Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Exploring Therapeutic Potential of Invasomes, Transfersomes, Transethosomes, Oleic Acid Vesicles, and Cubosomes Adopting Topical/Transdermal Route

Author(s): Shivani Verma and Puneet Utreja*

Volume 14, Issue 1, 2022

Published on: 06 April, 2021

Page: [3 - 20] Pages: 18

DOI: 10.2174/1876402913666210406163452

Price: $65

conference banner
Abstract

Background: Transdermal drug delivery is considered a better alternative to oral administration of drugs like proteins or peptides that are susceptible to extensive degradation via first pass metabolism. This delivery route also shows high patient compliance due to no use of painful injections. Conventional delivery systems like creams and gel show poor skin permeation and high dosing frequency.

Objective: The objective of this work was to investigate the role of highly advanced micro and nanocarrier systems like invasomes, transfersomes, transethosomes, oleic acid vesicles, and cubosomes for transdermal drug delivery exploring literature survey.

Methods: Literature survey for these advanced micro and nanocarrier systems was carried out using search engines like Pubmed and Google scholar.

Results: Results of literature investigations revealed that advanced micro and nanocarrier systems discussed earlier have the caliber to enhance skin permeation of various bioactives, show sustain release, and target particular areas of skin better compared to old nanocarriers like liposomes.

Conclusion: The present review concludes that advanced micro and nanocarrier systems like invasomes, transfersomes, transethosomes, oleic acid vesicles, and cubosomes are better alternatives for transdermal delivery of therapeutic agents compared to old nanocarriers like liposomes and conventional delivery systems like creams and gels.

Keywords: Bioavailability, cubosomes, invasomes, nanocarriers, skin permeation, transdermal.

Graphical Abstract

[1]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[2]
Pandey, P.C.; Shukla, S.; Skoog, S.A.; Boehm, R.D.; Narayan, R.J. Current Advancements in Transdermal Biosensing and Targeted Drug Delivery. Sensors (Basel), 2019, 19(5), 1028-1040.
[http://dx.doi.org/10.3390/s19051028] [PMID: 30823435]
[3]
Alexander, A.; Dwivedi, S. Ajazuddin; Giri, T.K.; Saraf, S.; Saraf, S.; Tripathi, D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control. Release, 2012, 164(1), 26-40.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.017] [PMID: 23064010]
[4]
Subedi, R.K.; Oh, S.Y.; Chun, M.K.; Choi, H.K. Recent advances in transdermal drug delivery. Arch. Pharm. Res., 2010, 33(3), 339-351.
[http://dx.doi.org/10.1007/s12272-010-0301-7] [PMID: 20361297]
[5]
Guy, R.H. Transdermal drug delivery. Handb. Exp. Pharmacol., 2010, 197(197), 399-410.
[http://dx.doi.org/10.1007/978-3-642-00477-3_13] [PMID: 20217537]
[6]
Mershon, MM Barrier surfaces of skin; App Chem Prot Interf, 1975, pp. 41-73.
[7]
Pazyar, N.; Yaghoobi, R.; Rafiee, E.; Mehrabian, A.; Feily, A. Skin wound healing and phytomedicine: a review. Skin Pharmacol. Physiol., 2014, 27(6), 303-310.
[http://dx.doi.org/10.1159/000357477] [PMID: 24993834]
[8]
Verdier-Sévrain, S.; Bonté, F. Skin hydration: a review on its molecular mechanisms. J. Cosmet. Dermatol., 2007, 6(2), 75-82.
[http://dx.doi.org/10.1111/j.1473-2165.2007.00300.x] [PMID: 17524122]
[9]
Tagami, H. Location-related differences in structure and function of the stratum corneum with special emphasis on those of the facial skin. Int. J. Cosmet. Sci., 2008, 30(6), 413-434.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00459.x] [PMID: 19099543]
[10]
Bouwstra, J.A.; Honeywell-Nguyen, P.L. Skin structure and mode of action of vesicles. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S41-S55.
[http://dx.doi.org/10.1016/S0169-409X(02)00114-X] [PMID: 12460715]
[11]
Zaidi, Z.; Lanigan, S.W. Skin: structure and function.Dermatology in Clinical Practice; Springer: London, 2010, pp. 1-15.
[12]
Brodell, L.A.; Rosenthal, K.S. Skin structure and function: the body’s primary defense against infection. Infect. Dis. Clin. Pract., 2008, 16(2), 113-117.
[http://dx.doi.org/10.1097/IPC.0b013e3181660bf4]
[13]
Bucks, D.A. Skin structure and metabolism: relevance to the design of cutaneous therapeutics. Pharm. Res., 1984, 1(4), 148-153.
[http://dx.doi.org/10.1023/A:1016340423079] [PMID: 24277282]
[14]
Bauerová, K.; Matusová, D.; Kassai, Z. Chemical enhancers for transdermal drug transport. Eur. J. Drug Metab. Pharmacokinet., 2001, 26(1-2), 85-94.
[http://dx.doi.org/10.1007/BF03190381] [PMID: 11554439]
[15]
Yang, G.; Chen, G.; Gu, Z. Transdermal Drug Delivery for Hair Regrowth. Mol. Pharm., 2021, 18(2), 483-490.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00041] [PMID: 32432880]
[16]
Danby, F.W. Why we have sebaceous glands. J. Am. Acad. Dermatol., 2005, 52(6), 1071-1072.
[http://dx.doi.org/10.1016/j.jaad.2005.02.016] [PMID: 15928628]
[17]
Downing, D.T.; Wertz, P.W.; Stewart, M.E. The role of sebum and epidermal lipids in the cosmetic properties of skin. Int. J. Cosmet. Sci., 1986, 8(3), 115-123.
[http://dx.doi.org/10.1111/j.1467-2494.1986.tb00439.x] [PMID: 19460047]
[18]
Cosco, D.; Celia, C.; Cilurzo, F.; Trapasso, E.; Paolino, D. Colloidal carriers for the enhanced delivery through the skin. Expert Opin. Drug Deliv., 2008, 5(7), 737-755.
[http://dx.doi.org/10.1517/17425247.5.7.737] [PMID: 18590459]
[19]
Johnson, G.S.; Elizondo, R.S. Eccrine sweat gland in Macaca mulatta: physiology, histochemistry, and distribution. J. Appl. Physiol., 1974, 37(6), 814-820.
[http://dx.doi.org/10.1152/jappl.1974.37.6.814] [PMID: 4373430]
[20]
Ali, S.M.; Yosipovitch, G. Skin pH: from basic science to basic skin care. Acta Derm. Venereol., 2013, 93(3), 261-267.
[http://dx.doi.org/10.2340/00015555-1531] [PMID: 23322028]
[21]
Friend, D.R. In vitro skin permeation techniques. J. Control. Release, 1992, 18(3), 235-248.
[http://dx.doi.org/10.1016/0168-3659(92)90169-R]
[22]
Lim, C.W.; Fujiwara, S.; Yamashita, F.; Hashida, M. Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network. Biol. Pharm. Bull., 2002, 25(3), 361-366.
[http://dx.doi.org/10.1248/bpb.25.361] [PMID: 11913534]
[23]
Ramesh, P. Transdermal delivery of drugs. Int. J. Pharmacol., 1997, 29(3), 140-149.
[24]
Degim, I.T. New tools and approaches for predicting skin permeability. Drug Discov. Today, 2006, 11(11-12), 517-523.
[http://dx.doi.org/10.1016/j.drudis.2006.04.006] [PMID: 16713903]
[25]
Alonso, A.; Meirelles, N.C.; Yushmanov, V.E.; Tabak, M. Water increases the fluidity of intercellular membranes of stratum corneum: correlation with water permeability, elastic, and electrical resistance properties. J. Invest. Dermatol., 1996, 106(5), 1058-1063.
[http://dx.doi.org/10.1111/1523-1747.ep12338682] [PMID: 8618039]
[26]
Warner, R.R.; Stone, K.J.; Boissy, Y.L. Hydration disrupts human stratum corneum ultrastructure. J. Invest. Dermatol., 2003, 120(2), 275-284.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12046.x] [PMID: 12542533]
[27]
Alonso, A.; Meirelles, N.C.; Tabak, M. Effect of hydration upon the fluidity of intercellular membranes of stratum corneum: an EPR study. Biochim. Biophys. Acta, 1995, 1237(1), 6-15.
[http://dx.doi.org/10.1016/0005-2736(95)00069-F] [PMID: 7619844]
[28]
Warner, R.R.; Boissy, Y.L.; Lilly, N.A.; Spears, M.J.; McKillop, K.; Marshall, J.L.; Stone, K.J. Water disrupts stratum corneum lipid lamellae: damage is similar to surfactants. J. Invest. Dermatol., 1999, 113(6), 960-966.
[http://dx.doi.org/10.1046/j.1523-1747.1999.00774.x] [PMID: 10594737]
[29]
Zhai, H.; Maibach, H.I. Effects of skin occlusion on percutaneous absorption: an overview. Skin Pharmacol. Appl. Skin Physiol., 2001, 14(1), 1-10.
[http://dx.doi.org/10.1159/000056328] [PMID: 11174085]
[30]
Pandey, A.; Mittal, A.; Chauhan, N.; Alam, S. Role of surfactants as penetration enhancer in transdermal drug delivery system. J. Mol. Pharm. Org. Process Res., 2014, 2(113), 2-7.
[http://dx.doi.org/10.4172/2329-9053.1000113]
[31]
Banning, T.P.; Heard, C.M. Binding of doxycycline to keratin, melanin and human epidermal tissue. Int. J. Pharm., 2002, 235(1-2), 219-227.
[http://dx.doi.org/10.1016/S0378-5173(01)00988-7] [PMID: 11879756]
[32]
Heard, C.M.; Monk, B.V.; Modley, A.J. Binding of primaquine to epidermal membranes and keratin. Int. J. Pharm., 2003, 257(1-2), 237-244.
[http://dx.doi.org/10.1016/S0378-5173(03)00140-6] [PMID: 12711178]
[33]
Finnin, B.C.; Morgan, T.M. Transdermal penetration enhancers: applications, limitations, and potential. J. Pharm. Sci., 1999, 88(10), 955-958.
[http://dx.doi.org/10.1021/js990154g] [PMID: 10514338]
[34]
Lane, M.E. Skin penetration enhancers. Int. J. Pharm., 2013, 447(1-2), 12-21.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.040] [PMID: 23462366]
[35]
Yamane, M.A.; Williams, A.C.; Barry, B.W. Effects of terpenes and oleic acid as skin penetration enhancers towards 5-fluorouracil as assessed with time; permeation, partitioning and differential scanning calorimetry. Int. J. Pharm., 1995, 116(2), 237-251.
[http://dx.doi.org/10.1016/0378-5173(94)00312-S]
[36]
Degim, I.T.; Uslu, A.; Hadgraft, J.; Atay, T.; Akay, C.; Cevheroglu, S. The effects of Azone and capsaicin on the permeation of naproxen through human skin. Int. J. Pharm., 1999, 179(1), 21-25.
[http://dx.doi.org/10.1016/S0378-5173(98)00353-6] [PMID: 10053198]
[37]
Hadgraft, J.; Lane, M.E. Skin permeation: the years of enlightenment. Int. J. Pharm., 2005, 305(1-2), 2-12.
[http://dx.doi.org/10.1016/j.ijpharm.2005.07.014] [PMID: 16246513]
[38]
Park, E.S.; Chang, S.J.; Rhee, Y.S.; Chi, S.C. Effects of adhesives and permeation enhancers on the skin permeation of captopril. Drug Dev. Ind. Pharm., 2001, 27(9), 975-980.
[http://dx.doi.org/10.1081/DDC-100107679] [PMID: 11763476]
[39]
Benson, H.A. Transdermal drug delivery: penetration enhancement techniques. Curr. Drug Deliv., 2005, 2(1), 23-33.
[http://dx.doi.org/10.2174/1567201052772915] [PMID: 16305405]
[40]
Hadgraft, J. Passive enhancement strategies in topical and transdermal drug delivery. Int. J. Pharm., 1999, 184(1), 1-6.
[http://dx.doi.org/10.1016/S0378-5173(99)00095-2] [PMID: 10425346]
[41]
Cevc, G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev., 2004, 56(5), 675-711.
[http://dx.doi.org/10.1016/j.addr.2003.10.028] [PMID: 15019752]
[42]
Cevc, G.; Vierl, U. Nanotechnology and the transdermal route: A state of the art review and critical appraisal. J. Control. Release, 2010, 141(3), 277-299.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.016] [PMID: 19850095]
[43]
Neubert, R.H. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur. J. Pharm. Biopharm., 2011, 77(1), 1-2.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.003] [PMID: 21111043]
[44]
Dubey, V.; Mishra, D.; Nahar, M.; Jain, N.K. Vesicles as tools for the modulation of skin permeability. Expert Opin. Drug Deliv., 2007, 4(6), 579-593.
[http://dx.doi.org/10.1517/17425247.4.6.579] [PMID: 17970662]
[45]
Dragicevic, N.; Verma, D.D.; Fahr, A. Invasomes: Vesicles for enhanced skin delivery of drugs. InPercutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Springer: Berlin, Heidelberg, 2016, pp. 77-92.
[http://dx.doi.org/10.1007/978-3-662-47862-2_5]
[46]
Lakshmi, P.; Kalpana, B.; Prasanthi, D. Invasomes-novel vesicular carriers for enhanced skin permeation. Syst Rev Pharm., 2013, 4(1), 26-35.
[http://dx.doi.org/10.4103/0975-8453.135837]
[47]
Babaie, S.; Bakhshayesh, A.R.D.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Invasome: A Novel Nanocarrier for Transdermal Drug Delivery. Nanomaterials (Basel), 2020, 10(2), 341-352.
[http://dx.doi.org/10.3390/nano10020341] [PMID: 32079276]
[48]
Afreen, U.; Shailaja, A.K. Overall Review on Invasomes. Res J Nanosci Eng., 2019, 3(4), 5-9.
[49]
Cui, Y.; Li, L.; Zhang, L.; Li, J.; Gu, J.; Gong, H.; Guo, P.; Tong, W. Enhancement and mechanism of transdermal absorption of terpene-induced propranolol hydrochloride. Arch. Pharm. Res., 2011, 34(9), 1477-1485.
[http://dx.doi.org/10.1007/s12272-011-0909-2] [PMID: 21975809]
[50]
Dragicevic-Curic, N.; Gräfe, S.; Gitter, B.; Fahr, A. Efficacy of temoporfin-loaded invasomes in the photodynamic therapy in human epidermoid and colorectal tumour cell lines. J. Photochem. Photobiol. B, 2010, 101(3), 238-250.
[http://dx.doi.org/10.1016/j.jphotobiol.2010.07.009] [PMID: 20797872]
[51]
Qadri, G.R.; Ahad, A.; Aqil, M.; Imam, S.S.; Ali, A. Invasomes of isradipine for enhanced transdermal delivery against hypertension: formulation, characterization, and in vivo pharmacodynamic study. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 139-145.
[http://dx.doi.org/10.3109/21691401.2016.1138486] [PMID: 26829018]
[52]
Lakshmi, P.K.; Mounica, V.; Manoj, K.Y.; Prasanthi, D. Preparation and evaluation of curcumin invasomes. Int. J. Drug Deliv., 2014, 6(2), 113-122.
[53]
Kamran, M.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y.; Ali, A. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. Int. J. Pharm., 2016, 505(1-2), 147-158.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.030] [PMID: 27005906]
[54]
El-Nabarawi, M.A.; Shamma, R.N.; Farouk, F.; Nasralla, S.M. Dapsone-Loaded Invasomes as a Potential Treatment of Acne: Preparation, Characterization, and In vivo Skin Deposition Assay. AAPS PharmSciTech, 2018, 19(5), 2174-2184.
[http://dx.doi.org/10.1208/s12249-018-1025-0] [PMID: 29725903]
[55]
Amnuaikit, T.; Limsuwan, T.; Khongkow, P.; Boonme, P. Vesicular carriers containing phenylethyl resorcinol for topical delivery system; liposomes, transfersomes and invasomes. Asian J Pharm Sci, 2018, 13(5), 472-484.
[http://dx.doi.org/10.1016/j.ajps.2018.02.004] [PMID: 32104421]
[56]
Ahmed, O.A.A.; Badr-Eldin, S.M. Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation. Int. J. Pharm., 2019, 570118657
[http://dx.doi.org/10.1016/j.ijpharm.2019.118657] [PMID: 31491483]
[57]
Dwivedi, M.; Sharma, V.; Pathak, K. Pilosebaceous targeting by isotretenoin-loaded invasomal gel for the treatment of eosinophilic pustular folliculitis: optimization, efficacy and cellular analysis. Drug Dev. Ind. Pharm., 2017, 43(2), 293-304.
[http://dx.doi.org/10.1080/03639045.2016.1239628] [PMID: 27649797]
[58]
Mura, S.; Manconi, M.; Sinico, C.; Valenti, D.; Fadda, A.M. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Int. J. Pharm., 2009, 380(1-2), 72-79.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.040] [PMID: 19589377]
[59]
Ntimenou, V.; Fahr, A.; Antimisiaris, S.G. Elastic vesicles for transdermal drug delivery of hydrophilic drugs: a comparison of important physicochemical characteristics of different vesicle types. J. Biomed. Nanotechnol., 2012, 8(4), 613-623.
[http://dx.doi.org/10.1166/jbn.2012.1426] [PMID: 22852471]
[60]
Prasanthi, D.K.; Lakshmi, P. Iontophoretic transdermal delivery of finasteride in vesicular invasomal carriers. Pharm. Nanotechnol., 2013, 1(2), 136-150.
[http://dx.doi.org/10.2174/2211738511301020009]
[61]
Benson, H.A. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv., 2006, 3(6), 727-737.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[62]
Benson, H.A. Elastic Liposomes for Topical and Transdermal Drug Delivery. Methods Mol. Biol., 2017, 1522, 107-117.
[http://dx.doi.org/10.1007/978-1-4939-6591-5_9] [PMID: 27837534]
[63]
Hussain, A.; Singh, S.; Sharma, D.; Webster, T.J.; Shafaat, K.; Faruk, A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int. J. Nanomedicine, 2017, 12, 5087-5108.
[http://dx.doi.org/10.2147/IJN.S138267] [PMID: 28761343]
[64]
Vinod, K.R.; Kumar, M.S.; Anbazhagan, S.; Sandhya, S.; Saikumar, P.; Rohit, R.T.; Banji, D. Critical issues related to transfersomes - novel vesicular system. Acta Sci. Pol. Technol. Aliment., 2012, 11(1), 67-82.
[PMID: 22230977]
[65]
Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: the state of the art. Nano Rev Exp, 2017, 8(1)1325708
[http://dx.doi.org/10.1080/20022727.2017.1325708] [PMID: 30410704]
[66]
Chuang, S.Y.; Lin, C.H.; Huang, T.H.; Fang, J.Y. Lipid-Based Nanoparticles as a Potential Delivery Approach in the Treatment of Rheumatoid Arthritis. Nanomaterials (Basel), 2018, 8(1), 42.
[http://dx.doi.org/10.3390/nano8010042] [PMID: 29342965]
[67]
Chen, J.; Lu, W.L.; Gu, W.; Lu, S.S.; Chen, Z.P.; Cai, B.C. Skin permeation behavior of elastic liposomes: role of formulation ingredients. Expert Opin. Drug Deliv., 2013, 10(6), 845-856.
[http://dx.doi.org/10.1517/17425247.2013.779252] [PMID: 23550630]
[68]
Dubey, V.; Mishra, D.; Nahar, M.; Jain, N.K. Elastic liposomes mediated transdermal delivery of an anti-jet lag agent: preparation, characterization and in vitro human skin transport study. Curr. Drug Deliv., 2008, 5(3), 199-206.
[http://dx.doi.org/10.2174/156720108784911730] [PMID: 18673263]
[69]
Singh, S.; Vardhan, H.; Kotla, N.G.; Maddiboyina, B.; Sharma, D.; Webster, T.J. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. Int. J. Nanomedicine, 2016, 11, 1475-1482.
[PMID: 27114707]
[70]
Ahmed, T.A. Preparation of transfersomes encapsulating sildenafil aimed for transdermal drug delivery: Plackett-Burman design and characterization. J. Liposome Res., 2015, 25(1), 1-10.
[http://dx.doi.org/10.3109/08982104.2014.950276] [PMID: 25148294]
[71]
Zheng, W.S.; Fang, X.Q.; Wang, L.L.; Zhang, Y.J. Preparation and quality assessment of itraconazole transfersomes. Int. J. Pharm., 2012, 436(1-2), 291-298.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.003] [PMID: 22796030]
[72]
Qushawy, M.; Nasr, A.; Abd-Alhaseeb, M.; Swidan, S. Design, Optimization and Characterization of a Transfersomal Gel Using Miconazole Nitrate for the Treatment of Candida Skin Infections. Pharmaceutics, 2018, 10(1), 26.
[http://dx.doi.org/10.3390/pharmaceutics10010026] [PMID: 29473897]
[73]
Caddeo, C.; Manca, M.L.; Peris, J.E.; Usach, I.; Diez-Sales, O.; Matos, M.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Tocopherol-loaded transfersomes: In vitro antioxidant activity and efficacy in skin regeneration. Int. J. Pharm., 2018, 551(1-2), 34-41.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.009] [PMID: 30201294]
[74]
Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; O’Neill, F.; Roberts, M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J. Pharm. Pharmacol., 2019, 71(10), 1508-1519.
[http://dx.doi.org/10.1111/jphp.13149] [PMID: 31373700]
[75]
Wu, P.S.; Li, Y.S.; Kuo, Y.C.; Tsai, S.J.; Lin, C.C. Preparation and Evaluation of Novel Transfersomes Combined with the Natural Antioxidant Resveratrol. Molecules, 2019, 24(3), 600.
[http://dx.doi.org/10.3390/molecules24030600] [PMID: 30743989]
[76]
Al Shuwaili, A.H.; Rasool, B.K.; Abdulrasool, A.A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur. J. Pharm. Biopharm., 2016, 102, 101-114.
[http://dx.doi.org/10.1016/j.ejpb.2016.02.013] [PMID: 26925505]
[77]
Mahor, S.; Rawat, A.; Dubey, P.K.; Gupta, P.N.; Khatri, K.; Goyal, A.K.; Vyas, S.P. Cationic transfersomes based topical genetic vaccine against hepatitis B. Int. J. Pharm., 2007, 340(1-2), 13-19.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.006] [PMID: 17446015]
[78]
Gupta, A.; Aggarwal, G.; Singla, S.; Arora, R. Transfersomes: a novel vesicular carrier for enhanced transdermal delivery of sertraline: development, characterization, and performance evaluation. Sci. Pharm., 2012, 80(4), 1061-1080.
[http://dx.doi.org/10.3797/scipharm.1208-02] [PMID: 23264950]
[79]
Duangjit, S.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Characterization and In Vitro Skin Permeation of Meloxicam-Loaded Liposomes versus Transfersomes. J. Drug Deliv., 2011, 2011418316
[http://dx.doi.org/10.1155/2011/418316] [PMID: 21490750]
[80]
Bavarsad, N.; Fazly Bazzaz, B.S.; Khamesipour, A.; Jaafari, M.R. Colloidal, in vitro and in vivo anti-leishmanial properties of transfersomes containing paromomycin sulfate in susceptible BALB/c mice. Acta Trop., 2012, 124(1), 33-41.
[http://dx.doi.org/10.1016/j.actatropica.2012.06.004] [PMID: 22750480]
[81]
Nainwal, N.; Jawla, S.; Singh, R.; Saharan, V.A. Transdermal applications of ethosomes - a detailed review. J. Liposome Res., 2019, 29(2), 103-113.
[http://dx.doi.org/10.1080/08982104.2018.1517160] [PMID: 30156120]
[82]
Das, S.K.; Chakraborty, S.; Roy, C.; Rajabalaya, R.; Mohaimin, A.W.; Khanam, J.; Nanda, A.; David, S.R. Ethosomes as Novel Vesicular Carrier: An Overview of the Principle, Preparation and its Applications. Curr. Drug Deliv., 2018, 15(6), 795-817.
[http://dx.doi.org/10.2174/1567201815666180116091604] [PMID: 29336262]
[83]
Kumar, L.; Verma, S.; Singh, M.; Chalotra, T.; Utreja, P. Advanced Drug Delivery Systems for Transdermal Delivery of Non-Steroidal Anti-Inflammatory Drugs: A Review. Curr. Drug Deliv., 2018, 15(8), 1087-1099.
[http://dx.doi.org/10.2174/1567201815666180605114131] [PMID: 29875000]
[84]
El Maghraby, G.M.; Williams, A.C.; Barry, B.W. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int. J. Pharm., 2004, 276(1-2), 143-161.
[http://dx.doi.org/10.1016/j.ijpharm.2004.02.024] [PMID: 15113622]
[85]
Ham, A.S.; Buckheit, R.W. Jr Current and emerging formulation strategies for the effective transdermal delivery of HIV inhibitors. Ther. Deliv., 2015, 6(2), 217-229.
[http://dx.doi.org/10.4155/tde.14.110] [PMID: 25690088]
[86]
Kumar, L.; Verma, S.; Singh, K.; Prasad, D.N.; Jain, A.K. Ethanol based vesicular carriers in transdermal drug delivery: nanoethosomes and transethosomes in focus. NanoWorld J., 2016, 2(3), 41-51.
[http://dx.doi.org/10.17756/nwj.2016-030]
[87]
Sundar, V.D.; Divya, P.; Dhanaraju, M.D. Design Development and Characterisation of Tramadol Hydrochloride Loaded Transethosomal Gel Formulation for Effective Pain Management. Ind J Pharm Edu Res., 2020, 54(2s), s88-s97.
[http://dx.doi.org/10.5530/ijper.54.2s.65]
[88]
Nayak, D.; Tawale, R.M.; Aranjani, J.M.; Tippavajhala, V.K. Formulation, Optimization and Evaluation of Novel Ultra-deformable Vesicular Drug Delivery System for an Anti-fungal Drug. AAPS PharmSciTech, 2020, 21(5), 140.
[http://dx.doi.org/10.1208/s12249-020-01681-5] [PMID: 32419032]
[89]
Ramadon, D.E.; Pramesti, S.S.; Anwar, E.F. Formulation, stability test and in vitro penetration study of transethosomal gel containing green tea (Camellia sinensis L. Kuntze) leaves extract. Int J Appl Pharm., 2017, 9(5), 91-96.
[http://dx.doi.org/10.22159/ijap.2017v9i5.20073]
[90]
Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces, 2012, 92, 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[91]
Garg, V.; Singh, H.; Bhatia, A.; Raza, K.; Singh, S.K.; Singh, B.; Beg, S. Systematic Development of Transethosomal Gel System of Piroxicam: Formulation Optimization, In Vitro Evaluation, and Ex Vivo Assessment. AAPS PharmSciTech, 2017, 18(1), 58-71.
[http://dx.doi.org/10.1208/s12249-016-0489-z] [PMID: 26868380]
[92]
Chen, Z.X.; Li, B.; Liu, T.; Wang, X.; Zhu, Y.; Wang, L.; Wang, X.H.; Niu, X.; Xiao, Y.; Sun, Q. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur. J. Pharm. Sci., 2017, 99, 240-245.
[http://dx.doi.org/10.1016/j.ejps.2016.12.026] [PMID: 28039091]
[93]
Abdulbaqi, I.M.; Darwis, Y.; Assi, R.A.; Khan, N.A.K. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug Des. Devel. Ther., 2018, 12, 795-813.
[http://dx.doi.org/10.2147/DDDT.S158018] [PMID: 29670336]
[94]
Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, SS; Iqbal, B.; Sultana, Y; Mujeeb, M.; Iqbal, Z. Development of transethosomes formulation for dermal fisetin delivery: Box-Behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 755-765.
[95]
Song, H.; Wen, J.; Li, H.; Meng, Y.; Zhang, Y.; Zhang, N.; Zheng, W. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome. Int. J. Nanomedicine, 2019, 14, 3177-3188.
[http://dx.doi.org/10.2147/IJN.S188842] [PMID: 31118630]
[96]
Gondkar, S.B.; Patil, N.R.; Saudagar, R.B. Formulation Development and Characterization of Etodolac Loaded Transethosomes for Transdermal Delivery. Research Journal of Pharmacy and Technology., 2017, 10(9), 3049-3057.
[http://dx.doi.org/10.5958/0974-360X.2017.00541.8]
[97]
Kumar, L.; Utreja, P. Formulation and Characterization of Transethosomes for Enhanced Transdermal Delivery of Propranolol Hydrochloride. Micro Nanosyst., 2020, 12(1), 38-47.
[http://dx.doi.org/10.2174/1876402911666190603093550]
[98]
Mittal, A.; Sara, U.V.; Ali, A.; Aqil, M. Status of fatty acids as skin penetration enhancers-a review. Curr. Drug Deliv., 2009, 6(3), 274-279.
[http://dx.doi.org/10.2174/156720109788680877] [PMID: 19604141]
[99]
Kumar, L.; Utreja, P. Transcending the Cutaneous Barrier Through Nanocarrier Exploration for Passive Delivery of Anti-hypertensive Drugs: A Critical Review. Recent Pat. Nanotechnol., 2020, 14(3), 193-209.
[http://dx.doi.org/10.2174/1872210514666200519071734] [PMID: 32427090]
[100]
Kumar, L.; Verma, S.; Kumar, S.; Prasad, D.N.; Jain, A.K. Fatty acid vesicles acting as expanding horizon for transdermal delivery. Artif. Cells Nanomed. Biotechnol., 2017, 45(2), 251-260.
[http://dx.doi.org/10.3109/21691401.2016.1146729] [PMID: 26890090]
[101]
Patel, D; Jani, R; Patel, C. Ufasomes: a vesicular drug delivery. Systematic reviews in pharmacy,, 2011, 2(2), 72-80.
[http://dx.doi.org/10.4103/0975-8453.86290]
[102]
Sharma, A; Arora, S Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate. ISRN pharmaceutics,, 2012, 2012.
[http://dx.doi.org/10.5402/2012/873653]
[103]
Verma, S.; Bhardwaj, A.; Vij, M.; Bajpai, P.; Goutam, N.; Kumar, L. Oleic acid vesicles: a new approach for topical delivery of antifungal agent. Artif. Cells Nanomed. Biotechnol., 2014, 42(2), 95-101.
[http://dx.doi.org/10.3109/21691401.2013.794351] [PMID: 23656670]
[104]
Kumar, P.; Singh, S.K.; Handa, V.; Kathuria, H. Oleic Acid Nanovesicles of Minoxidil for Enhanced Follicular Delivery. Medicines (Basel), 2018, 5(3), 103.
[http://dx.doi.org/10.3390/medicines5030103] [PMID: 30223446]
[105]
Bolla, P.K.; Meraz, C.A.; Rodriguez, V.A.; Deaguero, I.; Singh, M.; Yellepeddi, V.K.; Renukuntla, J. Clotrimazole Loaded Ufosomes for Topical Delivery: Formulation Development and In-Vitro Studies. Molecules, 2019, 24(17), 3139.
[http://dx.doi.org/10.3390/molecules24173139] [PMID: 31470517]
[106]
Mittal, R; Sharma, A; Arora, S Ufasomes mediated cutaneous delivery of dexamethasone: formulation and evaluation of antiinflammatory activity by carrageenin-induced rat paw edema model. J Pharm, 2013. 2013
[107]
Kumar, L.; Utreja, P. Oleic Acid Vesicles for Transdermal Delivery of Propranolol Hydrochloride: Development and Characterization. Curr. Drug Ther., 2020, 15, 238-248.
[http://dx.doi.org/10.2174/1574885514666190722164119]
[108]
Dhillon, V.; Sharma, S.; Jain, S.; Sharma, A.; Arora, S. Formulation characterization and evaluation of new topical 5-FU by drug entrapment in oleic acid vesicles. Am J Pharm Tech Res., 2011, 1, 1-16.
[109]
Karami, Z.; Hamidi, M. Cubosomes: remarkable drug delivery potential. Drug Discov. Today, 2016, 21(5), 789-801.
[http://dx.doi.org/10.1016/j.drudis.2016.01.004] [PMID: 26780385]
[110]
Garg, G.; Saraf, S.; Saraf, S. Cubosomes: an overview. Biol. Pharm. Bull., 2007, 30(2), 350-353.
[http://dx.doi.org/10.1248/bpb.30.350] [PMID: 17268078]
[111]
Duttagupta, A.S.; Chaudhary, H.M.; Jadhav, K.R.; Kadam, V.J. Cubosomes: Innovative Nanostructures for Drug Delivery. Curr. Drug Deliv., 2016, 13(4), 482-493.
[http://dx.doi.org/10.2174/1567201812666150224114751] [PMID: 25707403]
[112]
Dhadwal, A.; Sharma, D.R.; Pandit, V.; Ashawat, M.S.; Kumar, P. Cubosomes: A Novel Carrier for Transdermal Drug Delivery. J. Drug Deliv. Ther., 2020, 10(1), 123-130.
[http://dx.doi.org/10.22270/jddt.v10i1.3814]
[113]
Daware, S.U.; Saudagar, R.B. Formulation and Development of Cubosome Loaded Emulgel- A Review. Int. J. Chemtech Res., 2017, 10, 918-924.
[114]
Tilekar, K.; Khade, P.; Kakade, S.; Kotwal, S.; Patil, R.Y. Cubosomes-A Drug Delivery System. Int. J. Pharm. Chem. Biol. Sci., 2014, 4, 812-824.
[115]
Bhosale, R.R.; Osmani, R.A.; Harkare, B.R.; Ghodake, P.P. Cubosomes: the Inimitable Nanoparticulate Drug Carriers. Schol Acad J Pharm., 2013, 2, 481-486.
[116]
Spicer, P.T.; Hayden, K.L.; Lynch, M.L.; Ofori-Boateng, A.; Burns, J.L. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir, 2001, 17(19), 5748-5756.
[http://dx.doi.org/10.1021/la010161w]
[117]
Spicer, P.T.; Small, W.B.; Lynch, M.L.; Burns, J.L. Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). J. Nanopart. Res., 2002, 4(4), 297-311.
[http://dx.doi.org/10.1023/A:1021184216308]
[118]
Salah, S.; Mahmoud, A.A.; Kamel, A.O. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv., 2017, 24(1), 846-856.
[http://dx.doi.org/10.1080/10717544.2017.1326539] [PMID: 28535740]
[119]
Rattanapak, T.; Young, K.; Rades, T.; Hook, S. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J. Pharm. Pharmacol., 2012, 64(11), 1560-1569.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01535.x] [PMID: 23058043]
[120]
Peng, X.; Zhou, Y.; Han, K.; Qin, L.; Dian, L.; Li, G.; Pan, X.; Wu, C. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des. Devel. Ther., 2015, 9, 4209-4218.
[http://dx.doi.org/10.2147/DDDT.S86370] [PMID: 26345516]
[121]
Nasr, M.; Younes, H.; Abdel-Rashid, R.S. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv. Transl. Res., 2020, 10(5), 1302-1313.
[http://dx.doi.org/10.1007/s13346-020-00785-6] [PMID: 32399604]
[122]
Hundekar, Y.R.; Saboji, J.K.; Patil, S.M.; Nanjwade, B.K. Preparation and evaluation of diclofenac sodium cubosomes for percutaneous administration. World J. Pharm. Pharm. Sci., 2014, 3(1), 523-539.
[123]
Li, J.C.; Zhu, N.; Zhu, J.X.; Zhang, W.J.; Zhang, H.M.; Wang, Q.Q.; Wu, X.X.; Wang, X.; Zhang, J.; Hao, J.F. Self-Assembled Cubic Liquid Crystalline Nanoparticles for Transdermal Delivery of Paeonol. Med. Sci. Monit., 2015, 21, 3298-3310.
[http://dx.doi.org/10.12659/MSM.894484] [PMID: 26517086]
[124]
Boge, L.; Hallstensson, K.; Ringstad, L.; Johansson, J.; Andersson, T.; Davoudi, M.; Larsson, P.T.; Mahlapuu, M.; Håkansson, J.; Andersson, M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur. J. Pharm. Biopharm., 2019, 134, 60-67.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.009] [PMID: 30445164]
[125]
Nithya, R.; Jerold, P.; Siram, K. Cubosomes of dapsone enhanced permeation across the skin. J. Drug Deliv. Sci. Technol., 2018, 48, 75-81.
[http://dx.doi.org/10.1016/j.jddst.2018.09.002]
[126]
Kwon, T.K.; Kim, J.C. Preparation and in vitro skin permeation of cubosomes containing hinokitiol. J Disp Sci Tech., 2010, 31(7), 1004-1009.
[http://dx.doi.org/10.1080/01932690903224862]
[127]
Fahr, A.; Muller, R. Invasomes for therapy of disorders, their preparation and use. US Patent 20030064948A1, 2003.
[128]
Lee, S. Elastic liposome and composition of skin external application containing the same. KR Patent 20100043748A, 2010.
[129]
Watkins, D.C.; Vichroski, T.J.; Hayward, J.A. Lipid vesicles formed with alkylammonium fatty acid salts. US Patent 5874105A, 1999.
[130]
Shi, Q; Jin, R; Chen, J; Chen, M; Li, H Flexible liposome of resveratrol and preparation method thereof. EP Patent 2431023A1 2012.
[131]
Hoath, S.B.; Pickens, W.L.; Visscher, M.O. Simulated vernix compositions for skin cleansing and other applications. US Patent 7807188B2 2010.
[132]
Yoon-bak, K. Liposomes encapsulating natural plant extracts and the method of manufacturing for preparing the same. KR Patent 20180013541A, 2018.
[133]
Briand, E.; Edwards, J.B.D.M.; Delort, J. Compositions and methods for controlled moisturizing and release of active ingredients. US Patent 20170246090A1, 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy