Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Review Article

Alcohol Drinking, Apolipoprotein Polymorphisms and the Risk of Cardiovascular Diseases

Author(s): Flavio M. Ceci, Mauro Ceccanti, Carla Petrella, Mario Vitali, Marisa P. Messina, George N. Chaldakov, Antonio Greco, Massimo Ralli, Marco Lucarelli, Antonio Angeloni, Marco Fiore* and Giampiero Ferraguti

Volume 18, Issue 1, 2021

Published on: 06 April, 2021

Page: [150 - 161] Pages: 12

DOI: 10.2174/1567202618666210406123503

open access plus

Abstract

Lipoprotein disorders are a major risk factor for atherosclerotic neuro-cardiovascular disease (ACVD) and are heavily influenced by lifestyle, including alcohol drinking. Moderate drinkers have a lower ACVD risk than abstainers due to their higher levels of high-density lipoprotein (HDL) cholesterol, an important protective factor against ACVD. On the contrary, heavy drinking increases ACVD risk. According to an extensive literature body, ethanol intoxication modifies lipid serum profile and induces endothelial dysfunction. Single nucleotide polymorphisms may influence the relationship between alcohol drinking, HDL cholesterol level, and atherosclerotic risk. The risk of ACVD in heavy drinkers seems enhanced in patients with apolipoprotein E4 allele, interleukin- 6-174 polymorphism, and cholesteryl ester transfer protein TaqIB polymorphism. Apolipoprotein E4 is a known risk factor for ACVD, while apolipoprotein E2 has mixed effects. Therefore, even if a “protective role” may be attributed to moderate drinking, this effect cannot be extended to everyone.

Keywords: Alcoholism, genetic polymorphism, atherosclerotic cardiovascular disease, apolipoprotein E, adiponectin.

[1]
Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin Chem Lab Med 2014; 52(12): 1695-727.
[http://dx.doi.org/10.1515/cclm-2013-0358] [PMID: 23940067]
[2]
Jonas A, Phillips MC. Lipoprotein structure. Biochem Lipids, Lipoproteins Membr 2008; 485-506.
[3]
Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev 2020; 159: 4-33.
[http://dx.doi.org/10.1016/j.addr.2020.07.019] [PMID: 32730849]
[4]
Jones HB, Gofman JW, Lindgren FT, et al. Lipoproteins in atherosclerosis. Am J Med 1951; 11(3): 358-80.
[http://dx.doi.org/10.1016/0002-9343(51)90171-4] [PMID: 14877839]
[5]
Dominiczak MH, Caslake MJ. Apolipoproteins: metabolic role and clinical biochemistry applications. Ann Clin Biochem 2011; 48(Pt 6): 498-515.
[http://dx.doi.org/10.1258/acb.2011.011111] [PMID: 22028427]
[6]
Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol 2009; 29(4): 431-8.
[http://dx.doi.org/10.1161/ATVBAHA.108.179564] [PMID: 19299327]
[7]
Greenow K, Pearce NJ, Ramji DP. The key role of apolipoprotein E in atherosclerosis. J Mol Med (Berl) 2005; 83(5): 329-42.
[http://dx.doi.org/10.1007/s00109-004-0631-3] [PMID: 15827760]
[8]
Tudorache IF, Trusca VG, Gafencu AV, Apolipoprotein E. Apolipoprotein E - A Multifunctional Protein with Implications in Various Pathologies as a Result of Its Structural Features. Comput Struct Biotechnol J 2017; 15: 359-65.
[http://dx.doi.org/10.1016/j.csbj.2017.05.003] [PMID: 28660014]
[9]
Chaldakov GN, Nikolov SD. Ultrastructure of the arterial smooth muscle cell. Smooth Muscle Artery New York City, NY Plenum Press. Adv Exp Med Biol 1975; 57: 14-20.
[10]
Ghebranious N, Ivacic L, Mallum J, Dokken C. Detection of ApoE E2, E3 and E4 alleles using MALDI-TOF mass spectrometry and the homogeneous mass-extend technology. Nucleic Acids Res 2005; 33(17): e149.
[http://dx.doi.org/10.1093/nar/gni155] [PMID: 16204452]
[11]
Matsunaga A, Saito T. Apolipoprotein E mutations: a comparison between lipoprotein glomerulopathy and type III hyperlipoproteinemia. Clin Exp Nephrol 2014; 18(2): 220-4.
[http://dx.doi.org/10.1007/s10157-013-0918-1] [PMID: 24570178]
[12]
Dergunov AD. Apolipoprotein E genotype as a most significant predictor of lipid response at lipid-lowering therapy: mechanistic and clinical studies. Biomed Pharmacother 2011; 65(8): 597-603.
[http://dx.doi.org/10.1016/j.biopha.2011.04.003] [PMID: 21705182]
[13]
Ceccanti M, Hamilton D, Coriale G, et al. Spatial learning in men undergoing alcohol detoxification. Physiol Behav 2015; 149: 324-30.
[http://dx.doi.org/10.1016/j.physbeh.2015.06.034] [PMID: 26143187]
[14]
Chianese R, Coccurello R, Viggiano A, et al. Impact of Dietary Fats on Brain Functions. Curr Neuropharmacol 2018; 16(7): 1059-85.
[http://dx.doi.org/10.2174/1570159X15666171017102547] [PMID: 29046155]
[15]
Chaldakov GN, Stankulov IS, Fiore M, Ghenev PI, Aloe L. Nerve growth factor levels and mast cell distribution in human coronary atherosclerosis. Atherosclerosis 2001; 159(1): 57-66.
[http://dx.doi.org/10.1016/S0021-9150(01)00488-9] [PMID: 11689207]
[16]
Chaldakov GN, Fiore M, Tonchev AB, et al. Homo obesus: a metabotrophin-deficient species. Pharmacology and nutrition insight. Curr Pharm Des 2007; 13(21): 2176-9.
[http://dx.doi.org/10.2174/138161207781039616] [PMID: 17627549]
[17]
Chaldakov GN, Fiore M, Ghenev PI, Stankulov IS, Aloe L. Atherosclerotic lesions: Possible interactive involvement of intima, adventitia and associated adipose tissue. Int Med J 2000; 7: 43-9.
[18]
Dhingra R, Vasan RS. Lipoproteins and cardiovascular disease risk. Dyslipidemias Pathophysiol Eval Manag 2015; 57-65.
[http://dx.doi.org/10.1007/978-1-60761-424-1_4]
[19]
Nelson RH. Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Prim Care - Clin Off Pract 2013; 40: 195-211.
[http://dx.doi.org/10.1016/j.pop.2012.11.003]
[20]
Lichtenstein AH, Matthan NR. Cardiovascular disease. Optim Women’s Heal through Nutr 2007; 199-227.
[21]
Ciafre S, Fiore M, Ceccanti M, Messina MP, Tirassa P, Carito V. Role of neuropeptide tyrosine (NPY) in ethanol addiction. Biomed Rev 2016; 27: 27-39.
[http://dx.doi.org/10.14748/bmr.v27.2110]
[22]
Ciafrè S, Carito V, Tirassa P, Ferraguti G, Attilia ML, Ciolli P, et al. Ethanol consumption and innate neuroimmunity. Biomed Rev 2017; 28: 49-61.
[http://dx.doi.org/10.14748/bmr.v28.4451]
[23]
Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep 2016; 18(12): 82.
[http://dx.doi.org/10.1007/s11883-016-0632-z] [PMID: 27822682]
[24]
Castelli WP. Lipids, risk factors and ischaemic heart disease. Atherosclerosis 1996; 124(Suppl.): S1-9.
[http://dx.doi.org/10.1016/0021-9150(96)05851-0] [PMID: 8831910]
[25]
Tore F, Tonchev A, Fiore M, Tuncel N, Atanassova P, Aloe L, et al. From Adipose Tissue Protein Secretion to Adipopharmacology of Disease. Immunol Endocr Metab Agents Med Chem 2007; 7: 149-55.
[http://dx.doi.org/10.2174/187152207780363712]
[26]
Chaldakov GN, Fiore M, Tonchev AB, Aloe L. Neuroadipology: a novel component of neuroendocrinology. Cell Biol Int 2010; 34(10): 1051-3.
[http://dx.doi.org/10.1042/CBI20100509] [PMID: 20825365]
[27]
Gordon P, Flanagan P. Smoking: A risk factor for vascular disease. J Vasc Nurs 2016; 34(3): 79-86.
[http://dx.doi.org/10.1016/j.jvn.2016.04.001] [PMID: 27568314]
[28]
Hannuksela ML, Rämet ME, Nissinen AET, Liisanantti MK, Savolainen MJ. Effects of ethanol on lipids and atherosclerosis. Pathophysiology 2004; 10(2): 93-103.
[http://dx.doi.org/10.1016/j.pathophys.2003.10.009] [PMID: 15006415]
[29]
Yang W, Kang D-W, Ha SY, Lee S-H. Drinking Patterns and Risk of Ischemic Stroke in Middle-Aged Adults: Do Beneficial Drinking Habits Indeed Exist? Stroke 2021; 52(1): 164-71.
[http://dx.doi.org/10.1161/STROKEAHA.120.032144] [PMID: 33148143]
[30]
Iso H, Baba S, Mannami T, et al. Alcohol consumption and risk of stroke among middle-aged men: the JPHC Study Cohort I. Stroke 2004; 35(5): 1124-9.
[http://dx.doi.org/10.1161/01.STR.0000124459.33597.00] [PMID: 15017008]
[31]
Mostofsky E, Chahal HS, Mukamal KJ, Rimm EB, Mittleman MA. Alcohol and immediate risk of cardiovascular events. Circulation 2016; 133(10): 979-87.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.019743] [PMID: 26936862]
[32]
Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ 1999; 319(7224): 1523-8.
[http://dx.doi.org/10.1136/bmj.319.7224.1523] [PMID: 10591709]
[33]
O’Keefe JH, Bhatti SK, Bajwa A, DiNicolantonio JJ, Lavie CJ. Alcohol and cardiovascular health: the dose makes the poison…or the remedy. Mayo Clin Proc 2014; 89(3): 382-93.
[http://dx.doi.org/10.1016/j.mayocp.2013.11.005] [PMID: 24582196]
[34]
Wannamethee SG, Shaper AG. Alcohol, coronary heart disease and stroke: an examination of the J-shaped curve. Neuroepidemiology 1998; 17(6): 288-95.
[http://dx.doi.org/10.1159/000026182] [PMID: 9778595]
[35]
NIAAA. Alcohol Facts and Statistics. Natl Inst Alcohol Abus Alcohol 2017.
[36]
Ardic-Pulas T. Binge drinking. Aide Soignante 2016.
[37]
U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. Diet Guidel Am 8th Ed. 2015.
[38]
Meyerhoff DJ, Bode C, Nixon SJ, de Bruin EA, Bode JC, Seitz HK. Health risks of chronic moderate and heavy alcohol consumption: how much is too much? Alcohol Clin Exp Res 2005; 29(7): 1334-40.
[http://dx.doi.org/10.1097/01.ALC.0000171488.63823.09] [PMID: 16088997]
[39]
Ceccanti M, Coccurello R, Carito V, et al. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict Biol 2016; 21(4): 776-87.
[http://dx.doi.org/10.1111/adb.12255] [PMID: 25940002]
[40]
Ciafrè S, Carito V, Ferraguti G, et al. How alcohol drinking affects our genes: an epigenetic point of view. Biochem Cell Biol 2019; 97(4): 345-56.
[http://dx.doi.org/10.1139/bcb-2018-0248] [PMID: 30412425]
[41]
Ferraguti G, Merlino L, Battagliese G, et al. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict Biol 2020; 25(3): e12724.
[http://dx.doi.org/10.1111/adb.12724] [PMID: 30811093]
[42]
Ferraguti G, Ciolli P, Carito V, et al. Ethylglucuronide in the urine as a marker of alcohol consumption during pregnancy: Comparison with four alcohol screening questionnaires. Toxicol Lett 2017; 275: 49-56.
[http://dx.doi.org/10.1016/j.toxlet.2017.04.016] [PMID: 28455000]
[43]
Coriale G, Fiorentino D, Di Lauro F, et al. Fetal Alcohol Spectrum Disorder (FASD): neurobehavioral profile, indications for diagnosis and treatment. Riv Psichiatr 2013; 48(5): 359-69.
[http://dx.doi.org/10.1708/1356.15062] [PMID: 24326748]
[44]
Ogunmoroti O, Osibogun O, McClelland RL, et al. Alcohol type and ideal cardiovascular health among adults of the Multi-Ethnic Study of Atherosclerosis. Drug Alcohol Depend 2021; 218: 108358.
[http://dx.doi.org/10.1016/j.drugalcdep.2020.108358] [PMID: 33162252]
[45]
Petrella C, Farioli-Vecchioli S, Cisale GY, et al. A healthy gut for a healthy brain: preclinical, clinical and regulatory aspects. Curr Neuropharmacol 2020; •••
[http://dx.doi.org/10.2174/1570159X18666200730111528] [PMID: 32744976]
[46]
Ceccanti M, Coriale G, Hamilton DA, et al. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can J Physiol Pharmacol 2018; 96(2): 128-36.
[http://dx.doi.org/10.1139/cjpp-2017-0013] [PMID: 28763626]
[47]
Jani BD, McQueenie R, Nicholl BI, et al. Association between patterns of alcohol consumption (beverage type, frequency and consumption with food) and risk of adverse health outcomes: a prospective cohort study. BMC Med 2021; 19(1): 8.
[http://dx.doi.org/10.1186/s12916-020-01878-2] [PMID: 33430840]
[48]
Piano MR, Mazzuco A, Kang M, Phillips SA. Cardiovascular Consequences of Binge Drinking: An Integrative Review with Implications for Advocacy, Policy, and Research. Alcohol Clin Exp Res 2017; 41(3): 487-96.
[http://dx.doi.org/10.1111/acer.13329] [PMID: 28067964]
[49]
Gardner JD, Mouton AJ. Alcohol effects on cardiac function. Compr Physiol 2015; 5(2): 791-802.
[http://dx.doi.org/10.1002/cphy.c140046] [PMID: 25880513]
[50]
Carito V, Ceccanti M, Tarani L, Ferraguti G, Chaldakov GN, Fiore M. Neurotrophins’ Modulation by Olive Polyphenols. Curr Med Chem 2016; 23(28): 3189-97.
[http://dx.doi.org/10.2174/0929867323666160627104022] [PMID: 27356540]
[51]
Carito V, Ciafrè S, Tarani L, et al. TNF-α and IL-10 modulation induced by polyphenols extracted by olive pomace in a mouse model of paw inflammation. Ann Ist Super Sanita 2015; 51(4): 382-6.
[http://dx.doi.org/10.4415/ANN-15-04-21] [PMID: 26783228]
[52]
Fiore M, Messina MP, Petrella C, D’Angelo A, Greco A, Ralli M, et al. Antioxidant properties of plant polyphenols in the counteraction of alcohol-abuse induced damage: Impact on the Mediterranean diet. J Funct Foods 2020; 71: 104012.
[http://dx.doi.org/10.1016/j.jff.2020.104012]
[53]
Petrella C, Carito V, Carere C, Ferraguti G, Ciafrè S, Natella F, et al. Oxidative stress inhibition by resveratrol in alcohol dependent mice. Nutrition, 2020.
[http://dx.doi.org/10.1016/j.nut.2020.110783]
[54]
Carito V, Ceccanti M, Cestari V, et al. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition 2017; 33: 65-9.
[http://dx.doi.org/10.1016/j.nut.2016.08.014] [PMID: 27908553]
[55]
Magrone T, Tafaro A, Jirillo F, et al. Red wine consumption and prevention of atherosclerosis: an in vitro model using human peripheral blood mononuclear cells. Curr Pharm Des 2007; 13(36): 3718-25.
[http://dx.doi.org/10.2174/138161207783018581] [PMID: 18220811]
[56]
Szmitko PE, Verma S. Antiatherogenic potential of red wine: Clinician update. Am J Physiol - Hear Circ Physiol, 2005.
[57]
Zoratto F, Fiore M, Ali SF, Laviola G, Macrì S. Neonatal tryptophan depletion and corticosterone supplementation modify emotional responses in adult male mice. Psychoneuroendocrinology 2013; 38(1): 24-39.
[http://dx.doi.org/10.1016/j.psyneuen.2012.04.015] [PMID: 22613034]
[58]
Zoratto F, Berry A, Anzidei F, et al. Effects of maternal L-tryptophan depletion and corticosterone administration on neurobehavioral adjustments in mouse dams and their adolescent and adult daughters. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(6): 1479-92.
[http://dx.doi.org/10.1016/j.pnpbp.2011.02.016] [PMID: 21356262]
[59]
Laviola G, Zoratto F, Ingiosi D, et al. Low empathy-like behaviour in male mice associates with impaired sociability, emotional memory, physiological stress reactivity and variations in neurobiological regulations. PLoS One 2017; 12(12): e0188907.
[http://dx.doi.org/10.1371/journal.pone.0188907] [PMID: 29200428]
[60]
Carito V, Venditti A, Bianco A, et al. Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75. Nat Prod Res 2014; 28(22): 1970-84.
[http://dx.doi.org/10.1080/14786419.2014.918977] [PMID: 24865115]
[61]
Angelucci F, Fiore M, Cozzari C, Aloe L. Prenatal ethanol effects on NGF level, NPY and ChAT immunoreactivity in mouse entorhinal cortex: a preliminary study. Neurotoxicol Teratol 1999; 21(4): 415-25.
[http://dx.doi.org/10.1016/S0892-0362(99)00005-7] [PMID: 10440485]
[62]
Fiore M, Mancinelli R, Aloe L, et al. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol Lett 2009; 188(3): 208-13.
[http://dx.doi.org/10.1016/j.toxlet.2009.04.013] [PMID: 19397965]
[63]
Fiore M, Laviola G, Aloe L, di Fausto V, Mancinelli R, Ceccanti M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology 2009; 30(1): 59-71.
[http://dx.doi.org/10.1016/j.neuro.2008.11.009] [PMID: 19100286]
[64]
Ceccanti M, Mancinelli R, Tirassa P, et al. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol Aging 2012; 33(2): 359-67.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.005] [PMID: 20382450]
[65]
Emamian M, Avan A, Pasdar A, et al. The lipoprotein lipase S447X and cholesteryl ester transfer protein rs5882 polymorphisms and their relationship with lipid profile in human serum of obese individuals. Gene 2015; 558(2): 195-9.
[http://dx.doi.org/10.1016/j.gene.2014.12.070] [PMID: 25579610]
[66]
Lee J, Tan CS, Chia KS, et al. The lipoprotein lipase S447X polymorphism and plasma lipids: interactions with APOE polymorphisms, smoking, and alcohol consumption. J Lipid Res 2004; 45(6): 1132-9.
[http://dx.doi.org/10.1194/jlr.M400016-JLR200] [PMID: 15060087]
[67]
Baik I, Lee S, Kim SH, Shin C. A lipoprotein lipase gene polymorphism interacts with consumption of alcohol and unsaturated fat to modulate serum HDL-cholesterol concentrations. J Nutr 2013; 143(10): 1618-25.
[http://dx.doi.org/10.3945/jn.113.175315] [PMID: 23902956]
[68]
Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 2019; 51(2): 165-76.
[http://dx.doi.org/10.1016/j.pathol.2018.11.002] [PMID: 30598326]
[69]
Mahley RW. Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med (Berl) 2016; 94(7): 739-46.
[http://dx.doi.org/10.1007/s00109-016-1427-y] [PMID: 27277824]
[70]
Zhu H, Xue H, Wang H, Ma Y, Liu J, Chen Y. The association of apolipoprotein E (APOE) gene polymorphisms with atherosclerosis susceptibility: a meta-analysis. Minerva Cardioangiol 2016; 64(1): 47-54.
[PMID: 26005211]
[71]
Anoop S, Misra A, Meena K, Luthra K. Apolipoprotein E polymorphism in cerebrovascular & coronary heart diseases. Indian J Med Res 2010; 132: 363-78.
[PMID: 20966513]
[72]
Zhao QR, Lei YY, Li J, Jiang N, Shi JP. Association between apolipoprotein E polymorphisms and premature coronary artery disease: a meta-analysis. Clin Chem Lab Med 2017; 55(2): 284-98.
[http://dx.doi.org/10.1515/cclm-2016-0145] [PMID: 27394044]
[73]
Chen H, Ding S, Liu X, Wu Y, Wu X. Association of Interleukin-6 Genetic Polymorphisms and Environment Factors Interactions with Coronary Artery Disease in a Chinese Han Population. Clin Exp Hypertens 2018; 40(6): 514-7.
[http://dx.doi.org/10.1080/10641963.2017.1403618] [PMID: 29889576]
[74]
Hou H, Wang C, Sun F, Zhao L, Dun A, Sun Z. Association of interleukin-6 gene polymorphism with coronary artery disease: an updated systematic review and cumulative meta-analysis. Inflamm Res 2015; 64(9): 707-20.
[http://dx.doi.org/10.1007/s00011-015-0850-9] [PMID: 26174156]
[75]
Wall TL, Luczak SE, Hiller-Sturmhöfel S. Biology, genetics, and environment: Underlying factors influencing alcohol metabolism. Alcohol Res 2016; 38(1): 59-68.
[PMID: 27163368]
[76]
Lee YJ, Yoo MG, Kim HK, et al. The association between alcohol metabolism and genetic variants of ADH1A, SRPRB, and PGM1 in Korea. Alcohol 2019; 79: 137-45.
[http://dx.doi.org/10.1016/j.alcohol.2019.03.004] [PMID: 31002879]
[77]
Hines LM, Stampfer MJ, Ma J, et al. Genetic variation in alcohol dehydrogenase and the beneficial effect of moderate alcohol consumption on myocardial infarction. N Engl J Med 2001; 344(8): 549-55.
[http://dx.doi.org/10.1056/NEJM200102223440802] [PMID: 11207350]
[78]
Drogan D, Sheldrick AJ, Schütze M, et al. Alcohol consumption, genetic variants in alcohol deydrogenases, and risk of cardiovascular diseases: a prospective study and meta-analysis. PLoS One 2012; 7(2): e32176.
[http://dx.doi.org/10.1371/journal.pone.0032176] [PMID: 22363810]
[79]
Tolstrup JS, Grønbaek M, Nordestgaard BG. Alcohol intake, myocardial infarction, biochemical risk factors, and alcohol dehydrogenase genotypes. Circ Cardiovasc Genet 2009; 2(5): 507-14.
[http://dx.doi.org/10.1161/CIRCGENETICS.109.873604] [PMID: 20031627]
[80]
Huang Y, Mahley RW, Apolipoprotein E. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis 2014; 72(Pt A): 3-12.
[http://dx.doi.org/10.1016/j.nbd.2014.08.025] [PMID: 25173806]
[81]
Han S, Xu Y, Gao M, et al. Serum apolipoprotein E concentration and polymorphism influence serum lipid levels in Chinese Shandong Han population. Medicine (Baltimore) 2016; 95(50): e5639.
[http://dx.doi.org/10.1097/MD.0000000000005639] [PMID: 27977609]
[82]
Rasmussen KL. Plasma levels of apolipoprotein E, APOE genotype and risk of dementia and ischemic heart disease: A review. Atherosclerosis 2016; 255: 145-55.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.10.037] [PMID: 28340945]
[83]
Bennet AM, Di Angelantonio E, Ye Z, et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 2007; 298(11): 1300-11.
[http://dx.doi.org/10.1001/jama.298.11.1300] [PMID: 17878422]
[84]
Granér M, Kahri J, Varpula M, et al. Apolipoprotein E polymorphism is associated with both carotid and coronary atherosclerosis in patients with coronary artery disease. Nutr Metab Cardiovasc Dis 2008; 18(4): 271-7.
[http://dx.doi.org/10.1016/j.numecd.2007.01.003] [PMID: 17462871]
[85]
Luo JQ, Ren H, Banh HL, et al. The associations between apolipoprotein E gene epsilon2/epsilon3/epsilon4 polymorphisms and the risk of coronary artery disease in patients with type 2 diabetes mellitus. Front Physiol 2017; 8: 1031.
[http://dx.doi.org/10.3389/fphys.2017.01031] [PMID: 29311965]
[86]
Jensen MK, Mukamal KJ, Overvad K, Rimm EB. Alcohol consumption, TaqIB polymorphism of cholesteryl ester transfer protein, high-density lipoprotein cholesterol, and risk of coronary heart disease in men and women. Eur Heart J 2008; 29(1): 104-12.
[http://dx.doi.org/10.1093/eurheartj/ehm517] [PMID: 18063597]
[87]
Mäkelä SM, Jauhiainen M, Ala-Korpela M, et al. HDL2 of heavy alcohol drinkers enhances cholesterol efflux from raw macrophages via phospholipid-rich HDL 2b particles. Alcohol Clin Exp Res 2008; 32(6): 991-1000.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00660.x] [PMID: 18498551]
[88]
Zheng KQ, Zhang SZ, He Y, et al. Association between cholesteryl ester transfer protein gene polymorphisms and variations in lipid levels in patients with coronary heart disease. Chin Med J (Engl) 2004; 117(9): 1288-92.
[PMID: 15377415]
[89]
Huang Y, Li Y, Zheng S, Yang X, Wang T, Zeng J. Moderate alcohol consumption and atherosclerosis : Meta-analysis of effects on lipids and inflammation. Wien Klin Wochenschr 2017; 129(21-22): 835-43.
[http://dx.doi.org/10.1007/s00508-017-1235-6] [PMID: 28762059]
[90]
Kovář J, Zemánková K. Moderate alcohol consumption and triglyceridemia. Physiol Res 2015; 64(Suppl. 3): S371-5.
[http://dx.doi.org/10.33549/physiolres.933178] [PMID: 26680670]
[91]
Vu KN, Ballantyne CM, Hoogeveen RC, et al. Causal role of alcohol consumption in an improved lipid profile: The atherosclerosis risk in communities (aric) study. PLoS One 2016; 11(2): e0148765.
[http://dx.doi.org/10.1371/journal.pone.0148765] [PMID: 26849558]
[92]
Brinton EA. Effects of ethanol intake on lipoproteins. Curr Atheroscler Rep 2012; 14(2): 108-14.
[http://dx.doi.org/10.1007/s11883-012-0230-7] [PMID: 22350634]
[93]
Brien SE, Ronksley PE, Turner BJ, Mukamal KJ, Ghali WA. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ 2011; 342: d636.
[http://dx.doi.org/10.1136/bmj.d636] [PMID: 21343206]
[94]
Muth ND, Laughlin GA, von Mühlen D, Smith SC, Barrett-Connor E. High-density lipoprotein subclasses are a potential intermediary between alcohol intake and reduced risk of cardiovascular disease: the Rancho Bernardo Study. Br J Nutr 2010; 104(7): 1034-42.
[http://dx.doi.org/10.1017/S0007114510001595] [PMID: 20426890]
[95]
Chiva-Blanch G, Badimon L. Benefits and risks of moderate alcohol consumption on cardiovascular disease: Current findings and controversies. Nutrients 2019; 12(1): E108.
[http://dx.doi.org/10.3390/nu12010108] [PMID: 31906033]
[96]
He PP, Jiang T, OuYang XP, et al. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin Chim Acta 2018; 480: 126-37.
[http://dx.doi.org/10.1016/j.cca.2018.02.006] [PMID: 29453968]
[97]
Nova E, San Mauro-Martín I, Díaz-Prieto LE, Marcos A. Wine and beer within a moderate alcohol intake is associated with higher levels of HDL-c and adiponectin. Nutr Res 2019; 63: 42-50.
[http://dx.doi.org/10.1016/j.nutres.2018.12.007] [PMID: 30824396]
[98]
Beulens JWJ, de Zoete EC, Kok FJ, Schaafsma G, Hendriks HFJ. Effect of moderate alcohol consumption on adipokines and insulin sensitivity in lean and overweight men: a diet intervention study. Eur J Clin Nutr 2008; 62(9): 1098-105.
[http://dx.doi.org/10.1038/sj.ejcn.1602821] [PMID: 17554246]
[99]
Fujishima Y, Maeda N, Matsuda K, et al. Adiponectin association with T-cadherin protects against neointima proliferation and atherosclerosis. FASEB J 2017; 31(4): 1571-83.
[http://dx.doi.org/10.1096/fj.201601064R] [PMID: 28062540]
[100]
Katsiki N, Mantzoros C, Mikhailidis DP. Adiponectin, lipids and atherosclerosis. Curr Opin Lipidol 2017; 28(4): 347-54.
[http://dx.doi.org/10.1097/MOL.0000000000000431] [PMID: 28463859]
[101]
Zhang L, Yan F, Zhang S, et al. Structural basis of transfer between lipoproteins by cholesteryl ester transfer protein. Nat Chem Biol 2012; 8(4): 342-9.
[http://dx.doi.org/10.1038/nchembio.796] [PMID: 22344176]
[102]
Shrestha S, Wu BJ, Guiney L, Barter PJ, Rye KA. Cholesteryl ester transfer protein and its inhibitors. J Lipid Res 2018; 59(5): 772-83.
[http://dx.doi.org/10.1194/jlr.R082735] [PMID: 29487091]
[103]
Gaubatz JW, Gillard BK, Rosales C, Pownall HJ. Dietary Alcohol and Fat Differentially Affect Plasma Cholesteryl Ester Transfer Activity and Triglycerides in Normo- and Hypertriglyceridemic Subjects. Lipids 2020; 55(4): 299-307.
[http://dx.doi.org/10.1002/lipd.12237] [PMID: 32255209]
[104]
Wu BJ, Shrestha S, Ong KL, et al. Cholesteryl ester transfer protein inhibition enhances endothelial repair and improves endothelial function in the rabbit. Arterioscler Thromb Vasc Biol 2015; 35(3): 628-36.
[http://dx.doi.org/10.1161/ATVBAHA.114.304747] [PMID: 25633313]
[105]
Rantakömi SH, Laukkanen JA, Kurl S, Kauhanen J. Binge drinking and the progression of atherosclerosis in middle-aged men: an 11-year follow-up. Atherosclerosis 2009; 205(1): 266-71.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.11.004] [PMID: 19108835]
[106]
Toma A, Paré G, Leong DP. Alcohol and Cardiovascular Disease: How Much is Too Much? Curr Atheroscler Rep 2017; 19(3): 13.
[http://dx.doi.org/10.1007/s11883-017-0647-0] [PMID: 28210975]
[107]
Piano MR, Burke L, Kang M, Phillips SA. Effects of repeated binge drinking on blood pressure levels and other cardiovascular health metrics in young adults: National health and Nutrition Examination Survey, 2011-2014. J Am Heart Assoc 2018; 7(13): e008733.
[http://dx.doi.org/10.1161/JAHA.118.008733] [PMID: 29950486]
[108]
Zemánková K, Makoveichuk E, Vlasáková Z, Olivecrona G, Kovář J. Acute alcohol consumption downregulates lipoprotein lipase activity in vivo. Metabolism 2015; 64(11): 1592-6.
[http://dx.doi.org/10.1016/j.metabol.2015.08.016] [PMID: 26388538]
[109]
Tanaka A, Cui R, Kitamura A, et al. Heavy alcohol consumption is associated with impaired endothelial function: The circulatory risk in communities study (CIRCS). J Atheroscler Thromb 2016; 23(9): 1047-54.
[http://dx.doi.org/10.5551/jat.31641] [PMID: 27025680]
[110]
Waśkiewicz A, Sygnowska E. Alcohol intake and cardiovascular risk factor profile in men participating in the WOBASZ study. Kardiol Pol 2013; 71(4): 359-65.
[http://dx.doi.org/10.5603/KP.2013.0063] [PMID: 23788341]
[111]
Cho JY, Choi J, Park JG, et al. Alcohol-induced hyperlipidemia is ameliorated by orally administered DWP208, a sodium succinate form of ZYM201. Korean J Physiol Pharmacol 2014; 18(6): 469-74.
[http://dx.doi.org/10.4196/kjpp.2014.18.6.469] [PMID: 25598660]
[112]
Chait A, Mancini M, February AW. A clinical and metabolic study of alcoholic hyperlipidaemia. Lancet 1972.
[113]
Piano MR, Phillips SA. Alcoholic cardiomyopathy: pathophysiologic insights. Cardiovasc Toxicol 2014; 14(4): 291-308.
[http://dx.doi.org/10.1007/s12012-014-9252-4] [PMID: 24671642]
[114]
Peluso I, Morabito G, Urban L, Ioannone F, Serafini M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets 2012; 12(4): 351-60.
[http://dx.doi.org/10.2174/187153012803832602] [PMID: 23061409]
[115]
Miller YI, Choi SH, Fang L, Tsimikas S. Lipoprotein modification and macrophage uptake: role of pathologic cholesterol transport in atherogenesis. Subcell Biochem 2010; 51: 229-51.
[http://dx.doi.org/10.1007/978-90-481-8622-8_8] [PMID: 20213546]
[116]
Ciafrè S, Ferraguti G, Greco A, et al. Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci Biobehav Rev 2020; 118: 654-68.
[http://dx.doi.org/10.1016/j.neubiorev.2020.08.018] [PMID: 32976915]
[117]
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 2017; 95(11): 1153-65.
[http://dx.doi.org/10.1007/s00109-017-1575-8] [PMID: 28785870]
[118]
Alique M, Luna C, Carracedo J, Ramírez R. LDL biochemical modifications: a link between atherosclerosis and aging. Food Nutr Res 2015; 59: 29240.
[http://dx.doi.org/10.3402/fnr.v59.29240] [PMID: 26637360]
[119]
Getz GS, Reardon CA. Apoprotein E and reverse cholesterol transport. Int J Mol Sci 2018; 19(11): E3479.
[http://dx.doi.org/10.3390/ijms19113479] [PMID: 30404132]
[120]
Bouchareychas L, Raffai RL. Apolipoprotein E and Atherosclerosis: From Lipoprotein Metabolism to MicroRNA Control of Inflammation. J Cardiovasc Dev Dis 2018; 5(2): 30.
[http://dx.doi.org/10.3390/jcdd5020030] [PMID: 29789495]
[121]
Huebbe P, Rimbach G. Evolution of human apolipoprotein E (APOE) isoforms: Gene structure, protein function and interaction with dietary factors. Ageing Res Rev 2017; 37: 146-61.
[http://dx.doi.org/10.1016/j.arr.2017.06.002] [PMID: 28647612]
[122]
Pereira LC, Nascimento JCR, Rêgo JMC, et al. Apolipoprotein E, periodontal disease and the risk for atherosclerosis: a review. Arch Oral Biol 2019; 98: 204-12.
[http://dx.doi.org/10.1016/j.archoralbio.2018.11.009] [PMID: 30503976]
[123]
Mendes-Lana A, Pena GG, Freitas SN, et al. Apolipoprotein E polymorphism in Brazilian dyslipidemic individuals: Ouro Preto study. Braz J Med Biol Res 2007; 40(1): 49-56.
[http://dx.doi.org/10.1590/S0100-879X2007000100007] [PMID: 17224996]
[124]
Riemenschneider M, Schwarz S, Wagenpfeil S, et al. A polymorphism of the brain-derived neurotrophic factor (BDNF) is associated with Alzheimer’s disease in patients lacking the Apolipoprotein E epsilon4 allele. Mol Psychiatry 2002; 7(7): 782-5.
[http://dx.doi.org/10.1038/sj.mp.4001073] [PMID: 12192623]
[125]
Yin Y, Wang Z. ApoE and neurodegenerative diseases in aging. Adv Exp Med Biol 2018; 1086: 77-92.
[http://dx.doi.org/10.1007/978-981-13-1117-8_5]
[126]
Heeren J, Grewal T, Laatsch A, et al. Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation. J Biol Chem 2004; 279(53): 55483-92.
[http://dx.doi.org/10.1074/jbc.M409324200] [PMID: 15485881]
[127]
Correa Leite ML, Moriguchi EH, Lima-Costa MF. Effects of interactions between ApoE polymorphisms, alcohol consumption and obesity on age-related trends of blood pressure levels in postmenopausal women: the Bambuì cohort study of aging (1997-2008). Maturitas 2013; 76(1): 57-63.
[http://dx.doi.org/10.1016/j.maturitas.2013.05.012] [PMID: 23773371]
[128]
Ning B, Chen Y, Waqar AB, et al. Hypertension Enhances Advanced Atherosclerosis and Induces Cardiac Death in Watanabe Heritable Hyperlipidemic Rabbits. Am J Pathol 2018; 188(12): 2936-47.
[http://dx.doi.org/10.1016/j.ajpath.2018.08.007] [PMID: 30248339]
[129]
Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 2013; 9(2): 106-18.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[130]
Hersi M, Irvine B, Gupta P, Gomes J, Birkett N, Krewski D. Risk factors associated with the onset and progression of Alzheimer’s disease: A systematic review of the evidence. Neurotoxicology 2017; 61: 143-87.
[http://dx.doi.org/10.1016/j.neuro.2017.03.006] [PMID: 28363508]
[131]
Burman D, Mente A, Hegele RA, Islam S, Yusuf S, Anand SS. Relationship of the ApoE polymorphism to plasma lipid traits among South Asians, Chinese, and Europeans living in Canada. Atherosclerosis 2009; 203(1): 192-200.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.06.007] [PMID: 18656198]
[132]
Sakuma N, Hibino T, Saeki T, et al. Compound heterozygotes for a novel mutation, apo E1 Nagoya (Arg142Ser) and Apo E2 (Arg158Cys), with severe type III hyperlipoproteinemia and familial hypercholesterolemia. J Atheroscler Thromb 2014; 21(9): 983-8.
[http://dx.doi.org/10.5551/jat.21394] [PMID: 24953047]
[133]
Yu J-T, Tan L, Hardy J. Apolipoprotein E in Alzheimer’s disease: an update. Annu Rev Neurosci 2014; 37: 79-100.
[http://dx.doi.org/10.1146/annurev-neuro-071013-014300] [PMID: 24821312]
[134]
Castellano JM, Kim J, Stewart FR, et al. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 2011; 3(89): 89ra57.
[http://dx.doi.org/10.1126/scitranslmed.3002156] [PMID: 21715678]
[135]
Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation 2007; 115(10): 1285-95.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.652859] [PMID: 17353456]
[136]
Ras RT, Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int J Cardiol 2013; 168(1): 344-51.
[http://dx.doi.org/10.1016/j.ijcard.2012.09.047] [PMID: 23041097]
[137]
Piano MR. Alcohol’s Effects on the Cardiovascular System. Alcohol Res 2017; 38(2): 219-41.
[PMID: 28988575]
[138]
Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 2017; 120(4): 713-35.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309326] [PMID: 28209797]
[139]
Piccarducci R, Daniele S, Fusi J, et al. Impact of ApoE polymorphism and physical activity on plasma antioxidant capability and erythrocyte membranes. Antioxidants 2019; 8(11): E538.
[http://dx.doi.org/10.3390/antiox8110538] [PMID: 31717561]
[140]
Yuan L, Liu J, Dong L, et al. Effects of APOE rs429358, rs7412 and GSTM1/GSTT1 polymorphism on plasma and erythrocyte antioxidant parameters and cognition in old Chinese adults. Nutrients 2015; 7(10): 8261-73.
[http://dx.doi.org/10.3390/nu7105391] [PMID: 26404360]
[141]
Ceci FM, Ferraguti G, Petrella C, Greco A, Ralli M, Iannitelli A, et al. Nerve Growth Factor in Alcohol Use Disorders. Curr Neuropharmacol 2020; 18
[http://dx.doi.org/10.2174/1570159x18666200429003239] [PMID: 32348226]
[142]
Rosoff DB, Charlet K, Jung J, et al. Association of High-Intensity Binge Drinking With Lipid and Liver Function Enzyme Levels. JAMA Netw Open 2019; 2(6): e195844.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.5844] [PMID: 31199452]
[143]
Orio L, Antón M, Rodríguez-Rojo IC, et al. Young alcohol binge drinkers have elevated blood endotoxin, peripheral inflammation and low cortisol levels: neuropsychological correlations in women. Addict Biol 2018; 23(5): 1130-44.
[http://dx.doi.org/10.1111/adb.12543] [PMID: 28840951]
[144]
Laguzzi F, Baldassarre D, Veglia F, Strawbridge RJ, Humphries SE, Rauramaa R, et al. Alcohol consumption in relation to carotid subclinical atherosclerosis and its progression: results from a European longitudinal multicentre study. Eur J Nutr 2020; •••
[http://dx.doi.org/10.1007/s00394-020-02220-5] [PMID: 32206896]
[145]
Bell S, Mehta G, Moore K, Britton A. Ten-year alcohol consumption typologies and trajectories of C-reactive protein, interleukin-6 and interleukin-1 receptor antagonist over the following 12 years: a prospective cohort study. J Intern Med 2017; 281(1): 75-85.
[http://dx.doi.org/10.1111/joim.12544] [PMID: 27485145]
[146]
Marques-Vidal P, Bochud M, Bastardot F, et al. Associations between alcohol consumption and selected cytokines in a Swiss population-based sample (CoLaus study). Atherosclerosis 2012; 222(1): 245-50.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.02.011] [PMID: 22420891]
[147]
Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond) 2018; 132(12): 1243-52.
[http://dx.doi.org/10.1042/CS20180306] [PMID: 29930142]
[148]
Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev 2014; 22(3): 147-51.
[http://dx.doi.org/10.1097/CRD.0000000000000021] [PMID: 24618929]
[149]
Wang X, Li W, Hao L, et al. The therapeutic potential of CETP inhibitors: a patent review. Expert Opin Ther Pat 2018; 28(4): 331-40.
[http://dx.doi.org/10.1080/13543776.2018.1439476] [PMID: 29424255]
[150]
Di Bartolo B, Takata K, Duong M, Nicholls SJ. CETP Inhibition in CVD Prevention: an Actual Appraisal. Curr Cardiol Rep 2016; 18(5): 43.
[http://dx.doi.org/10.1007/s11886-016-0724-y] [PMID: 27002619]
[151]
Yamashita S, Matsuzawa Y. Re-evaluation of cholesteryl ester transfer protein function in atherosclerosis based upon genetics and pharmacological manipulation. Curr Opin Lipidol 2016; 27(5): 459-72.
[http://dx.doi.org/10.1097/MOL.0000000000000332] [PMID: 27454452]
[152]
Okada T, Ohama T, Okazaki M, et al. Particle number analysis of lipoprotein subclasses by gel permeation HPLC in patients with cholesteryl ester transfer protein deficiency. PLoS One 2018; 13(1): e0190875.
[http://dx.doi.org/10.1371/journal.pone.0190875] [PMID: 29304079]
[153]
Srirojnopkun C, Kietrungwilaikul K, Boonsong K, Thongpoonkaew J, Jeenduang N. Association of APOE and CETP TaqIB Polymorphisms with Type 2 Diabetes Mellitus. Arch Med Res 2018; 49(7): 479-85.
[http://dx.doi.org/10.1016/j.arcmed.2019.02.005] [PMID: 30853126]
[154]
Włodarczyk M, Wrzosek M, Nowicka G, Jabłonowska-Lietz B. Impact of variants in CETP and apo AI genes on serum HDL cholesterol levels in men and women from the Polish population. Arch Med Sci 2016; 12(6): 1188-98.
[http://dx.doi.org/10.5114/aoms.2016.60870] [PMID: 27904507]
[155]
Tall AR, Rader DJ. Trials and Tribulations of CETP Inhibitors. Circ Res 2018; 122(1): 106-12.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311978] [PMID: 29018035]
[156]
Masson W, Lobo M, Siniawski D, et al. Therapy with cholesteryl ester transfer protein (CETP) inhibitors and diabetes risk. Diabetes Metab 2018; 44(6): 508-13.
[http://dx.doi.org/10.1016/j.diabet.2018.02.005] [PMID: 29523487]
[157]
Chen DW, Jin Y, Zhao RM, et al. Age-, sex- and glucose-dependent correlation of plasma soluble vascular adhesion protein-1 concentration with cardiovascular risk factors and subclinical atherosclerosis. Eur Rev Med Pharmacol Sci 2016; 20(8): 1544-58.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.04.786] [PMID: 27160127]
[158]
Darke S, Duflou J, Kaye S, Farrell M, Lappin J. Body mass index and fatal stroke in young adults: A national study. J Forensic Leg Med 2019; 63: 1-6.
[http://dx.doi.org/10.1016/j.jflm.2019.02.003] [PMID: 30822741]
[159]
Qu B, Qu T, Liu Y, et al. Risk Factors Associated With Increased Carotid Intima-Media Thickness in a Male Population With Chronic Alcohol Consumption: A Prospective Observational Study. Medicine (Baltimore) 2016; 95(15): e3322.
[http://dx.doi.org/10.1097/MD.0000000000003322] [PMID: 27082578]
[160]
Singhrao SK, Harding A, Chukkapalli S, Olsen I, Kesavalu L, Crean S. Apolipoprotein e related co-morbidities and Alzheimer’s disease. J Alzheimers Dis 2016; 51(4): 935-48.
[http://dx.doi.org/10.3233/JAD150690] [PMID: 26923007]
[161]
Clarkson TB. Estrogen effects on arteries vary with stage of reproductive life and extent of subclinical atherosclerosis progression. Menopause 2018; 25(11): 1262-74.
[http://dx.doi.org/10.1097/GME.0000000000001228] [PMID: 30358722]
[162]
Li H, Mani S, Wu L, Fu M, Shuang T, Xu C, et al. The interaction of estrogen and CSE/H2S pathway in the development of atherosclerosis. Am J Physiol - Hear Circ Physiol 2017; 312: 406-14.
[163]
Dam MK, Hvidtfeldt UA, Tjønneland A, Overvad K, Grønbæk M, Tolstrup JS. Five year change in alcohol intake and risk of breast cancer and coronary heart disease among postmenopausal women: prospective cohort study. BMJ 2016; 353: i2314.
[http://dx.doi.org/10.1136/bmj.i2314] [PMID: 27169583]
[164]
Ogunmoroti O, Osibogun O, McClelland RL, Burke GL, Nasir K, Michos ED. Alcohol and ideal cardiovascular health: The Multi-Ethnic Study of Atherosclerosis. Clin Cardiol 2019; 42(1): 151-8.
[http://dx.doi.org/10.1002/clc.23125] [PMID: 30506744]
[165]
Frezza M, di Padova C, Pozzato G, Terpin M, Baraona E, Lieber CS. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med 1990; 322(2): 95-9.
[http://dx.doi.org/10.1056/NEJM199001113220205] [PMID: 2248624]
[166]
Erol A, Karpyak VM. Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. Drug Alcohol Depend 2015; 156: 1-13.
[http://dx.doi.org/10.1016/j.drugalcdep.2015.08.023] [PMID: 26371405]
[167]
McHugh RK, Votaw VR, Sugarman DE, Greenfield SF. Sex and gender differences in substance use disorders. Clin Psychol Rev 2018; 66: 12-23.
[http://dx.doi.org/10.1016/j.cpr.2017.10.012] [PMID: 29174306]
[168]
Chrostek L, Jelski W, Szmitkowski M, Puchalski Z. Gender-related differences in hepatic activity of alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in humans. J Clin Lab Anal 2003; 17(3): 93-6.
[http://dx.doi.org/10.1002/jcla.10076] [PMID: 12696080]
[169]
Qiao Q, Hong Y, Zhao W, et al. Sex differences in outcomes and associated factors among stroke patients with small artery occlusion in China. Biol Sex Differ 2018; 9(1): 35.
[http://dx.doi.org/10.1186/s13293-018-0194-6] [PMID: 30071887]
[170]
Corella D, Tucker K, Lahoz C, et al. Alcohol drinking determines the effect of the APOE locus on LDL-cholesterol concentrations in men: the Framingham Offspring Study. Am J Clin Nutr 2001; 73(4): 736-45.
[http://dx.doi.org/10.1093/ajcn/73.4.736] [PMID: 11273848]
[171]
Palmisano BT, Zhu L, Stafford JM. Role of estrogens in the regulation of liver lipid metabolism. Adv Exp Med Biol 2017; 1043: 227-56.
[http://dx.doi.org/10.1007/978-3-319-70178-3_12] [PMID: 29224098]
[172]
Knopp RH, Paramsothy P, Retzlaff BM, et al. Sex differences in lipoprotein metabolism and dietary response: basis in hormonal differences and implications for cardiovascular disease. Curr Cardiol Rep 2006; 8(6): 452-9.
[http://dx.doi.org/10.1007/s11886-006-0104-0] [PMID: 17059798]
[173]
Cutini PH, Campelo AE, Agriello E, Sandoval MJ, Rauschemberger MB, Massheimer VL. The role of sex steroids on cellular events involved in vascular disease. J Steroid Biochem Mol Biol 2012; 132(3-5): 322-30.
[http://dx.doi.org/10.1016/j.jsbmb.2012.08.001] [PMID: 22903158]
[174]
Thor D, Zhang R, Anderson L, Bose DD, Dubé GP, Rahimian R. Effects of 17 β-estradiol on lipopolysacharride-induced intracellular adhesion molecule-1 mRNA expression and Ca²+ homeostasis alteration in human endothelial cells. Vascul Pharmacol 2010; 53(5-6): 230-8.
[http://dx.doi.org/10.1016/j.vph.2010.09.001] [PMID: 20843480]
[175]
Leite MLC, Moriguchi EH, Lima-Costa MF. Interactive effects of ApoE polymorphism, alcohol and smoking on age-related trends of blood pressure levels in elderly men: the Bambuì Cohort Study of Ageing (1997-2008). J Hum Hypertens 2013; 27(8): 497-503.
[http://dx.doi.org/10.1038/jhh.2012.70] [PMID: 23324992]
[176]
Koch M, Fitzpatrick AL, Rapp SR, et al. Alcohol Consumption and Risk of Dementia and Cognitive Decline Among Older Adults With or Without Mild Cognitive Impairment. JAMA Netw Open 2019; 2(9): e1910319.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.10319] [PMID: 31560382]
[177]
Slayday RE, Gustavson DE, Elman JA, Beck A, McEvoy LK, Tu XM, et al. Interaction between Alcohol Consumption and Apolipoprotein E (ApoE) Genotype with Cognition in Middle-Aged Men. J Int Neuropsychol Soc 2020; •••: 1-13.
[http://dx.doi.org/10.1017/S1355617720000570] [PMID: 32662384]
[178]
Mukamal KJ, Chung H, Jenny NS, et al. Alcohol use and risk of ischemic stroke among older adults: the cardiovascular health study. Stroke 2005; 36(9): 1830-4.
[http://dx.doi.org/10.1161/01.STR.0000177587.76846.89] [PMID: 16081863]
[179]
Mukamal KJ, Chung H, Jenny NS, et al. Alcohol consumption and risk of coronary heart disease in older adults: the Cardiovascular Health Study. J Am Geriatr Soc 2006; 54(1): 30-7.
[http://dx.doi.org/10.1111/j.1532-5415.2005.00561.x] [PMID: 16420195]
[180]
Gordis E. National Institute on Alcohol Abuse and Alcoholism. Br J Addict 1988; 83: 483-93.
[http://dx.doi.org/10.1111/j.1360-0443.1988.tb02567.x] [PMID: 2838115]
[181]
Collins R, Reith C, Emberson J, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 2016; 388(10059): 2532-61.
[http://dx.doi.org/10.1016/S0140-6736(16)31357-5] [PMID: 27616593]
[182]
LaRosa JC, Grundy SM, Kastelein JJP, Kostis JB, Greten H. Safety and efficacy of Atorvastatin-induced very low-density lipoprotein cholesterol levels in Patients with coronary heart disease (a post hoc analysis of the treating to new targets [TNT] study). Am J Cardiol 2007; 100(5): 747-52. [TNT].
[http://dx.doi.org/10.1016/j.amjcard.2007.03.102] [PMID: 17719314]
[183]
Thompson JF, Hyde CL, Wood LS, et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort. Circ Cardiovasc Genet 2009; 2(2): 173-81.
[http://dx.doi.org/10.1161/CIRCGENETICS.108.818062] [PMID: 20031582]
[184]
Zhang L, He S, Li Z, et al. Apolipoprotein E polymorphisms contribute to statin response in Chinese ASCVD patients with dyslipidemia. Lipids Health Dis 2019; 18(1): 129.
[http://dx.doi.org/10.1186/s12944-019-1069-5] [PMID: 31153375]
[185]
Chiodini BD, Franzosi MG, Barlera S, et al. Apolipoprotein E polymorphisms influence effect of pravastatin on survival after myocardial infarction in a Mediterranean population: the GISSI-Prevenzione study. Eur Heart J 2007; 28(16): 1977-83.
[http://dx.doi.org/10.1093/eurheartj/ehm196] [PMID: 17567623]
[186]
Jabr R, Gharaibeh M, Zayed AA, Zihlif M. The Association between Apolipoprotein E Polymorphism and Response to Statins in Group of Hyperlipidemic Patients. Endocr Metab Immune Disord Drug Targets 2020; 20
[http://dx.doi.org/10.2174/1871530320666200705211656] [PMID: 32628603]
[187]
Lv P, Zheng Y, Huang J, Ke J, Zhang H. Association of apolipoprotein e gene polymorphism with ischemic stroke in coronary heart disease patients treated with medium-intensity statins. Neuropsychiatr Dis Treat 2020; 16: 2459-66.
[http://dx.doi.org/10.2147/NDT.S265194] [PMID: 33122909]
[188]
Christidis DS, Liberopoulos EN, Kakafika AI, et al. The effect of apolipoprotein E polymorphism on the response to lipid-lowering treatment with atorvastatin or fenofibrate. J Cardiovasc Pharmacol Ther 2006; 11(3): 211-21.
[http://dx.doi.org/10.1177/1074248406293732] [PMID: 17056835]
[189]
Zhang H, Zhou W, Cao C, Zhang W, Liu G, Zhang J. Amelioration of atherosclerosis in apolipoprotein E-deficient mice by combined RNA interference of lipoprotein-associated phospholipase A2 and YKL-40. PLoS One 2018; 13(8): e0202797.
[http://dx.doi.org/10.1371/journal.pone.0202797] [PMID: 30138439]
[190]
Gough PJ, Raines EW. Gene therapy of apolipoprotein E-deficient mice using a novel macrophage-specific retroviral vector. Blood 2003; 101(2): 485-91.
[http://dx.doi.org/10.1182/blood-2002-07-2131] [PMID: 12393475]
[191]
Yuan T, Zhong Y, Wang Y, et al. Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system. Lipids Health Dis 2019; 18(1): 69.
[http://dx.doi.org/10.1186/s12944-019-1013-8] [PMID: 30885208]
[192]
Wacker BK, Dronadula N, Zhang J, Dichek DA. Local vascular gene therapy with apolipoprotein A-I to promote regression of atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37(2): 316-27.
[http://dx.doi.org/10.1161/ATVBAHA.116.308258] [PMID: 27932352]
[193]
Zhao H, Li Y, He L, et al. In Vivo AAV-CRISPR/Cas9-Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation 2020; 141(1): 67-79.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042476] [PMID: 31779484]

© 2025 Bentham Science Publishers | Privacy Policy