Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Recent Developments in Biopolymeric Nanoparticles for Drug Delivery Systems: An Overview

Author(s): Soumya R. Barik, Ranjan K. Mohapatra*, Pranab K. Mohapatra*, Ahmed Mahal and Marei M. El-Ajaily

Volume 14, Issue 2, 2022

Published on: 05 April, 2021

Page: [92 - 100] Pages: 9

DOI: 10.2174/1876402913666210405155127

Price: $65

Abstract

Nanotechnology has gained momentum in recent years in the field of drug delivery, including nanomedicine and nano-delivery systems. Several applications such as biological agents, chemotherapeutic agents and immunotherapeutic agents are used for the treatment of a number of diseases. This review compiles an updated summary on recent developments in this emerging field of nanomedicines and nanotechnology-based drug delivery systems. The study of nanostructured drug delivery systems helps to understand the efficient transport and controlled release of drugs to the diseased tissues of living organisms. This has stimulated the authors to highlight recent advances in smart nanocarriers composed of biopolymeric nanoparticles such as liposomes, dendrimers, and hydrogels. This review also highlights some critical issues in the design of nanocarrier systems for biomedical applications.

Keywords: Biopolymeric nanoparticles, chitosan, alginates, cellulose, liposomes, gelatine, dextrane, drug delivery.

Graphical Abstract

[1]
Mohapatra, R.K. Engineering Chemistry with Laboratory Experiments; PHI: Delhi, 2015.
[2]
Mohapatra, R.K.; Das, D. Chemical modification of solid surfaces by the use of additive. Chapter-2; Bentham Science: Singapore, 2020.
[3]
Kawasaki, E.S.; Player, A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine, 2005, 1(2), 101-109.
[http://dx.doi.org/10.1016/j.nano.2005.03.002] [PMID: 17292064]
[4]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[5]
Garbayo, E.; Pascual-Gil, S.; Rodríguez-Nogales, C.; Saludas, L. Estella-Hermoso de, M.A.; Blanco-Prieto, M.J. Nanomedicine and drug delivery systems in cancer and regenerative medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(5), 1637.
[http://dx.doi.org/10.1002/wnan.1637] [PMID: 32351045]
[6]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[7]
Woythe, L.; Tito, N.B.; Albertazzi, L. A quantitative view on multivalent nanomedicine targeting. Adv. Drug Deliv. Rev., 2021, 169(1), 1-21.
[http://dx.doi.org/10.1016/j.addr.2020.11.010] [PMID: 33264593]
[8]
Thangudu, S. Next generation nanomaterials: smart nanomaterials, significance, and biomedical applications; Appl. Nanomater. Human Health Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-4802-4_15]
[9]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019
[http://dx.doi.org/10.1155/2019/3702518]
[10]
Aslan, B.; Ozpolat, B.; Sood, A.K.; Lopez-Berestein, G. Nanotechnology in cancer therapy. J. Drug Target., 2013, 21(10), 904-913.
[http://dx.doi.org/10.3109/1061186X.2013.837469] [PMID: 24079419]
[11]
Yu, X.; Trase, I.; Ren, M.; Duval, K.; Guo, X.; Chen, Z. Design of nanoparticle-based carriers for targeted drug delivery. J. Nanomater., 2016, 1087250, 15.
[12]
Yin, J.; Chen, Y.; Zhang, Z.H.; Han, X. Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications. Polymers (Basel), 2016, 8(7), 268.
[http://dx.doi.org/10.3390/polym8070268] [PMID: 30974545]
[13]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[14]
Zhao, Q.; Wu, B.; Shang, Y. Development of a nano-drug delivery system based on mesoporous silica and its anti-lymphoma activity. Appl. Nanosci., 2020, 10(9), 3431-3442.
[http://dx.doi.org/10.1007/s13204-020-01465-0]
[15]
Stubelius, A.; Lee, S.; Almutairi, A. The chemistry of boronic acids in nanomaterials for drug delivery. Acc. Chem. Res., 2019, 52(11), 3108-3119.
[http://dx.doi.org/10.1021/acs.accounts.9b00292] [PMID: 31599160]
[16]
Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res., 2009, 2(2), 85-120.
[http://dx.doi.org/10.1007/s12274-009-9009-8] [PMID: 20174481]
[17]
Orive, G.; Gascón, A.R.; Hernández, R.M.; Domínguez-Gil, A.; Pedraz, J.L. Techniques: new approaches to the delivery of biopharmaceuticals. Trends Pharmacol. Sci., 2004, 25(7), 382-387.
[http://dx.doi.org/10.1016/j.tips.2004.05.006] [PMID: 15219981]
[18]
Razzacki, S.Z.; Thwar, P.K.; Yang, M.; Ugaz, V.M.; Burns, M.A. Integrated microsystems for controlled drug delivery. Adv. Drug Deliv. Rev., 2004, 56(2), 185-198.
[http://dx.doi.org/10.1016/j.addr.2003.08.012] [PMID: 14741115]
[19]
Arayne, M.S.; Sultana, N.; Qureshi, F. Review: nanoparticles in delivery of cardiovascular drugs. Pak. J. Pharm. Sci., 2007, 20(4), 340-348.
[PMID: 17604260]
[20]
Patra, J.K.; Baek, K-H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater., 2014, 2014, 219.
[http://dx.doi.org/10.1155/2014/417305]
[21]
Joseph, R.R.; Venkatraman, S.S. Drug delivery to the eye: What benefits do nanocarriers offer? Nanomedicine (Lond.), 2017, 12(6), 683-702.
[http://dx.doi.org/10.2217/nnm-2016-0379] [PMID: 28186436]
[22]
Obeid, M.A.; Al Qaraghuli, M.M.; Alsaadi, M.; Alzahrani, A.R.; Niwasabutra, K.; Ferro, V.A. Delivering natural products and biotherapeutics to improve drug efficacy. Ther. Deliv., 2017, 8(11), 947-956.
[http://dx.doi.org/10.4155/tde-2017-0060] [PMID: 29061102]
[23]
Miele, E.; Spinelli, G.P.; Miele, E.; Di Fabrizio, E.; Ferretti, E.; Tomao, S.; Gulino, A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int. J. Nanomedicine, 2012, 7, 3637-3657.
[PMID: 22915840]
[24]
Saadeh, Y.; Vyas, D. Nanorobotic applications in medicine: current proposals and designs. Am. J. Robot. Surg., 2014, 1(1), 4-11.
[http://dx.doi.org/10.1166/ajrs.2014.1010] [PMID: 26361635]
[25]
Hu, M.; Ge, X.; Chen, X.; Mao, W.; Qian, X.; Yuan, W-E. Micro/Nanorobot: A promising targeted drug delivery system. Pharmaceutics, 2020, 12(7), 665.
[http://dx.doi.org/10.3390/pharmaceutics12070665] [PMID: 32679772]
[26]
McNamara, K.; Tofail, S.A. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys. Chem. Chem. Phys., 2015, 17(42), 27981-27995.
[http://dx.doi.org/10.1039/C5CP00831J] [PMID: 26024211]
[27]
Sabuj, M.Z.R.; Islam, N. Nanophytomedicine: An effective way for improving drug delivery and bioavailability of herbal medicines. Nanophytomedicine; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-4909-0_4]
[28]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[29]
Oliveira, O.N., Jr; Iost, R.M.; Siqueira, J.R., Jr; Crespilho, F.N.; Caseli, L. Nanomaterials for diagnosis: Challenges and applications in smart devices based on molecular recognition. ACS Appl. Mater. Interfaces, 2014, 6(17), 14745-14766.
[http://dx.doi.org/10.1021/am5015056] [PMID: 24968359]
[30]
Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front Chem., 2014, 2, 63.
[http://dx.doi.org/10.3389/fchem.2014.00063] [PMID: 25221775]
[31]
Golovin, Y.I.; Gribanovsky, S.L.; Golovin, D.Y.; Klyachko, N.L.; Majouga, A.G.; Master, A.M.; Sokolsky, M.; Kabanov, A.V. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J. Control. Release, 2015, 219, 43-60.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.038] [PMID: 26407671]
[32]
Lu, H.; Wang, J.; Wang, T.; Zhong, J.; Bao, Y.; Hao, H. Recent progress on nanostructures for drug delivery applications. J. Nanomater., 2016, 2016, 20.
[http://dx.doi.org/10.1155/2016/5762431]
[33]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[34]
Kumari, A.; Kumar, V.; Yadav, S. Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med Res., 2012, 7, 34-42.
[http://dx.doi.org/10.3923/tmr.2012.34.42]
[35]
De Campos, A.M.; Sánchez, A.; Alonso, M.J. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm., 2001, 224(1-2), 159-168.
[http://dx.doi.org/10.1016/S0378-5173(01)00760-8] [PMID: 11472825]
[36]
Portero, A.; Remuñán-López, C.; Criado, M.T.; Alonso, M.J. Reacetylated chitosan microspheres for controlled delivery of anti-microbial agents to the gastric mucosa. J. Microencapsul., 2002, 19(6), 797-809.
[http://dx.doi.org/10.1080/0265204021000022761] [PMID: 12569028]
[37]
Fernández-Urrusuno, R.; Calvo, P.; Remuñán-López, C.; Vila-Jato, J.L.; Alonso, M.J. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm. Res., 1999, 16(10), 1576-1581.
[http://dx.doi.org/10.1023/A:1018908705446] [PMID: 10554100]
[38]
Artursson, P.; Lindmark, T.; Davis, S.S.; Illum, L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res., 1994, 11(9), 1358-1361.
[http://dx.doi.org/10.1023/A:1018967116988] [PMID: 7816770]
[39]
Al-Qadi, S.; Grenha, A.; Carrión-Recio, D.; Seijo, B.; Remuñán-López, C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: In vivo evaluation of insulin-loaded formulations. J. Control. Release, 2012, 157(3), 383-390.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.008] [PMID: 21864592]
[40]
Pistone, S.; Goycoolea, F.M.; Young, A.; Smistad, G.; Hiorth, M. Formulation of polysaccharide-based nanoparticles for local administration into the oral cavity. Eur. J. Pharm. Sci., 2017, 96, 381-389.
[http://dx.doi.org/10.1016/j.ejps.2016.10.012] [PMID: 27721043]
[41]
Silva, M.M.; Calado, R.; Marto, J.; Bettencourt, A.; Almeida, A.J.; Gonçalves, L.M.D. Chitosan Nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar. Drugs, 2017, 15(12), 370.
[http://dx.doi.org/10.3390/md15120370] [PMID: 29194378]
[42]
Liu, S.; Yang, S.; Ho, P.C. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J. Pharm. Sci., 2018, 13(1), 72-81.
[http://dx.doi.org/10.1016/j.ajps.2017.09.001] [PMID: 32104380]
[43]
Jain, A.; Jain, S.K. Optimization of chitosan nanoparticles for colon tumors using experimental design methodology. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1917-1926.
[http://dx.doi.org/10.3109/21691401.2015.1111236] [PMID: 26678861]
[44]
Peers, S.; Montembault, A.; Ladavière, C. Chitosan hydrogels for sustained drug delivery. J. Control. Release, 2020, 326, 150-163.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.012] [PMID: 32562854]
[45]
Md, S. Hasnain; Nayak, A.K.; Kurakula, M. Alginate nanoparticles in drug delivery. Alginates Drug Delivery; Eds.; Academic Press, 2020.
[46]
Sosnik, A. Alginate particles as platform for drug delivery by the oral route: state-of-the-art. ISRN Pharm., 2014, 2014926157
[http://dx.doi.org/10.1155/2014/926157] [PMID: 25101184]
[47]
Patil, N.H.; Devarajan, P.V. Insulin-loaded alginic acid nanoparticles for sublingual delivery. Drug Deliv., 2016, 23(2), 429-436.
[http://dx.doi.org/10.3109/10717544.2014.916769] [PMID: 24901208]
[48]
Haque, S.; Md, S.; Sahni, J.K.; Ali, J.; Baboota, S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J. Psychiatr. Res., 2014, 48(1), 1-12.
[http://dx.doi.org/10.1016/j.jpsychires.2013.10.011] [PMID: 24231512]
[49]
Costa, J.R.; Silva, N.C.; Sarmento, B.; Pintado, M. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(6), 1255-1262.
[http://dx.doi.org/10.1007/s10096-015-2344-7] [PMID: 25754770]
[50]
Román, J.V.; Galán, M.A.; del Valle, E.M.M. Preparation and preliminary evaluation of alginate crosslinked microcapsules as potential drug delivery system (DDS) for human lung cancer therapy. Biomed. Phys. Eng. Express, 2016, 2035015
[http://dx.doi.org/10.1088/2057-1976/2/3/035015]
[51]
Garrait, G.; Beyssac, E.; Subirade, M. Development of a novel drug delivery system: Chitosan nanoparticles entrapped in alginate microparticles. J. Microencapsul., 2014, 31(4), 363-372.
[http://dx.doi.org/10.3109/02652048.2013.858792] [PMID: 24697173]
[52]
Laffleur, F.; Michalek, M. Modified xanthan gum for buccal delivery-A promising approach in treating sialorrhea. Int. J. Biol. Macromol., 2017, 102, 1250-1256.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.123] [PMID: 28487193]
[53]
Huang, J.; Deng, Y.; Ren, J.; Chen, G.; Wang, G.; Wang, F.; Wu, X. Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery. Carbohydr. Polym., 2018, 186, 54-63.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.025] [PMID: 29456009]
[54]
Menzel, C.; Jelkmann, M.; Laffleur, F.; Bernkop-Schnürch, A. Nasal drug delivery: Design of a novel mucoadhesive and in situ gelling polymer. Int. J. Pharm., 2017, 517(1-2), 196-202.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.055] [PMID: 27890621]
[55]
Sun, B.; Zhang, M.; Shen, J.; He, Z.; Fatehi, P.; Ni, Y. Applications of cellulosebased materials in sustained drug delivery systems. Curr. Med. Chem., 2017.
[http://dx.doi.org/10.2174/0929867324666170705143308]
[56]
Abo-Elseoud, W.S.; Hassan, M.L.; Sabaa, M.W.; Basha, M.; Hassan, E.A.; Fadel, S.M. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int. J. Biol. Macromol., 2018, 111, 604-613.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.044] [PMID: 29325745]
[57]
George, D.; Maheswari, P.U.; Begum, K.M.M.S. Chitosan-cellulose hydrogel conjugated with L-histidine and zinc oxide nanoparticles for sustained drug delivery: Kinetics and in-vitro biological studies. Carbohydr. Polym., 2020, 236116101
[http://dx.doi.org/10.1016/j.carbpol.2020.116101] [PMID: 32172900]
[58]
Agarwal, T.; Narayana, S.N.; Pal, K.; Pramanik, K.; Giri, S.; Banerjee, I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int. J. Biol. Macromol., 2015, 75, 409-417.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.052] [PMID: 25680962]
[59]
Hansen, K.; Kim, G.; Desai, K.G.; Patel, H.; Olsen, K.F.; Curtis-Fisk, J.; Tocce, E.; Jordan, S.; Schwendeman, S.P. Feasibility investigation of cellulose polymers for mucoadhesive nasal drug delivery applications. Mol. Pharm., 2015, 12(8), 2732-2741.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00264] [PMID: 26097994]
[60]
Kesharwani, P.; Xie, L.; Banerjee, S.; Mao, G.; Padhye, S.; Sarkar, F.H.; Iyer, A.K. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf. B Biointerfaces, 2015, 136, 413-423.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043] [PMID: 26440757]
[61]
Zhu, J.; Shi, X. Dendrimer-based nanodevices for targeted drug delivery applications. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(34), 4199-4211.
[http://dx.doi.org/10.1039/c3tb20724b] [PMID: 32261015]
[62]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[63]
Tunki, L.; Kulhari, H.; Sistla, R.; Pooja, D. Dendrimer-based targeted drug delivery. Pharm. Appl. Dendrimers, Micro Nano Technol., Elsevier B.V. Eds., 2020, 107-129
[http://dx.doi.org/10.1016/B978-0-12-814527-2.00005-6]
[64]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39, 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[65]
Jain, K.; Gupta, U.; Jain, N.K. Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur. J. Pharm. Biopharm., 2014, 87(3), 500-509.
[http://dx.doi.org/10.1016/j.ejpb.2014.03.015] [PMID: 24698808]
[66]
Kaur, A.; Jain, K.; Mehra, N.K.; Jain, N.K. Development and characterization of surface engineered PPI dendrimers for targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 414-425.
[http://dx.doi.org/10.3109/21691401.2016.1160912] [PMID: 27027686]
[67]
Dimov, N.; Kastner, E.; Hussain, M.; Perrie, Y.; Szita, N. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci. Rep., 2017, 7(1), 12045.
[http://dx.doi.org/10.1038/s41598-017-11533-1] [PMID: 28935923]
[68]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[69]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[70]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv., 2016, 23(9), 3319-3329.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[71]
Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev., 2013, 113(3), 1904-2074.
[http://dx.doi.org/10.1021/cr300143v] [PMID: 23432378]
[72]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[73]
Nayak, A.K.; Hasnain, M.S., Eds.; Advanced Biopolymeric Systems for Drug Delivery; Advances in Material Research and Technology, 2020, pp. 317-338.
[http://dx.doi.org/10.1007/978-3-030-46923-8]
[74]
Balaji, A.B.; Pakalapati, H.; Khalid, M.; Walvekar, R.; Siddiqui, H. Natural and synthetic biocompatible and biodegradable polymers. Biodegradable and biocompatible polymer composites: processing, properties and applications. Woodhead Publishing series in composites science and engineering. Duxford; Shimpi, N.G., Ed.; Woodhead Publishing, 2017, pp. 3-32.
[75]
Bassas-Galia, M.; Follonier, S.; Pusnik, M.; Zinn, M. Natural polymers: a source of inspiration. Bioresorbable polymers for biomedical applications; Elsevier: New York, 2017, pp. 31-64.
[http://dx.doi.org/10.1016/B978-0-08-100262-9.00002-1]
[76]
Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater., 2010, 11(1)014104
[http://dx.doi.org/10.1088/1468-6996/11/1/014104] [PMID: 27877319]
[77]
Poole-Warren, L.; Patton, A. Introduction to biomedical polymers and biocompatibility. Biosynthetic polymers for medical applications; Elsevier: New York, 2016, pp. 3-31.
[http://dx.doi.org/10.1016/B978-1-78242-105-4.00001-8]
[78]
Pertici, G. Introduction to bioresorbable polymers for biomedical applications. Biosynthetic polymers for medical applications; Elsevier: New York, 2016, pp. 3-29.
[79]
Yu, Z.; Yu, M.; Zhang, Z.; Hong, G.; Xiong, Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res. Lett., 2014, 9(1), 343.
[http://dx.doi.org/10.1186/1556-276X-9-343] [PMID: 25114637]
[80]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H-S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[81]
Schwick, H.G.; Heide, K. Immunochemistry and immunology of collagen and gelatin. Bibl. Haematol., 1969, 33, 111-125.
[http://dx.doi.org/10.1159/000384833] [PMID: 4988117]
[82]
Ward, A.G.; Courts, A. The Science and Technology of Gelatin; Academic: New York, 1977.
[83]
Bajpai, A.K.; Choubey, J. Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. J. Mater. Sci. Mater. Med., 2006, 17(4), 345-358.
[http://dx.doi.org/10.1007/s10856-006-8235-9] [PMID: 16617413]
[84]
Stevens, K.R.; Einerson, N.J.; Burmania, J.A.; Kao, W.J. In vivo biocompatibility of gelatin-based hydrogels and interpenetrating networks. J. Biomater. Sci. Polym. Ed., 2002, 13(12), 1353-1366.
[http://dx.doi.org/10.1163/15685620260449741] [PMID: 12555901]
[85]
Vandervoort, J.; Ludwig, A. Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur. J. Pharm. Biopharm., 2004, 57(2), 251-261.
[http://dx.doi.org/10.1016/S0939-6411(03)00187-5] [PMID: 15018982]
[86]
Leo, E.; Arletti, R.; Forni, F.; Cameroni, R. General and cardiac toxicity of doxorubicin-loaded gelatin nanoparticles. Farmaco, 1997, 52(6-7), 385-388.
[PMID: 9372590]
[87]
Li, J.K.; Wang, N.; Wu, X.S. Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. J. Microencapsul., 1998, 15(2), 163-172.
[http://dx.doi.org/10.3109/02652049809006846] [PMID: 9532522]
[88]
Mladenovska, K.; Kumbaradzi, E.; Dodov, G.; Makraduli, L.; Goracinova, K. Biodegradation and drug release studies of BSA loaded gelatin microspheres. Int. J. Pharm., 2002, 242(1-2), 247-249.
[http://dx.doi.org/10.1016/S0378-5173(02)00167-9] [PMID: 12176256]
[89]
Wartlick, H.; Michaelis, K.; Balthasar, S.; Strebhardt, K.; Kreuter, J.; Langer, K. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J. Drug Target., 2004, 12(7), 461-471.
[http://dx.doi.org/10.1080/10611860400010697] [PMID: 15621671]
[90]
Langer, K.; Coester, C.; Weber, C.; von Briesen, H.; Kreuter, J. Preparation of avidin-labeled protein nanoparticles as carriers for biotinylated peptide nucleic acid. Eur. J. Pharm. Biopharm., 2000, 49(3), 303-307.
[http://dx.doi.org/10.1016/S0939-6411(00)00068-0] [PMID: 10799823]
[91]
Coester, C.; Kreuter, J.; von Briesen, H.; Langer, K. Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int. J. Pharm., 2000, 196(2), 147-149.
[http://dx.doi.org/10.1016/S0378-5173(99)00409-3] [PMID: 10699706]
[92]
Kommareddy, S.; Amiji, M. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug. Chem., 2005, 16(6), 1423-1432.
[http://dx.doi.org/10.1021/bc050146t] [PMID: 16287238]
[93]
Kushibiki, T.; Tabata, Y. Preparation of poly(ethylene glycol)-introduced cationized gelatin as a non-viral gene carrier. J. Biomater. Sci. Polym., 2005, 16, 1447.
[http://dx.doi.org/10.1163/156856205774472326]
[94]
Kaul, G.; Amiji, M. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm. Res., 2002, 19(7), 1061-1067.
[http://dx.doi.org/10.1023/A:1016486910719] [PMID: 12180540]
[95]
Mei, L.; Liu, Y.; Zhang, H.; Zhang, Z.; Gao, H.; He, Q. Antitumor and anti-metastasis activities of heparin-based micelle served as both carrier and drug. ACS. ACS Appl. Mater. Interfaces, 2016, 8(15), 9577-9589.
[http://dx.doi.org/10.1021/acsami.5b12347] [PMID: 27058058]
[96]
Du, Y.Z.; Weng, Q.; Yuan, H.; Hu, F.Q. Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery. ACS Nano, 2010, 4(11), 6894-6902.
[http://dx.doi.org/10.1021/nn100927t] [PMID: 20939508]
[97]
Szleifer, I. Polymers and proteins: interactions at interfaces. Curr. Opin. Solid State Mater. Sci., 1997, 2(3), 337-344.
[http://dx.doi.org/10.1016/S1359-0286(97)80125-8]
[98]
Mumper, R.J.; Hoffman, A.S. The stabilization and release of hirudin from liposomes or lipid-assemblies coated with hydrophobically modified dextran. AAPS PharmSciTech, 2000, 1(1)E3
[PMID: 14727852]
[99]
Jeong, Y.I.; Choi, K.C.; Song, C.E. Doxorubicin release from core-shell type nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran. Arch. Pharm. Res., 2006, 29(8), 712-719.
[http://dx.doi.org/10.1007/BF02968257] [PMID: 16964768]
[100]
Fernandez, B.B.; Concheiro, A.; Makwana, H. Dually sensitive dextran-based micelles for methotrexate delivery. RSC Advances, 2017, 7, 14448-14460.
[http://dx.doi.org/10.1039/C7RA00696A]
[101]
Nayak, A.K.; Pal, D. Natural polysaccharides for drug delivery in tissue engineering. Everyman’s Sci., 2012, 46, 347-352.
[102]
Malakar, J.; Nayak, A.K.; Das, A. Modified starch (cationized)-alginate beads containing aceclofenac: Formulation optimization using central composite design. Starch Stärke, 2013, 65, 603.
[http://dx.doi.org/10.1002/star.201200231]
[103]
Nayak, A.K.; Pal, D. Formulation optimization and evaluation of jackfruit seed starch-alginate mucoadhesive beads of metformin HCl. Int. J. Biol. Macromol., 2013, 59, 264-272.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.062] [PMID: 23628586]
[104]
Nayak, A.K.; Pal, D.; Santra, K. Artocarpus heterophyllus L. seed starch-blended gellan gum mucoadhesive beads of metformin HCl. Int. J. Biol. Macromol., 2014, 65, 329-339.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.022] [PMID: 24447799]
[105]
Nayak, A.K.; Hasnain, M.S. Potato starch based multiple units for oral drug delivery. Plant Polysaccharides-Based Multiple-Unit Systems for Oral Drug Delivery; Nayak, A.K; Hasnain, M.S., Ed.; Springer: Singapore, 2019, pp. 113-116.
[http://dx.doi.org/10.1007/978-981-10-6784-6_9]
[106]
Malakar, J.; Nayak, A.K.; Jana, P.; Pal, D. Potato starch-blended alginate beads for prolonged release of tolbutamide: development by statistical optimization and in vitro characterization. Asian J. Pharm., 2013, 7, 43-51.
[http://dx.doi.org/10.4103/0973-8398.110935]
[107]
Nayak, A.K.; Pal, D. Blends of jackfruit seed starch-pectin in the development of mucoadhesive beads containing metformin HCl. Int. J. Biol. Macromol., 2013, 62, 137-145.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.020] [PMID: 23994792]
[108]
Nayak, A.K.; Hasnain, M.S., Eds.; Advanced Biopolymeric Systems for Drug Delivery; Cham: Springer Nature, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy