Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Effect of Substrate on the Performance of Flexible Energy Storage Devices based on Surface Modified C60 – β Ni(OH)2 Nanocomposite

Author(s): Soorya Sasi*, Sunish K. Sugunan, Radhakrishnan Nair P. and Suresh Mathew*

Volume 14, Issue 1, 2022

Published on: 05 April, 2021

Page: [68 - 76] Pages: 9

DOI: 10.2174/1876402913666210405152403

Price: $65

Abstract

Aim: Aim of this study is to find the effect of the current collector on the performance of flexible energy storage devices based on surface modified organic-inorganic composite.

Objective: As a part of our pursuit to develop flexible supercapacitive electrodes, we recently reported the fabrication of an electrode from an organic-inorganic composite slurry of surface functionalized fullerene and nickel hydroxide coated onto a copper sheet substrate using simple doctor blade method. We reported that the electrodes deliver specific energy and specific power of 661.5 Wh/kg and 8.8 KW/kg, respectively, and a specific capacitance of 675 Fg−1, which showed excellent cycling stabilities. In an effort to search for various combinatorial combinations of the composite and the substrate, in lieu of copper, in the present study, we incorporate nickel sheet as the current collector.

Methods: The structure and composition of the binder-free, flexible, super capacitive electrodes were characterized using XRD, TEM, FTIR, XPS, BET, Raman Spectroscopy, and their electrochemical properties were characterized using cyclic voltammetry, galvanostatic charge-discharge measurements, chronoamperommetry and impedance spectroscopy.

Results: The as-prepared films stuck readily onto the substrate without the need for any binder material, exhibited remarkable flexibility, and were proven to be crack-free when subjected to repeated bending and twisting. The developed flexible, super capacitive electrodes deliver a specific capacitance of 296 F g−1, maximum energy density of 82.2 Wh kg−1, and a maximum power density of 1056 W kg−1. The device retains 91.2 % of its capacitance when subjected to 1000 charge-discharge cycles.

Conclusion: Our observations indicate that copper is the better choice as the current collector, which can be ascribed to the better electrical conductivity of copper compared to nickel. We conclude that the poor electrical conductivity of nickel sheet compared to copper substrate make the bottleneck for the performance of electrodes made using nickel substrate. To recapitulate, a judicious choice of a current collector with high electrical conductivity along with a suitable surface modification strategy to form a composite in an amorphous form that forms smooth slurry are vital to the fabrication of binder-free, flexible supercapacitive devices.

Keywords: Flexible, organic-inorganic, electrodes, fabrication, substrate, conductivity.

Graphical Abstract

[1]
Yassine, M.; Fabris, D. Performance of commercially available supercapacitors. Energies, 2017, 10(9), 1340.
[http://dx.doi.org/10.3390/en10091340]
[2]
Tang, Z.; Tang, C.H.; Gong, H. A high energy density asymmetric supercapacitor from nano‐architectured Ni(OH)2/Carbon nanotube electrodes. Adv. Funct. Mater., 2012, 22(6), 1272.
[http://dx.doi.org/10.1002/adfm.201102796]
[3]
Shi, F.; Li, L.; Wang, X.I.; Gu, C.D.; Tu, J.P. Shaped-controlled synthesis of porous NiCo2O4 with 1-3 dimensional hierarchical nanostructures for high-performance supercapacitors. RSC Advances, 2014, 4, 41910.
[4]
Xia, X.; Zhang, Y.; Chao, D.; Guan, C.; Zhang, Y.; Li, L.; Ge, X.; Bacho, I.M.; Tu, J.; Fan, H.J. Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6(10), 5008-5048.
[http://dx.doi.org/10.1039/C4NR00024B] [PMID: 24696018]
[5]
Jiang, H.; Li, C.; Sun, T.; Ma, J. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures. Chem. Commun. , 2012, 48(20), 2606.
[http://dx.doi.org/10.1039/c2cc18079k]
[6]
Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater., 2012, 22(12), 2632.
[http://dx.doi.org/10.1002/adfm.201102839]
[7]
Lu, H.; Chen, J.; Tian, Q. Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles. J. Colloid Interface Sci., 2018, 513, 342-348.
[http://dx.doi.org/10.1016/j.jcis.2017.11.046] [PMID: 29169023]
[8]
Wang, Q.; Liu, F.; Jin, Z.; Qiao, X.; Huang, H.; Chu, X.; Xiong, D.; Zhang, H.; Liu, Y.; Yang, W. Hierarchically divacancy defect building dual‐activated porous carbon fibers for high‐performance energy‐storage devices. Adv. Funct. Mater., 2020, 30(39)2002580
[http://dx.doi.org/10.1002/adfm.202002580]
[9]
Gu, B.; Su, H.; Chu, X.; Wang, Q.; Huang, H.; He, J.; Wu, T.; Deng, W.; Zhang, H.; Yang, W. Rationally assembled porous carbon superstructures for advanced supercapacitors. Chem. Eng. J., 2019, 361, 1296.
[http://dx.doi.org/10.1016/j.cej.2019.01.007]
[10]
Su, H.; Huang, H.; Zhang, H.; Chu, X.; Zhang, B.; Gu, B.; Zheng, X.; Wu, S.; He, W.; Yan, C.; Chen, J. In situ direct method to massively prepare hydrophilic porous carbide-derived carbons for high-performance supercapacitors. ACS App. Energy Mater., 2018, 1(18), 3544.
[11]
Bonnefoi, L.; Simon, P.; Fauvarque, J.; Sarrazin, C.; Sarrau, J.; Dugast, A. Electrode compositions for carbon power supercapacitors. J. Power Sources, 1999, 80, 149.
[http://dx.doi.org/10.1016/S0378-7753(99)00069-5]
[12]
Kouchachvili, L.; Maffei, N.; Entchev, E.J. Novel binding material for supercapacitor electrodes. Solid State Electrochem., 2014, 18, 2539.
[http://dx.doi.org/10.1007/s10008-014-2500-5]
[13]
Xue, Q.; Sun, J.; Huang, Y.; Zhu, M.; Pei, Z.; Li, H.; Wang, Y.; Li, N.; Zhang, H.; Zhi, C. Recent progress on flexible and wearable supercapacitors. Small, 2017, 13(45), 1701827.
[http://dx.doi.org/10.1002/smll.201701827] [PMID: 28941073]
[14]
Zhu, Z.; Tang, S.; Yuan, J.; Qin, X.; Deng, Y.; Qu, R.; Haarberg, G.M. Effects of various binders on supercapacitor performances. Int. J. Electrochem. Sci., 2016, 11, 8270.
[http://dx.doi.org/10.20964/2016.10.04]
[15]
Sasi, S.; Sugunan, S.K.; Radhakrishnan Nair, P.; Subramanian, K.R.V.; Mathew, S. Scope of surface-modified molecular and nanomaterials in gel/liquid forms for developing mechanically flexible DSSCs/QDSSCs. Photochem. Photobiol. Sci., 2019, 18(1), 15-29.
[http://dx.doi.org/10.1039/C8PP00293B] [PMID: 30398278]
[16]
Lakshmi, V.; Ranjusha, R.; Vineeth, S.; Nair, S.V.; Balakrishnan, A. Supercapacitors based on microporous β-Ni(OH)2 nanorods. Colloids Surf. A Physicochem. Eng. Asp., 2014, 457, 462-468.
[http://dx.doi.org/10.1016/j.colsurfa.2014.06.016]
[17]
Michinobu, T.; Nakanishi, T.; Hill, J.P.; Funahashi, M.; Ariga, K. Room temperature liquid fullerenes: an uncommon morphology of C60 derivatives. J. Am. Chem. Soc., 2006, 128(32), 10384-10385.
[http://dx.doi.org/10.1021/ja063866z] [PMID: 16895401]
[18]
Michinobu, T.; Okoshi, K.; Murakami, Y.; Shigehara, K.; Ariga, K.; Nakanishi, T. Structural requirements for producing solvent-free room temperature liquid fullerenes. Langmuir, 2013, 29(17), 5337-5344.
[http://dx.doi.org/10.1021/la400969f] [PMID: 23547957]
[19]
Mélinon, P.; Tournus, F.; Masenelli, B.; Perez, A.; Pellarin, M.; Lermé, J.; Broyer, M.; Champagnon, B. The European Phys. J. D-Atomic, molecular. Optical and Plasma Phys, 2001, 1, 337.
[20]
Yoshio, S.; Maki, K. Computational modeling of the effect of varying aqueous solutions on Ni(OH)2 precipitates. AIP Adv., 2018, 2025217
[http://dx.doi.org/10.1063/1.5020726]
[21]
Natarajan, R.; Palaniswamy, N.; Natesan, M.; Muralidharan, V.S. XPS analysis of passive film on stainless steel. Open Corros. J., 2009, 2(13), 114.
[http://dx.doi.org/10.2174/1876503300902010114]
[22]
Huang, J.; Xu, P.; Cao, D.; Zhou, X.; Yang, S.; Li, Y.; Wang, G. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density. J. Power Sources, 2014, 246, 371.
[http://dx.doi.org/10.1016/j.jpowsour.2013.07.105]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy