Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis and Binding Affinity Evaluation of Cytochrome P450 1B1 Targeted Chelators

Author(s): Dongmei Chen, Qiqi Fan, Ting Xu, Jinyun Dong, Jiahua Cui, Zengtao Wang, Jie Wang, Qingqing Meng* and Shaoshun Li*

Volume 22, Issue 2, 2022

Published on: 05 April, 2021

Page: [261 - 269] Pages: 9

DOI: 10.2174/1871520621666210405091645

Price: $65

conference banner
Abstract

Background: Cytochrome P450 1B1 (CYP1B1) is specifically expressed in a variety of tumors which makes it a promising imaging target of tumor.

Objective: We aimed to design and synthesize CYP1B1 targeted chelators for the potential application in positron emission tomography (PET) imaging of tumor.

Methods: 1,4,7-triazacyclononane-1,4-diiacetic acid (NODA) was connected to the CYP1B1 selective inhibitor we developed before through polyethylene glycol (PEG) linkers with different lengths. The inhibitory activities of chelators 6a-c against CYP1 family were evaluated by 7-ethoxyresorufin o-deethylation (EROD) assay. The manual docking between the chelators and the CYP1B1 was conducted subsequently. To determine the binding affinities of 6a-c to CYP1B1 in cells, we further performed a competition study at the cellular level.

Results: Among three chelators, 6a with the shortest linker showed the best inhibitory activity against CYP1B1. In the following molecular simulation study, protein-inhibitor complex of 6a showed the nearest F-heme distance which is consistent with the results of enzymatic assay. Finally, the cell based competitive assay proved the binding affinity of 6a-c to CYP1B1 enzyme.

Conclusion: We designed and synthesized a series of chelators which can bind to CYP1B1 enzyme in cancer cells.To our knowledge, this work is the first attempt to construct CYP1B1 targeted chelators for radiolabeling and we hope it will prompt the application of CYP1B1 imaging in tumor detection.

Keywords: Chelator, cytochrome P450 1B1, imaging agents, α-naphthoflavone derivative, radiopharmaceutical, PET.

Graphical Abstract

[1]
Weissleder, R. Molecular imaging in cancer. Science, 2006, 312(5777), 1168-1171.
[http://dx.doi.org/10.1126/science.1125949] [PMID: 16728630]
[2]
Waaijer, S.J.H.; Kok, I.C.; Eisses, B.; Schröder, C.P.; Jalving, M.; Brouwers, A.H.; Lub-de Hooge, M.N.; de Vries, E.G.E. Molecular imaging in cancer drug development. J. Nucl. Med., 2018, 59(5), 726-732.
[http://dx.doi.org/10.2967/jnumed.116.188045] [PMID: 29371402]
[3]
Clark, P.M.; Ebiana, V.A.; Gosa, L.; Cloughesy, T.F.; Nathanson, D.A. Harnessing preclinical molecular imaging to inform advances in personalized cancer medicine. J. Nucl. Med., 2017, 58(5), 689-696.
[http://dx.doi.org/10.2967/jnumed.116.181693] [PMID: 28385796]
[4]
Sarko, D.; Eisenhut, M.; Haberkorn, U.; Mier, W. Bifunctional chelators in the design and application of radiopharmaceuticals for oncological diseases. Curr. Med. Chem., 2012, 19(17), 2667-2688.
[http://dx.doi.org/10.2174/092986712800609751] [PMID: 22455579]
[5]
Lipowska, M.; Klenc, J.; Shetty, D.; Nye, J.A.; Shim, H.; Taylor, A.T. Al18F-NODA-butyric acid: biological evaluation of a new PET renal radiotracer. Nucl. Med. Biol., 2014, 41(3), 248-253.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.12.010] [PMID: 24533986]
[6]
Bernard-Gauthier, V.; Lepage, M.L.; Waengler, B.; Bailey, J.J.; Liang, S.H.; Perrin, D.M.; Vasdev, N.; Schirrmacher, R. Recent advances in F-18 radiochemistry: A focus on B-F-18, Si-F-18, Al-F-18, and C-F-18 radiofluorination via spirocyclic iodonium ylides. J. Nucl. Med., 2018, 59(4), 568-572.
[http://dx.doi.org/10.2967/jnumed.117.197095] [PMID: 29284673]
[7]
Bartholomae, M.D. Recent developments in the design of bifunctional chelators for metal-based radiopharmaceuticals used in positron emission tomography. Inorg. Chim. Acta, 2012, 389, 36-51.
[http://dx.doi.org/10.1016/j.ica.2012.01.061]
[8]
Guo, Y.; Ferdani, R.; Anderson, C.J. Preparation and biological evaluation of (64)Cu labeled Tyr(3)-octreotate using a phosphonic acid-based cross-bridged macrocyclic chelator. Bioconjug. Chem., 2012, 23(7), 1470-1477.
[http://dx.doi.org/10.1021/bc300092n] [PMID: 22663248]
[9]
Velikyan, I.; Maecke, H.; Langstrom, B. Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjug. Chem., 2008, 19(2), 569-573.
[http://dx.doi.org/10.1021/bc700341x] [PMID: 18205327]
[10]
Chen, F.; Zhu, B.; Pan, D.; Xu, Y.; Lin, X.; Yang, R.; Wang, L.; Yang, M. PET imaging of prostate cancer with F-18-Al-NODA-MATBBN. J. Radioanal. Nucl. Chem., 2016, 308(3), 905-911.
[http://dx.doi.org/10.1007/s10967-015-4577-4]
[11]
Park, J.A.; Lee, Y.J.; Ko, I.O.; Kim, T.J.; Chang, Y.; Lim, S.M.; Kim, K.M.; Kim, J.Y. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide. Biochem. Biophys. Res. Commun., 2014, 455(3-4), 246-250.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.155] [PMID: 25449282]
[12]
Dearling, J.L.J.; Voss, S.D.; Dunning, P.; Snay, E.; Fahey, F.; Smith, S.V.; Huston, J.S.; Meares, C.F.; Treves, S.T.; Packard, A.B. Imaging cancer using PET--the effect of the bifunctional chelator on the biodistribution of a (64)Cu-labeled antibody. Nucl. Med. Biol., 2011, 38(1), 29-38.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.07.003] [PMID: 21220127]
[13]
Weissleder, R.; Pittet, M.J. Imaging in the era of molecular oncology. Nature, 2008, 452(7187), 580-589.
[http://dx.doi.org/10.1038/nature06917] [PMID: 18385732]
[14]
Hancock, R.D. Chelate ring size and metal ion selection. The basis of selectivity for metal ions in open-chain ligands and macrocycles. J. Chem. Educ., 1992, 69(8), 615.
[http://dx.doi.org/10.1021/ed069p615]
[15]
Somboro, A.M.; Tiwari, D.; Bester, L.A.; Parboosing, R.; Chonco, L.; Kruger, H.G.; Arvidsson, P.I.; Govender, T.; Naicker, T.; Essack, S.Y. NOTA: a potent metallo-β-lactamase inhibitor. J. Antimicrob. Chemother., 2015, 70(5), 1594-1596.
[http://dx.doi.org/10.1093/jac/dku538] [PMID: 25567963]
[16]
Kubíček, V.; Böhmová, Z.; Ševčíková, R.; Vaněk, J.; Lubal, P.; Poláková, Z.; Michalicová, R.; Kotek, J.; Hermann, P. NOTA complexes with copper(II) and divalent metal ions: kinetic and thermodynamic studies. Inorg. Chem., 2018, 57(6), 3061-3072.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02929] [PMID: 29488748]
[17]
Stasiuk, G.J.; Long, N.J. The ubiquitous DOTA and its derivatives: the impact of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid on bio-medical imaging. Chem. Commun. (Camb.), 2013, 49(27), 2732-2746.
[http://dx.doi.org/10.1039/c3cc38507h] [PMID: 23392443]
[18]
Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharma-ceuticals. Chem. Soc. Rev., 2014, 43(1), 260-290.
[http://dx.doi.org/10.1039/C3CS60304K] [PMID: 24173525]
[19]
Cooper, M.S.; Ma, M.T.; Sunassee, K.; Shaw, K.P.; Williams, J.D.; Paul, R.L.; Donnelly, P.S.; Blower, P.J. Comparison of (64)Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjug. Chem., 2012, 23(5), 1029-1039.
[http://dx.doi.org/10.1021/bc300037w] [PMID: 22471317]
[20]
Shetty, D.; Choi, S.Y.; Jeong, J.M.; Lee, J.Y.; Hoigebazar, L.; Lee, Y.S.; Lee, D.S.; Chung, J.K.; Lee, M.C.; Chung, Y.K. Stable aluminium fluoride chelates with triazacyclononane derivatives proved by X-ray crystallography and 18F-labeling study. Chem. Commun. (Camb.), 2011, 47(34), 9732-9734.
[http://dx.doi.org/10.1039/c1cc13151f] [PMID: 21776539]
[21]
McBride, W.J.; Sharkey, R.M.; Karacay, H.; D’Souza, C.A.; Rossi, E.A.; Laverman, P.; Chang, C-H.; Boerman, O.C.; Goldenberg, D.M. A novel method of 18F radiolabeling for PET. J. Nucl. Med., 2009, 50(6), 991-998.
[http://dx.doi.org/10.2967/jnumed.108.060418] [PMID: 19443594]
[22]
Lam, P.Y.H.; Hillyar, C.R.T.; Able, S.; Vallis, K.A. Synthesis and evaluation of an 18 F-labeled derivative of F3 for targeting surface-expressed nucleolin in cancer and tumor endothelial cells. J. Labelled Comp. Radiopharm., 2016, 59(12), 492-499.
[http://dx.doi.org/10.1002/jlcr.3439] [PMID: 27594091]
[23]
D’Souza, C.A.; McBride, W.J.; Sharkey, R.M.; Todaro, L.J.; Goldenberg, D.M. High-yielding aqueous 18F-labeling of peptides via Al18F chelation. Bioconjug. Chem., 2011, 22(9), 1793-1803.
[http://dx.doi.org/10.1021/bc200175c] [PMID: 21805975]
[24]
Da Pieve, C.; Allott, L.; Martins, C.D.; Vardon, A.; Ciobota, D.M.; Kramer-Marek, G.; Smith, G. Efficient F-18 AlF radiolabeling of Z(HER3:8698) affibody molecule for imaging of HER3 positive tumors. Bioconjug. Chem., 2016, 27(8), 1839-1849.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00259] [PMID: 27357023]
[25]
Gourni, E.; Goncalves, V.; Denat, F.; Meyer, P.T.; Maecke, H.R. NODA-GA-PSMA: A versatile probe for SPECT/PET imaging of PSMA-positive tumors. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42, S174-S174.
[26]
Jacobson, O.; Zhu, L.; Ma, Y.; Weiss, I.D.; Sun, X.; Niu, G.; Kiesewetter, D.O.; Chen, X. Rapid and simple one-step F-18 labeling of peptides. Bioconjug. Chem., 2011, 22(3), 422-428.
[http://dx.doi.org/10.1021/bc100437q] [PMID: 21338096]
[27]
Basuli, F.; Zhang, X.; Williams, M.R.; Seidel, J.; Green, M.V.; Choyke, P.L.; Swenson, R.E.; Jagoda, E.M. One-pot synthesis and biodistribution of fluorine-18 labeled serum albumin for vascular imaging. Nucl. Med. Biol., 2018, 62-63, 63-70.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.05.004] [PMID: 29929114]
[28]
Hoigebazar, L.; Jeong, J.M.; Lee, J.Y.; Shetty, D.; Yang, B.Y.; Lee, Y.S.; Lee, D.S.; Chung, J.K.; Lee, M.C. Syntheses of 2-nitroimidazole derivatives conjugated with 1,4,7-triazacyclononane-N,N′-diacetic acid labeled with F-18 using an aluminum complex method for hypoxia imaging. J. Med. Chem., 2012, 55(7), 3155-3162.
[http://dx.doi.org/10.1021/jm201611a] [PMID: 22443100]
[29]
Hoigebazar, L.; Jeong, J.M.; Choi, S.Y.; Choi, J.Y.; Shetty, D.; Lee, Y.S.; Lee, D.S.; Chung, J.K.; Lee, M.C.; Chung, Y.K. Synthesis and characterization of nitroimidazole derivatives for 68Ga-labeling and testing in tumor xenografted mice. J. Med. Chem., 2010, 53(17), 6378-6385.
[http://dx.doi.org/10.1021/jm100545a] [PMID: 20690646]
[30]
Wang, W.; Liu, Z.; Li, Z. One-step (18)F labeling of non-peptidic bivalent integrin αvβ3 antagonist for cancer imaging. Bioconjug. Chem., 2015, 26(1), 24-28.
[http://dx.doi.org/10.1021/bc500590f] [PMID: 25551189]
[31]
Notni, J.; Reich, D.; Maltsev, O.V.; Kapp, T.G.; Steiger, K.; Hoffmann, F.; Esposito, I.; Weichert, W.; Kessler, H.; Wester, H-J. In vivo PET imaging of the cancer integrin alpha v beta 6 using Ga-68-labeled cyclic RGD nonapeptides. J. Nucl. Med., 2017, 58(4), 671-677.
[http://dx.doi.org/10.2967/jnumed.116.182824] [PMID: 27980050]
[32]
Singnurkar, A.; Poon, R.; Metser, U. Comparison of 18F-FDG-PET/CT and 18F-FDG-PET/MR imaging in oncology: a systematic review. Ann. Nucl. Med., 2017, 31(5), 366-378.
[http://dx.doi.org/10.1007/s12149-017-1164-5] [PMID: 28353197]
[33]
Chakraborty, D.; Basu, S.; Ulaner, G.A.; Alavi, A.; Kumar, R. Diagnostic role of fluorodeoxyglucose PET in breast cancer: a history to current application. PET Clin., 2018, 13(3), 355-361.
[http://dx.doi.org/10.1016/j.cpet.2018.02.011] [PMID: 30100075]
[34]
Valls, L.; Badve, C.; Avril, S.; Herrmann, K.; Faulhaber, P.; O’Donnell, J.; Avril, N. FDG-PET imaging in hematological malignancies. Blood Rev., 2016, 30(4), 317-331.
[http://dx.doi.org/10.1016/j.blre.2016.02.003] [PMID: 27090170]
[35]
Yilmaz Aksoy, S.; Halac, M. FDG PET/CT in pediatric Hodgkin’s lymphoma. Turk Onkoloji Dergisi-Turkish J. Onco., 2015, 30(4), 240-251.
[36]
Sanchez-Catasus, C.A.; Stormezand, G.N.; van Laar, P.J.; De Deyn, P.P.; Sanchez, M.A.; Dierckx, R.A.J.O. FDG-PET for prediction of AD dementia in mild cognitive impairment. A review of the state of the art with particular emphasis on the comparison with other neuroimaging modalities (MRI and perfusion SPECT). Curr. Alzheimer Res., 2017, 14(2), 127-142.
[http://dx.doi.org/10.2174/1567205013666160629081956] [PMID: 27357645]
[37]
Finessi, M.; Bisi, G.; Deandreis, D. Hyperglycemia and 18F-FDG PET/CT, issues and problem solving: a literature review. Acta Diabetol., 2020, 57(3), 253-262.
[http://dx.doi.org/10.1007/s00592-019-01385-8] [PMID: 31304560]
[38]
Kaira, K.; Sunaga, N.; Ishizuka, T.; Shimizu, K.; Yamamoto, N. The role of [18F]fluorodeoxyglucose positron emission tomography in thymic epithelial tumors. Cancer Imaging, 2011, 11(1), 195-201.
[PMID: 22138614]
[39]
Cho, S.Y.; Huff, D.T.; Jeraj, R.; Albertini, M.R. FDG PET/CT for assessment of immune therapy: Opportunities and understanding pitfalls. Semin. Nucl. Med., 2020, 50(6), 518-531.
[http://dx.doi.org/10.1053/j.semnuclmed.2020.06.001] [PMID: 33059821]
[40]
Fletcher, J.W.; Djulbegovic, B.; Soares, H.P.; Siegel, B.A.; Lowe, V.J.; Lyman, G.H.; Coleman, R.E.; Wahl, R.; Paschold, J.C.; Avrill, N.; Einhorn, L.H.; Suh, W.W. Samson’O, D.; Delbekell, D.; Gorman, M.; Shields, A. F., Recommendations on the use of F-18-FDG PET in oncology. J. Nucl. Med., 2008, 49(3), 480-508.
[http://dx.doi.org/10.2967/jnumed.107.047787] [PMID: 18287273]
[41]
Cook, G.J.R.; Wegner, E.A.; Fogelman, I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin. Nucl. Med., 2004, 34(2), 122-133.
[http://dx.doi.org/10.1053/j.semnuclmed.2003.12.003] [PMID: 15031812]
[42]
Ke, C.Y.; Mathias, C.J.; Green, M.A. Folate-receptor-targeted radionuclide imaging agents. Adv. Drug Deliv. Rev., 2004, 56(8), 1143-1160.
[http://dx.doi.org/10.1016/j.addr.2004.01.004] [PMID: 15094212]
[43]
van Dam, G.M.; Themelis, G.; Crane, L.M.; Harlaar, N.J.; Pleijhuis, R.G.; Kelder, W.; Sarantopoulos, A.; de Jong, J.S.; Arts, H.J.; van der Zee, A.G.; Bart, J.; Low, P.S.; Ntziachristos, V. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med., 2011, 17(10), 1315-1319.
[http://dx.doi.org/10.1038/nm.2472] [PMID: 21926976]
[44]
Katzenellenbogen, J.A. The quest for improving the management of breast cancer by functional imaging: The discovery and development of 16α-[18F]fluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl. Med. Biol., 2021, 92, 24-37.
[http://dx.doi.org/10.1016/j.nucmedbio.2020.02.007] [PMID: 32229068]
[45]
Kumar, M.; Salem, K.; Michel, C.; Jeffery, J.J.; Yan, Y.; Fowler, A.M. F-18-fluoroestradiol PET imaging of activating estrogen receptor-alpha mutations in breast cancer. J. Nucl. Med., 2019, 60(9), 1247-1252.
[http://dx.doi.org/10.2967/jnumed.118.224667] [PMID: 30850489]
[46]
Gao, F.; Peng, C.; Zhuang, R.; Guo, Z.; Liu, H.; Huang, L.; Li, H.; Xu, D.; Wen, X.; Fang, J.; Zhang, X. 18F-labeled ethisterone derivative for progesterone receptor targeted PET imaging of breast cancer. Nucl. Med. Biol., 2019, 72-73, 62-69.
[http://dx.doi.org/10.1016/j.nucmedbio.2019.07.001] [PMID: 31330414]
[47]
Wu, X.; You, L.; Zhang, D.; Gao, M.; Li, Z.; Xu, D.; Zhang, P.; Huang, L.; Zhuang, R.; Wu, H.; Zhang, X. Synthesis and preliminary evaluation of a 18 F-labeled ethisterone derivative [18 F]EAEF for progesterone receptor targeting. Chem. Biol. Drug Des., 2017, 89(4), 559-565.
[http://dx.doi.org/10.1111/cbdd.12878] [PMID: 27696769]
[48]
Mortimer, J.E.; Shively, J.E. Functional imaging of human epidermal growth factor receptor 2-positive breast cancers and a note about NOTA. J. Nucl. Med., 2019, 60(1), 23-25.
[http://dx.doi.org/10.2967/jnumed.118.220905] [PMID: 30573641]
[49]
Ulaner, G.A.; Lyashchenko, S.K.; Riedl, C.; Ruan, S.; Zanzonico, P.B.; Lake, D.; Jhaveri, K.; Zeglis, B.; Lewis, J.S.; O’Donoghue, J.A. First-in-human human epidermal growth factor receptor 2-targeted imaging using (89)Zr-Pertuzumab PET/CT: dosimetry and clinical application in patients with breast cancer. J. Nucl. Med., 2018, 59(6), 900-906.
[http://dx.doi.org/10.2967/jnumed.117.202010] [PMID: 29146695]
[50]
Gebhart, G.; Flamen, P.; De Vries, E.G.; Jhaveri, K.; Wimana, Z. Imaging diagnostic and therapeutic targets: Human epidermal growth factor receptor 2. J. Nucl. Med., 2016, 57(Suppl. 1), 81S-88S.
[http://dx.doi.org/10.2967/jnumed.115.157941] [PMID: 26834107]
[51]
Pyo, A.; Yun, M.; Kim, H.S.; Kim, T.Y.; Lee, J.J.; Kim, J.Y.; Lee, S.; Kwon, S.Y.; Bom, H.S.; Kim, H.S.; Kim, D.Y.; Min, J.J. (64)Cu-labeled repebody molecules for imaging of rpidermal growth factor receptor-expressing tumors. J. Nucl. Med., 2018, 59(2), 340-346.
[http://dx.doi.org/10.2967/jnumed.117.197020] [PMID: 28916621]
[52]
Alsibai, W.; Hahnenkamp, A.; Eisenblätter, M.; Riemann, B.; Schäfers, M.; Bremer, C.; Haufe, G.; Höltke, C. Fluorescent non-peptidic RGD mimetics with high selectivity for αVβ3 vs αIIbβ3 integrin receptor: novel probes for in vivo optical imaging. J. Med. Chem., 2014, 57(23), 9971-9982.
[http://dx.doi.org/10.1021/jm501197c] [PMID: 25384028]
[53]
Zheng, S.; Chen, Z.; Huang, C.; Chen, Y.; Miao, W. [99mTc]3PRGD2 for integrin receptor imaging of esophageal cancer: a comparative study with [18F]FDG PET/CT. Ann. Nucl. Med., 2019, 33(2), 135-143.
[http://dx.doi.org/10.1007/s12149-018-1315-3] [PMID: 30392070]
[54]
Barua, A.; Qureshi, T.; Bitterman, P.; Bahr, J.M.; Basu, S.; Edassery, S.L.; Abramowicz, J.S. Molecular targeted imaging of vascular endothelial growth factor receptor (VEGFR)-2 and anti-NMP autoantibodies detect ovarian tumor at early stage. Cancer Res., 2012, 72(8), 2455.
[55]
Hu, K.; Shang, J.; Xie, L.; Hanyu, M.; Zhang, Y.; Yang, Z.; Xu, H.; Wang, L.; Zhang, M-R. PET imaging of VEGFR with a novel Cu-64-labeled peptide. ACS Omega, 2020, 5(15), 8508-8514.
[http://dx.doi.org/10.1021/acsomega.9b03953] [PMID: 32337411]
[56]
Ulaner, G.A.; Riedl, C.C.; Dickler, M.N.; Jhaveri, K.; Pandit-Taskar, N.; Weber, W. Molecular imaging of biomarkers in breast cancer. J. Nucl. Med., 2016, 57(S1)(Suppl. 1), 53S-59S.
[http://dx.doi.org/10.2967/jnumed.115.157909] [PMID: 26834103]
[57]
Fowler, A.M.; Mankoff, D.A.; Joe, B.N. Imaging neoadjuvant therapy response in breast cancer. Radiology, 2017, 285(2), 358-375.
[http://dx.doi.org/10.1148/radiol.2017170180] [PMID: 29045232]
[58]
Ming, Y.; Wu, N.; Qian, T.; Li, X.; Wan, D.Q.; Li, C.; Li, Y.; Wu, Z.; Wang, X.; Liu, J.; Wu, N. Progress and future trends in PET/CT and PET/MRI molecular imaging approaches for breast cancer. Front. Oncol., 2020, 10, 1301.
[http://dx.doi.org/10.3389/fonc.2020.01301] [PMID: 32903496]
[59]
Hayes, C.L.; Spink, D.C.; Spink, B.C.; Cao, J.Q.; Walker, N.J.; Sutter, T.R. 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9776-9781.
[http://dx.doi.org/10.1073/pnas.93.18.9776] [PMID: 8790407]
[60]
Peter Guengerich, F.; Chun, Y.J.; Kim, D.; Gillam, E.M.; Shimada, T. Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat. Res., 2003, 523-524, 173-182.
[http://dx.doi.org/10.1016/S0027-5107(02)00333-0] [PMID: 12628515]
[61]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[62]
Murray, G.I.; Taylor, M.C.; McFadyen, M.C.; McKay, J.A.; Greenlee, W.F.; Burke, M.D.; Melvin, W.T. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res., 1997, 57(14), 3026-3031.
[PMID: 9230218]
[63]
Go, R.E.; Hwang, K.A.; Choi, K.C. Cytochrome P450 1 family and cancers. J. Steroid Biochem. Mol. Biol., 2015, 147, 24-30.
[http://dx.doi.org/10.1016/j.jsbmb.2014.11.003] [PMID: 25448748]
[64]
Gajjar, K.; Martin-Hirsch, P.L.; Martin, F.L. CYP1B1 and hormone-induced cancer. Cancer Lett., 2012, 324(1), 13-30.
[http://dx.doi.org/10.1016/j.canlet.2012.04.021] [PMID: 22561558]
[65]
Zhou, S-F.; Liu, J-P.; Chowbay, B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev., 2009, 41(2), 89-295.
[http://dx.doi.org/10.1080/03602530902843483] [PMID: 19514967]
[66]
McFadyen, M.C.; Murray, G.I. Cytochrome P450 1B1: a novel anticancer therapeutic target. Future Oncol., 2005, 1(2), 259-263.
[http://dx.doi.org/10.1517/14796694.1.2.259] [PMID: 16555997]
[67]
Dutour, R.; Roy, J.; Cortés-Benítez, F.; Maltais, R.; Poirier, D. Targeting cytochrome P450 (CYP) 1B1 enzyme with four series of A-ring substituted estrane derivatives: Design, synthesis, inhibitory activity, and selectivity. J. Med. Chem., 2018, 61(20), 9229-9245.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00907] [PMID: 30216063]
[68]
Cui, J.; Meng, Q.; Zhang, X.; Cui, Q.; Zhou, W.; Li, S. Design and synthesis of new alpha-Naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J. Med. Chem., 2015, 58(8), 3534-3547.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00265] [PMID: 25799264]
[69]
Meng, Q.; Wang, Z.; Cui, J.; Cui, Q.; Dong, J.; Zhang, Q.; Li, S. Design, synthesis, and biological evaluation of cytochrome P450 1B1 targeted molecular imaging probes for colorectal tumor detection. J. Med. Chem., 2018, 61(23), 10901-10909.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01633] [PMID: 30422652]
[70]
Yue, D.F.; Wang, M.L.; Deng, F.; Yin, W.T.; Zhao, H.D.; Zhao, X.M.; Xu, Z.C. Biomarker-targeted fluorescent probes for breast cancer imaging. Chin. Chem. Lett., 2018, 29(5), 648-656.
[http://dx.doi.org/10.1016/j.cclet.2018.01.046]
[71]
Yan, C.; Zhang, Y.; Guo, Z. Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coord. Chem. Rev., 2021, 427.
[72]
Yamaori, S.; Kushihara, M.; Yamamoto, I.; Watanabe, K. Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes. Biochem. Pharmacol., 2010, 79(11), 1691-1698.
[http://dx.doi.org/10.1016/j.bcp.2010.01.028] [PMID: 20117100]
[73]
Wang, A.; Savas, U.; Stout, C.D.; Johnson, E.F. Structural characterization of the complex between alpha-naphthoflavone and human cytochrome P450 1B1. J. Biol. Chem. 2011, 286(7), 5736-5743.
[http://dx.doi.org/10.1074/jbc.M110.204420] [PMID: 21147782]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy