Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Permeation of Hydroxypropyl-Beta-Cyclodextrin and Its Inclusion Complex Through Mouse Small Intestine Determined by Spectrophotometry

Author(s): Ping Yang, Jinhua Luo, Shuo Yan, Xiaohong Li and Qian Yao*

Volume 18, Issue 2, 2022

Published on: 29 March, 2021

Page: [199 - 207] Pages: 9

DOI: 10.2174/1573412917666210329145917

Price: $65

Abstract

Background: Cyclodextrins (CDs) are commonly used host molecules of inclusion complex. However, due to the lack of a sensitive determination method, the absorption process of CDs remains unclear.

Objective: In this study, an oleuropein (OL) inclusion complex employing hydroxylpropyl-betacyclodextrin (HP-beta-CD) as host molecules was prepared and the formation of inclusion complex was ascertained by FT-IR and DSC. Spectrophotometry was established for the determination of HP-beta-CD, based on the fact that the absorbance of phenolphthalein (PP) decreased in the presence of HP-beta-CD.

Methods: The assay conditions were optimized to augment the method sensitivity. Molecular docking was employed to verify the strong interaction between PP and HP-beta-CD. The permeation process of free HP-beta-CD, HP-beta-CD of OL inclusion complex, free OL, and OL in the inclusion complex, was examined using an in vitro mouse small intestine model.

Results: Though HP-beta-CD possessed a hydrophilic outside shell, it could permeate through the mouse small intestine quickly with a cumulative permeating amount of over 90% in 2 h. Free HPbeta- CD, the host molecule HP-beta-CD, and guest molecule OL of the inclusion complex exhibited consistent permeating profiles across the mouse small intestine.

Conclusion: The approach for the determination of HP-beta-CD was accurate and precise (%RSD=2.98).

Keywords: Hydroxylpropyl-beta-cyclodextrin, oleuropein, inclusion complex, phenolphthalein, spectrophotometry, intestinal permeation.

Graphical Abstract

[1]
Srihakulung, O.; Triamchaisri, N.; Toochinda, P.; Lawtrakul, L. Theoretical study on ferrocenyl hydrazones inclusion complexes with beta-cyclodextrin and its three methylated derivatives. J. Incl. Phenom. Macro. A, 2020, 98(1-2), 79-91.
[http://dx.doi.org/10.1007/s10847-020-01011-z]
[2]
Santos, A.C.; Costa, D.; Ferreira, L. Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Deliv. Transl. Res. A., 2020, 106, 105882.
[3]
Ogata, Y.; Inoue, Y.; Ikeda, N.; Murata, I.; Kanamoto, I. Improvement of stability due to a cyclamen aldehyde/beta-cyclodextrin inclusion complex. J. Mol. Struct., 2020, 1215, 128161.
[http://dx.doi.org/10.1016/j.molstruc.2020.128161]
[4]
Astray, G.; Mejuto, J.C.; Simal-Gandara, J. Latest developments in the application of cyclodextrin host-guest complexes in beverage technology processes. Food Hydrocoll., 2020, 106, 105882.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105882]
[5]
Wang, X.; Parvathaneni, V.; Shukla, S.K.; Kanabar, D.D.; Muth, A.; Gupta, V. Cyclodextrin complexation for enhanced stability and non-invasive pulmonary delivery of resveratrol-applications in non-small cell lung cancer treatment. AAPS PharmSciTech, 2020, 21(5), 183.
[http://dx.doi.org/10.1208/s12249-020-01724-x] [PMID: 32632576]
[6]
Tanase, I.M.; Sbarcea, L.; Ledeti, A. Physicochemical characterization and molecular modeling study of host-guest systems of aripiprazole and functionalized cyclodextrins. J. Therm. Anal. Calorim., 2020, 141(3), 1027-1039.
[http://dx.doi.org/10.1007/s10973-020-09549-3]
[7]
Leonis, G.; Christodoulou, E.; Ntountaniotis, D. Antihypertensive activity and molecular interactions of irbesartan in complex with 2-hydroxypropyl-β-cyclodextrin. Chem. Biol. Drug Des., 2020, 96(1), 668-683.
[http://dx.doi.org/10.1111/cbdd.13664] [PMID: 32691965]
[8]
Hedayati, N.; Montazer, M.; Mahmoudirad, M.; Toliyat, T. Ketoconazole and Ketoconazole/β-cyclodextrin performance on cotton wound dressing as fungal skin treatment. Carbohydr. Polym., 2020, 240, 116267.
[http://dx.doi.org/10.1016/j.carbpol.2020.116267] [PMID: 32475557]
[9]
Wang, H.; Luo, J.; Zhang, Y. Phospholipid/hydroxypropyl-β-cyclodextrin supramolecular complexes are promising candidates for efficient oral delivery of curcuminoids. Int. J. Pharm., 2020, 582, 119301.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119301] [PMID: 32268184]
[10]
Siva, S.; Li, C.; Cui, H.; Meenatchi, V.; Lin, L. Encapsulation of essential oil components with methyl-β-cyclodextrin using ultrasonication: Solubility, characterization, DPPH and antibacterial assay. Ultrason. Sonochem., 2020, 64, 104997.
[http://dx.doi.org/10.1016/j.ultsonch.2020.104997] [PMID: 32058914]
[11]
Morina, D.; Sessevmez, M.; Sinani, G.; Mulazimoglu, L.; Cevher, E. Oral tablet formulations containing cyclodextrin complexes of poorly water soluble cefdinir to enhance its bioavailability. J. Drug Deliv. Sci. Technol., 2020, 57, 101742.
[http://dx.doi.org/10.1016/j.jddst.2020.101742]
[12]
Das, S.; Mohanty, S.; Maharana, J.; Jena, S.R.; Nayak, J.; Subuddhi, U. Microwave-assisted beta-cyclodextrin/chrysin inclusion complexation: An economical and green strategy for enhanced hemocompatibility and chemosensitivity in vitro. J. Mol. Liq., 2020, 310, 113257.
[http://dx.doi.org/10.1016/j.molliq.2020.113257]
[13]
Buko, V.; Zavodnik, I.; Palecz, B. Betulin/2-hydroxypropyl-beta-cyclodextrin inclusion complex: Physicochemical characterization and hepatoprotective activity. J. Mol. Liq., 2020, 309, 113118.
[http://dx.doi.org/10.1016/j.molliq.2020.113118]
[14]
Tu, X.; Gao, F.; Ma, X. Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. J. Hazard. Mater., 2020, 396, 122776.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122776] [PMID: 32334288]
[15]
Ghanbari, M.H.; Norouzi, Z.; Ghanbari, M.M. Using a nanocomposite consist of Boron-doped reduced graphene oxide and electropolymerized beta-cyclodextrin for Flunitrazepam electrochemical sensor. Microchem. J., 2020, 156, 104994.
[http://dx.doi.org/10.1016/j.microc.2020.104994]
[16]
Sun, J.Y.; Liu, B.B.; Cai, L.Z.; Yu, J.; Guo, X.J. Chiral liquid chromatography-mass spectrometry (LC-MS/MS) method development with beta-cyclodextrin (beta-CD) derivatized chiral stationary phase for the enhanced separation and determination of flurbiprofen enantiomers: application to a stereoselective pharmacokinetic study. New J. Chem., 2020, 44(25), 10334-10342.
[http://dx.doi.org/10.1039/D0NJ01516D]
[17]
Rizvi, A.S.; Murtaza, G.; Irfan, M.; Xiao, Y.; Qu, F. Determination of kynurenine enantiomers by alpha-cyclodextrin, cationic-beta eta-cyclodextrin and their synergy complemented with stacking enrichment in capillary electrophoresis. J. Chromatogr. A., 2020, 1622, 461128.
[http://dx.doi.org/10.1016/j.chroma.2020.461128] [PMID: 32331779]
[18]
Wei, Y.; Kang, H.; Ren, Y.; Qin, G.; Shuang, S.; Dong, C. A simple method for the determination of enantiomeric composition of propranolol enantiomers. Analyst. (Lond.), 2013, 138(1), 107-110.
[http://dx.doi.org/10.1039/C2AN36003A] [PMID: 23139926]
[19]
Castejón, M.L.; Montoya, T.; Alarcón-de-la-Lastra, C.; Sánchez-Hidalgo, M. Cancer, cardiovascular, neurodegenerative, aging-related, and immunoinflammatory diseases. Antioxidants, 2020, 9(2), 149.
[http://dx.doi.org/10.3390/antiox9020149] [PMID: 32050687]
[20]
Mohandoss, S.; Atchudan, R.; Immanuel, Edison; T.N., J. Enhanced solubility of guanosine by inclusion complexes with cyclodextrin derivatives: Preparation, characterization, and evaluation. Carbohydr. Polym., 2019, 224, 115166.
[http://dx.doi.org/10.1016/j.carbpol.2019.115166] [PMID: 31472864]
[21]
Szaniszló, Z.; Fenyvesi, É.; Balla, J. Structure-stability study of cyclodextrin complexes with selected volatile hydrocarbon contaminants of soils. J. Incl. Phenom. Macro., 2005, 53, 241-248.
[http://dx.doi.org/10.1007/s10847-005-0245-6]
[22]
Aree, T.; Jongrungruangchok, S. Structure-antioxidant activity relationship of β-cyclodextrin inclusion complexes with olive tyrosol, hydroxytyrosol and oleuropein: Deep insights from X-ray analysis, DFT calculation and DPPH assay. Carbohydr. Polym., 2018, 199, 661-669.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.019] [PMID: 30143174]
[23]
Guo, X.Q.; Cao, M.; Liang, L.; Chen, F.; Yao, Q. Study on the active components and antioxidant strength of water extract from olive leaves. Food Res. Dev., 2019, 40(10), 26-30. [In Chinese
[24]
Quilaqueo, M.; Millao, S.; Luzardo-Ocampo, I. Inclusion of piperine in beta-cyclodextrin complexes improves their bioaccessibility and in vitro antioxidant capacity. Food Hydrocoll., 2019, 91, 143-152.
[http://dx.doi.org/10.1016/j.foodhyd.2019.01.011]
[25]
Xiao, Z.; Hou, W.; Kang, Y.; Niu, Y.; Kou, X. Encapsulation and sustained release properties of watermelon flavor and its characteristic aroma compounds from γ-cyclodextrin inclusion complexes. Food Hydrocoll., 2019, 97, 105202.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105202]
[26]
Kuwabara, T.; Takamura, M.; Matsushita, A. Phenolphthalein-modified alpha-cyclodextrin as a molecule-responsive colorless-to-color Change indicator. J. Org. Chem., 1998, 63, 8729-8735.
[http://dx.doi.org/10.1021/jo980613i]
[27]
Taguchi, K. Ransient binding mode of phenolphthalein beta-cyclodextrin complex-The lactone dianion as an induced transition-state analog trapped in beta-cyclodextrin. J. Chem. Soc. Perk., 1992, 1, 17-22.
[28]
Li, J.; Geng, S.; Wang, Y. The interaction mechanism of oligopeptides containing aromatic rings with β-cyclodextrin and its derivatives. Food Chem., 2019, 286, 441-448.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.021] [PMID: 30827631]
[29]
González-Mariscal, L.; Posadas, Y.; Miranda, J.; Uc, P.Y.; Ortega-Olvera, J.M.; Hernández, S. Strategies that target tight junctions for enhanced drug delivery. Curr. Pharm. Des., 2016, 22(35), 5313-5346.
[http://dx.doi.org/10.2174/1381612822666160720163656] [PMID: 27510485]
[30]
Chen, P.; Zhao, M.; Chen, Q.; Fan, L.; Gao, F.; Zhao, L. Absorption characteristics of chitobiose and chitopentaose in the human intestinal cell line Caco-2 and everted gut sacs. J. Agric. Food Chem., 2019, 67(16), 4513-4523.
[http://dx.doi.org/10.1021/acs.jafc.9b01355] [PMID: 30929431]
[31]
Chi, L.; Chen, L.; Zhang, J.; Zhao, J.; Li, S.; Zheng, Y. Development and application of bio-sample quantification to evaluate stability and pharmacokinetics of inulin-type fructo-oligosaccharides from Morinda Officinalis. J. Pharm. Biomed. Anal., 2018, 156, 125-132.
[http://dx.doi.org/10.1016/j.jpba.2018.04.028] [PMID: 29702390]
[32]
Kimura, M.; Maeshima, T.; Kubota, T.; Kurihara, H.; Masuda, Y.; Nomura, Y. Absorption of orally administered hyaluronan. J. Med. Food, 2016, 19(12), 1172-1179.
[http://dx.doi.org/10.1089/jmf.2016.3725] [PMID: 27982756]
[33]
Skuredina, A.A.; Tychinina, A.S.; Le-Deygen, I.M.; Belogurova, N.G.; Kudryashova, E.V. Regulation of properties of lipid membranes by interaction with 2-hydroxypropyl beta-cyclodextrin: Molecular details. Russ. J. Bioorganic Chem., 2020, 46(5), 692-701.
[http://dx.doi.org/10.1134/S1068162020050246]
[34]
Nakanishi, K.; Nadai, T.; Masada, M.; Miyajima, K. Effect of cyclodextrins on biological membrane. II. Mechanism of enhancement on the intestinal absorption of non-absorbable drug by cyclodextrins. Chem. Pharm. Bull. (Tokyo), 1992, 40(5), 1252-1256.
[http://dx.doi.org/10.1248/cpb.40.1252] [PMID: 1394642]
[35]
Zhang, H.; Huang, X.; Zhang, Y.; Gao, Y. Efficacy, safety and mechanism of HP-β-CD-PEI polymers as absorption enhancers on the intestinal absorption of poorly absorbable drugs in rats. Drug Dev. Ind. Pharm., 2017, 43(3), 474-482.
[http://dx.doi.org/10.1080/03639045.2016.1264412] [PMID: 27892724]
[36]
Durk, M.R.; Jones, N.S.; Liu, J. Understanding the effect of hydroxypropyl-beta-cyclodextrin on fenebrutinib absorption in an itraconazole-fenebrutinib drug-drug interaction study. Clin. Pharmacol. Ther. A., 2020, 108(6), 1224-1232.
[http://dx.doi.org/10.1002/cpt.1943]
[37]
Radić, K.; Dukovski, B.J.; Vitali Čepo, D. Influence of pomace matrix and cyclodextrin encapsulation on olive pomace polyphenols’ bioaccessibility and intestinal permeability. Nutrients, 2020, 12(3), 669.
[http://dx.doi.org/10.3390/nu12030669] [PMID: 32121413]
[38]
Réti-Nagy, K.; Malanga, M.; Fenyvesi, É. Endocytosis of fluorescent cyclodextrins by intestinal Caco-2 cells and its role in paclitaxel drug delivery. Int. J. Pharm., 2015, 496(2), 509-517.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.049] [PMID: 26498369]
[39]
Rosenbaum, A.I.; Zhang, G.; Warren, J.D.; Maxfield, F.R. Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc. Natl. Acad. Sci., 2010, 107(12), 5477-5482.
[http://dx.doi.org/10.1073/pnas.0914309107] [PMID: 20212119]
[40]
Fenyvesi, F.; Réti-Nagy, K.; Bacsó, Z. Fluorescently labeled methyl-beta-cyclodextrin enters intestinal epithelial Caco-2 cells by fluid-phase endocytosis. PLoS One, 2014, 9(1), e84856.
[http://dx.doi.org/10.1371/journal.pone.0084856] [PMID: 24416301]

© 2025 Bentham Science Publishers | Privacy Policy