimmunomodulation, 1997, 4(2), 84-90.
[http://dx.doi.org/10.1159/000097325] [PMID: 9483199]
[183]
Kalinchuk, A.V.; Porkka-Heiskanen, T.; McCarley, R.W.; Basheer, R. Cholinergic neurons of the basal forebrain mediate biochemical and electrophysiological mechanisms underlying sleep homeostasis. Eur. J. Neurosci., 2015, 41(2), 182-195.
[http://dx.doi.org/10.1111/ejn.12766] [PMID: 25369989]
[184]
Kalinchuk, A.V.; McCarley, R.W.; Porkka-Heiskanen, T.; Basheer, R. The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J. Neurochem., 2011, 116(2), 260-272.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07100.x] [PMID: 21062286]
[185]
Kalinchuk, A.V.; McCarley, R.W.; Porkka-Heiskanen, T.; Basheer, R. Sleep deprivation triggers inducible nitric oxide-dependent nitric oxide production in wake-active basal forebrain neurons. J. Neurosci., 2010, 30(40), 13254-13264.
[http://dx.doi.org/10.1523/JNEUROSCI.0014-10.2010] [PMID: 20926651]
[186]
Kalinchuk, A.V.; Lu, Y.; Stenberg, D.; Rosenberg, P.A.; Porkka-Heiskanen, T. Nitric oxide production in the basal forebrain is required for recovery sleep. J. Neurochem., 2006, 99(2), 483-498.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04077.x] [PMID: 17029601]
[187]
Kalinchuk, A.V.; Stenberg, D.; Rosenberg, P.A.; Porkka-Heiskanen, T. Inducible and neuronal nitric oxide synthases (NOS) have complementary roles in recovery sleep induction. Eur. J. Neurosci., 2006, 24(5), 1443-1456.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05019.x] [PMID: 16987226]
[188]
Mackiewicz, M.; Sollars, P.J.; Ogilvie, M.D.; Pack, A.I. Modulation of IL-1 β gene expression in the rat CNS during sleep deprivation. Neuroreport, 1996, 7(2), 529-533.
[http://dx.doi.org/10.1097/00001756-199601310-00037] [PMID: 8730822]
[189]
Manchanda, S.; Singh, H.; Kaur, T.; Kaur, G. Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments. Mol. Cell. Biochem., 2018, 449(1-2), 63-72.
[http://dx.doi.org/10.1007/s11010-018-3343-7] [PMID: 29549603]
[190]
Valvassori, S.S.; Resende, W.R.; Dal-Pont, G.; Sangaletti-Pereira, H.; Gava, F.F.; Peterle, B.R.; Carvalho, A.F.; Varela, R.B.; Dal-Pizzol, F.; Quevedo, J. Lithium ameliorates sleep deprivation-induced mania-like behavior, hypothalamic-pituitary-adrenal (HPA) axis alterations, oxidative stress and elevations of cytokine concentrations in the brain and serum of mice. Bipolar Disord., 2017, 19(4), 246-258.
[http://dx.doi.org/10.1111/bdi.12503] [PMID: 28612976]
[191]
Stanton, R.C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life, 2012, 64(5), 362-369.
[http://dx.doi.org/10.1002/iub.1017] [PMID: 22431005]
[192]
Brorson, J.R.; Schumacker, P.T.; Zhang, H. Nitric oxide acutely inhibits neuronal energy production. J. Neurosci., 1999, 19(1), 147-158.
[http://dx.doi.org/10.1523/JNEUROSCI.19-01-00147.1999] [PMID: 9870946]
[193]
Rosenberg, P.A.; Li, Y.; Le, M.; Zhang, Y. Nitric oxide-stimulated increase in extracellular adenosine accumulation in rat forebrain neurons in culture is associated with ATP hydrolysis and inhibition of adenosine kinase activity. J. Neurosci., 2000, 20(16), 6294-6301.
[http://dx.doi.org/10.1523/JNEUROSCI.20-16-06294.2000] [PMID: 10934281]
[194]
Lazarus, M.; Oishi, Y.; Bjorness, T.E.; Greene, R.W. Gating and the need for sleep: Dissociable effects of adenosine a1and a2a receptors. Front. Neurosci., 2019, 13, 740.
[http://dx.doi.org/10.3389/fnins.2019.00740] [PMID: 31379490]
[195]
Kalinchuk, A.V.; McCarley, R.W.; Stenberg, D.; Porkka-Heiskanen, T.; Basheer, R. The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 IgG-saporin lesions. Neuroscience, 2008, 157(1), 238-253.
[http://dx.doi.org/10.1016/j.neuroscience.2008.08.040] [PMID: 18805464]
[196]
Bjorness, T.E.; Dale, N.; Mettlach, G.; Sonneborn, A.; Sahin, B.; Fienberg, A.A.; Yanagisawa, M.; Bibb, J.A.; Greene, R.W. An adenosine-mediated glial-neuronal circuit for homeostatic sleep. J. Neurosci., 2016, 36(13), 3709-3721.
[http://dx.doi.org/10.1523/JNEUROSCI.3906-15.2016] [PMID: 27030757]
[197]
Fujita, T.; Chen, M.J.; Li, B.; Smith, N.A.; Peng, W.; Sun, W.; Toner, M.J.; Kress, B.T.; Wang, L.; Benraiss, A.; Takano, T.; Wang, S.; Nedergaard, M. Neuronal transgene expression in dominant-negative SNARE mice. J. Neurosci., 2014, 34(50), 16594-16604.
[http://dx.doi.org/10.1523/JNEUROSCI.2585-14.2014] [PMID: 25505312]
[198]
Halassa, M.M.; Florian, C.; Fellin, T.; Munoz, J.R.; Lee, S.Y.; Abel, T.; Haydon, P.G.; Frank, M.G. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 2009, 61(2), 213-219.
[http://dx.doi.org/10.1016/j.neuron.2008.11.024] [PMID: 19186164]
[199]
Ahmad, A.S.; Ottallah, H.; MacIel, C.B.; Strickland, M.; Doré, S. Role of the L-PGDS-PGD-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep (Basel), 2019, 42(6), 1-16.
[http://dx.doi.org/10.1093/sleep/zsz073]
[200]
Urade, Y.; Hayaishi, O. Prostaglandin D2 and sleep/wake regulation. Sleep Med. Rev., 2011, 15(6), 411-418.
[http://dx.doi.org/10.1016/j.smrv.2011.08.003] [PMID: 22024172]
[201]
Yui, D.; Nishida, Y.; Nishina, T.; Mogushi, K.; Tajiri, M.; Ishibashi, S.; Ajioka, I.; Ishikawa, K.; Mizusawa, H.; Murayama, S.; Yokota, T. Enhanced phospholipase A2 group 3 expression by oxidative stress decreases the insulin-degrading enzyme. PLoS One, 2015, 10(12)e0143518
[http://dx.doi.org/10.1371/journal.pone.0143518] [PMID: 26637123]
[202]
Terao, A.; Matsumura, H.; Saito, M. Interleukin-1 induces slow-wave sleep at the prostaglandin D2-sensitive sleep-promoting zone in the rat brain. J. Neurosci., 1998, 18(16), 6599-6607.
[http://dx.doi.org/10.1523/JNEUROSCI.18-16-06599.1998] [PMID: 9698346]
[203]
Zhang, B.J.; Shao, S.R.; Aritake, K.; Takeuchi, A.; Urade, Y.; Huang, Z.L.; Lazarus, M.; Qu, W.M. Interleukin-1β induces sleep independent of prostaglandin D2 in rats and mice. Neuroscience, 2017, 340, 258-267.
[http://dx.doi.org/10.1016/j.neuroscience.2016.09.053] [PMID: 27815021]
[204]
Krueger, J.M.; Taishi, P.; De, A.; Davis, C.J.; Winters, B.D.; Clinton, J.; Szentirmai, E.; Zielinski, M.R. ATP and the purine type 2 X7 receptor affect sleep. J. Appl. Physiol., 2010, 109(5), 1318-1327.
[http://dx.doi.org/10.1152/japplphysiol.00586.2010] [PMID: 20829501]
[205]
Porkka-Heiskanen, T; Strecker, RE; Thakkar, M; Bjørkum, AA; Greene, RW; McCarley, RW Adenosine: A mediator of the sleep-inducing effects of prolonged wakefulness.Science (80- ), 1997, 276(5316), 1265-1267.,
[http://dx.doi.org/10.1126/science.276.5316.1265]
[206]
Porkka-Heiskanen, T.; Strecker, R.E.; McCarley, R.W. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience, 2000, 99(3), 507-517.
[http://dx.doi.org/10.1016/S0306-4522(00)00220-7] [PMID: 11029542]
[207]
Urade, Y.; Eguchi, N.; Qu, W.M.; Sakata, M.; Huang, Z.L.; Chen, J.F.; Schwarzschild, M.A.; Fink, J.S.; Hayaishi, O. Sleep regulation in adenosine A2A receptor-deficient mice. Neurology, 2003, 61(11)(Suppl. 6), S94-S96.
[http://dx.doi.org/10.1212/01.WNL.0000095222.41066.5E] [PMID: 14663019]
[208]
Rainnie, D.G.; Grunze, H.C.R.; Mccarley, R.W.; Robert, W.; Rainnie, D.G.; Grunze, H.C.R. Adenosine Inhibition of Mesopontine Cholinergic Neurons: Implications for EEG Arousal Published by: American Association for the Advancement of Science Stable URL http://www.jstor.com/stable/2883094American Associationfor the Advancement of Science.. 1994, 263(5147), 689-692.
[209]
Fukumitsu, N.; Ishii, K.; Kimura, Y.; Oda, K.; Sasaki, T.; Mori, Y.; Ishiwata, K. Adenosine A1 receptor mapping of the human brain by PET with 8-dicyclopropylmethyl-1-11C-methyl-3-propylxanthine. J. Nucl. Med., 2005, 46(1), 32-37.
[PMID: 15632030]
[210]
Pape, H-C. Adenosine promotes burst activity in guinea-pig geniculocortical neurones through two different ionic mechanisms. J. Physiol., 1992, 447, 729-753.
[http://dx.doi.org/10.1113/jphysiol.1992.sp019026] [PMID: 1593463]
[211]
Bjorness, T.E.; Kelly, C.L.; Gao, T.; Poffenberger, V.; Greene, R.W. Control and function of the homeostatic sleep response by adenosine A1 receptors. J. Neurosci., 2009, 29(5), 1267-1276.
[http://dx.doi.org/10.1523/JNEUROSCI.2942-08.2009] [PMID: 19193874]
[212]
Zielinski, M.R.; Taishi, P.; Clinton, J.M.; Krueger, J.M. 5′-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation. Eur. J. Neurosci., 2012, 35(11), 1789-1798.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08112.x] [PMID: 22540145]
[213]
Steriade, M.; Hobson, J.A. Neuronal activity during the sleep-waking cycle. Prog. Neurobiol., 1976, 157, 157-376.
[http://dx.doi.org/10.1016/0301-0082(76)90013-7]
[214]
Descarries, L.; Gisiger, V.; Steriade, M. Diffuse transmission by acetylcholine in the CNS. Prog. Neurobiol., 1997, 53(5), 603-625.
[http://dx.doi.org/10.1016/S0301-0082(97)00050-6] [PMID: 9421837]
[215]
Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron, 2012, 75(5), 762-777.
[http://dx.doi.org/10.1016/j.neuron.2012.08.019] [PMID: 22958818]
[216]
Madsen, P.L.; Schmidt, J.F.; Wildschiødtz, G.; Friberg, L.; Holm, S.; Vorstrup, S.; Lassen, N.A. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J. Appl. Physiol., 1991, 70(6), 2597-2601.
[http://dx.doi.org/10.1152/jappl.1991.70.6.2597] [PMID: 1885454]
[217]
Caporale, A.; Lee, H.; Lei, H.; Rao, H.; Langham, M.C.; Detre, J.A. Cerebral metabolic rate of oxygen during transition from wakefulness to sleep measured with high temporal resolution OxFlow MRI with concurrent EEG. J. Cereb. Blood Flow Metab., 2021, 41(4), 780-792.
[http://dx.doi.org/10.1177/0271678X20919287] [PMID: 32538283]
[218]
Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(Pt 2), 335-344.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[219]
Aksenov, D.P.; Miller, M.J.; Dixon, C.J.; Wyrwicz, A.M. The effect of sevoflurane and isoflurane anesthesia on single unit and local field potentials. Exp. Brain Res., 2019, 237(6), 1521-1529.
[http://dx.doi.org/10.1007/s00221-019-05528-9] [PMID: 30919011]
[220]
Andrada, J.; Livingston, P.; Lee, B.J.; Antognini, J. Propofol and etomidate depress cortical, thalamic, and reticular formation neurons during anesthetic-induced unconsciousness. Anesth. Analg., 2012, 114(3), 661-669.
[http://dx.doi.org/10.1213/ANE.0b013e3182405228] [PMID: 22190559]
[221]
Kikuchi, T.; Wang, Y.; Sato, K.; Okumura, F. In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats. Br. J. Anaesth., 1998, 80(5), 644-648.
[http://dx.doi.org/10.1093/bja/80.5.644] [PMID: 9691870]
[222]
Shichino, T.; Murakawa, M.; Adachi, T.; Arai, T.; Miyazaki, Y.; Mori, K. Effects of inhalation anaesthetics on the release of acetylcholine in the rat cerebral cortex in vivo. Br. J. Anaesth., 1998, 80(3), 365-370.
[http://dx.doi.org/10.1093/bja/80.3.365] [PMID: 9623440]
[223]
Alkire, M.T.; Haier, R.J.; Barker, S.J.; Shah, N.K.; Wu, J.C.; Kao, Y.J. Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology, 1995, 82(2), 393-403.
[http://dx.doi.org/10.1097/00000542-199502000-00010] [PMID: 7856898]
[224]
Laaksonen, L.; Kallioinen, M.; Långsjö, J.; Laitio, T.; Scheinin, A.; Scheinin, J.; Kaisti, K.; Maksimow, A.; Kallionpää, R.E.; Rajala, V.; Johansson, J.; Kantonen, O.; Nyman, M.; Sirén, S.; Valli, K.; Revonsuo, A.; Solin, O.; Vahlberg, T.; Alkire, M.; Scheinin, H. Comparative effects of dexmedetomidine, propofol, sevoflurane, and S-ketamine on regional cerebral glucose metabolism in humans: a positron emission tomography study. Br. J. Anaesth., 2018, 121(1), 281-290.
[http://dx.doi.org/10.1016/j.bja.2018.04.008] [PMID: 29935583]
[225]
Mielck, F.; Stephan, H.; Buhre, W.; Weyland, A.; Sonntag, H. Effects of 1 MAC desflurane on cerebral metabolism, blood flow and carbon dioxide reactivity in humans. Br. J. Anaesth., 1998, 81(2), 155-160.
[http://dx.doi.org/10.1093/bja/81.2.155] [PMID: 9813515]
[226]
Oshima, T.; Karasawa, F.; Satoh, T. Effects of propofol on cerebral blood flow and the metabolic rate of oxygen in humans. Acta Anaesthesiol. Scand., 2002, 46(7), 831-835.
[http://dx.doi.org/10.1034/j.1399-6576.2002.460713.x] [PMID: 12139539]
[227]
Oshima, T.; Karasawa, F.; Okazaki, Y.; Wada, H.; Satoh, T. Effects of sevoflurane on cerebral blood flow and cerebral metabolic rate of oxygen in human beings: a comparison with isoflurane. Eur. J. Anaesthesiol., 2003, 20(7), 543-547.
[http://dx.doi.org/10.1097/00003643-200307000-00005] [PMID: 12884987]
[228]
Berdili, N.; Bagriacik, E.V.; Yilmaz, G.; Ozkose, Z.; Kavutcu, M.; Bayraktar, A.C.; Bedirli, A. Signaling pathway Sevoflurane exerts brain-protective effects against sepsis-associated encephalopathy and memory impirment through caspase 3/9 and Bax/Bd signaling pathway in a rat model of sepsis. J. Int. Med. Res., 2018, 46(7), 2828-2842.
[http://dx.doi.org/10.1177/0300060518773265] [PMID: 29756489]
[229]
Pal, D.; Dean, J.G.; Liu, T.; Li, D.; Watson, C.J.; Hudetz, A.G.; Mashour, G.A. Differential role of prefrontal and parietal cortices in controlling level of consciousness. Curr. Biol., 2018, 28(13), 2145-2152.e5.
[http://dx.doi.org/10.1016/j.cub.2018.05.025] [PMID: 29937348]
[230]
Volti, L.G.; Murabito, P.; Attaguile, G.; Rodella, L.F.; Astuto, M.; Di Giacomo, C. Antioxidant properties of propofol: when oxidative stress sleeps with patients. EXCLI J., 2006, 5, 25-32.
[231]
Haller, C.; Mende, M.; Schuier, F.; Schuh, R.; Schröck, H.; Kuschinsky, W. Effect of γ-hydroxybutyrate on local and global glucose metabolism in the anesthetized cat brain. J. Cereb. Blood Flow Metab., 1990, 10(4), 493-498.
[http://dx.doi.org/10.1038/jcbfm.1990.91] [PMID: 2347880]
[232]
Gardner, B.; Strus, E.; Meng, Q.C.; Coradetti, T.; Naidoo, N.N.; Kelz, M.B.; Williams, J.A. Sleep homeostasis and general anesthesia: are fruit flies well rested after emergence from propofol? Anesthesiology, 2016, 124(2), 404-416.
[http://dx.doi.org/10.1097/ALN.0000000000000939] [PMID: 26556728]
[233]
Miller, A.H.; Raison, C.L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol., 2016, 16(1), 22-34.
[http://dx.doi.org/10.1038/nri.2015.5] [PMID: 26711676]
[234]
Pitsillou, E.; Bresnehan, S.M.; Kagarakis, E.A.; Wijoyo, S.J.; Liang, J.; Hung, A.; Karagiannis, T.C. The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Mol. Biol. Rep., 2020, 47(1), 753-770.
[http://dx.doi.org/10.1007/s11033-019-05129-3] [PMID: 31612411]
[235]
Rao, J.S.; Harry, G.J.; Rapoport, S.I.; Kim, H.W. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol. Psychiatry, 2010, 15(4), 384-392.
[http://dx.doi.org/10.1038/mp.2009.47] [PMID: 19488045]
[236]
Steiner, J.; Bielau, H.; Brisch, R.; Danos, P.; Ullrich, O.; Mawrin, C.; Bernstein, H.G.; Bogerts, B. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J. Psychiatr. Res., 2008, 42(2), 151-157.
[http://dx.doi.org/10.1016/j.jpsychires.2006.10.013] [PMID: 17174336]
[237]
Torres-Platas, S.G.; Cruceanu, C.; Chen, G.G.; Turecki, G.; Mechawar, N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav. Immun., 2014, 42, 50-59.
[http://dx.doi.org/10.1016/j.bbi.2014.05.007] [PMID: 24858659]
[238]
Guevara, C.A.; Del Valle, P.; Mercedes, C.R. Microglia and reactive oxygen species are required for behavioral susceptibility to chronic social defeat stress. J. Neurosci., 2020, 40(7), 1370-1372.
[http://dx.doi.org/10.1523/JNEUROSCI.2175-19.2019] [PMID: 32051290]
[239]
Lehmann, M.L.; Weigel, T.K.; Poffenberger, C.N.; Herkenham, M. The behavioral sequelae of social defeat require microglia and are driven by oxidative stress in mice. J. Neurosci., 2019, 39(28), 5594-5605.
[http://dx.doi.org/10.1523/JNEUROSCI.0184-19.2019] [PMID: 31085604]
[240]
Vandermaelen, C.P.; Aghajanian, G.K. Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res., 1983, 289(1-2), 109-119.
[http://dx.doi.org/10.1016/0006-8993(83)90011-2] [PMID: 6140982]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy