Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Combinatorial Synthesis of Novel 3/5(3,5)-(Di)nitro/chloropaeonol Carbonyl Hydrazone Derivatives as Nematicidal Agents

Author(s): Genqiang Chen, Lina Zhu, Yanfei Xia, Jinming Yang, Song Zhang, Yuanhao Li, Xiaolong Guo, Di Sun, Jiaxuan He, Yuee Tian, Shengming Liu, Jia Jiang and Zhiping Che*

Volume 25, Issue 6, 2022

Published on: 24 March, 2021

Page: [1031 - 1039] Pages: 9

DOI: 10.2174/1386207324666210324145627

Price: $65

conference banner
Abstract

Background: Developing the high-efficiency and low-risk small-molecule greennematocide is the key of effective control of the nematodes. Paeonol, is a naturally occurring phenolic compound, isolated from the root bark of Paeonia suffruticosa and the whole plant of Cynanchum paniculatum. Due to its crucial phenolic ketone skeleton, modern biological science research has indicated that paeonol has a wide range of biological activities.

Methods: The structural modification of paeonol into paeonol carbonyl hydrazone derivatives is a potential approach for the development of novel nematodes, which showed more toxicity than paeonol. However, there are no reports on the nematicidal activity of paeonol carbonyl hydrazone derivatives to control Heterodera glycines.

Results: We always endeavor to discover and develop biorational natural products-based pesticidal agents, 4 significant intermediates and 21 novel 3/5(3,5)-(di)nitro/chloropaeonol carbonyl hydrazone derivatives were prepared, and their structures well characterized by 1H NMR, HRMS, MS, and mp. Due to the steric hindrance, the substituents on the C=N double bond of all hydrazine compounds adopted E configuration. Results of nematicidal activity revealed that, among all compounds, especially 5-nitropaeonol (5) and 3,5-dinitropaeonol (7) displayed the most potent nematicidal activity H. glycines in vivo with LC50 values of 0.0323 and 0.0367 mg/mL, respectively.

Conclusion: It suggested that for the 3/5(3,5)-(di)nitro/chloropaeonol carbonyl hydrazone derivatives, a nitro group introduced at C5 position of 1 was necessary for obtaining the potent compound as nematicidal agents. These preliminary results will pave the way for further modification of paeonol in the development of potential new nematicides.

Keywords: Natural bioresource, paeonol, hydrazine, nematicidal activity, botanical nematicides, combinatorial synthesis.

Graphical Abstract

[1]
Mitchum, M.G. Soybean resistance to the soybean cyst nematode Heterodera glycines: an update. Phytopathology, 2016, 106(12), 1444-1450.
[2]
Hartwig, J.; Sommer, H.; Müller, F. Nematicides. Encycl. Ind. Chem, 2008, 24, 1-35.
[3]
Roth, M.G.; Jacobs, J.L.; Napieralski, S.; Byrne, A.M.; Stouffer-Hopkins, A.; Warner, F.; Chilvers, M.I. Fluopyram suppresses population densities of Heterodera glycines in field and greenhouse studies in Michigan. Plant Dis., 2020, 104(5), 1305-1311.
[http://dx.doi.org/10.1094/PDIS-04-19-0874-RE] [PMID: 32155114]
[4]
Wu, H.Y.; Luo, M.; Zhang, L.Y.; Zhou, X.B. Nematicidal activity of fosthiazate against soybean cyst nematode Heterodera glycines. J. Nematol., 2019, 51, 1-9.
[http://dx.doi.org/10.21307/jofnem-2019-021] [PMID: 31088033]
[5]
Liu, S.M.; Che, Z.P.; Chen, G.Q. Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Prot., 2016, 84, 56-61.
[http://dx.doi.org/10.1016/j.cropro.2016.02.012]
[6]
Tian, Y.E.; Che, Z.P.; Sun, D.; He, J.X.; Lin, X.M.; Liu, S.M. In vitro effects of five different classes of fungicides on growth and development of Botrytis cinerea isolated from tree peony in China. HortScience, 2019, 54, 1984-1988.
[http://dx.doi.org/10.21273/HORTSCI14431-19]
[7]
Tian, Y.E.; Che, Z.P.; Sun, D.; Yang, Y.Y.; Lin, X.M.; Liu, S.M.; Liu, X.Y.; Gao, J. Resistance identification of tree peony varieties of different flowering time to gray mold pathogen Botrytis cinerea. HortScience, 2019, 54, 328-330.
[http://dx.doi.org/10.21273/HORTSCI13626-18]
[8]
Lai, Y.; Xiang, M.; Liu, S.; Li, E.; Che, Y.; Liu, X. A novel high-throughput nematicidal assay using embryo cells and larvae of Caenorhabditis elegans. Exp. Parasitol., 2014, 139, 33-41.
[http://dx.doi.org/10.1016/j.exppara.2014.02.012] [PMID: 24594258]
[9]
Chen, G.Q.; Xia, Y.F.; Yang, J.M.; Che, Z.P.; Sun, D.; Li, S.; Tian, Y.E.; Liu, S.M.; Jiang, J.; Lin, X.M. Controlled synthesis of N, N-dimethylarylsulfonamide derivatives as nematicidal agents. J. Asian Nat. Prod. Res., 2020, 22, 1197-1206.
[http://dx.doi.org/10.1080/10286020.2019.1694513] [PMID: 31773971]
[10]
D’Addabbo, T.; Argentieri, M.P.; Radicci, V.; Grassi, F.; Avato, P. Artemisia annua compounds have potential to manage root-knot and potato cyst nematodes. Ind. Crops Prod., 2017, 108, 195-200.
[http://dx.doi.org/10.1016/j.indcrop.2017.06.025]
[11]
Faizi, S.; Fayyaz, S.; Bano, S.; Iqbal, E.Y. Lubna; Siddiqi, H.; Naz, A. Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: structure-activity relationship studies against cyst nematode Heterodera zeae infective stage larvae. J. Agric. Food Chem., 2011, 59(17), 9080-9093.
[http://dx.doi.org/10.1021/jf201611b] [PMID: 21780738]
[12]
Kalaiselvi, D.; Mohankumar, A.; Shanmugam, G.; Thiruppathi, G.; Nivitha, S.; Sundararaj, P. Altitude-related changes in the phytochemical profile of essential oils extracted from Artemisia nilagirica and their nematicidal activity against Meloidogyne incognita. Ind. Crops Prod., 2019, 139111472
[http://dx.doi.org/10.1016/j.indcrop.2019.111472]
[13]
Liu, P.; Zhang, L.N.; Wang, X.S.; Gao, J.Y.; Yi, J.P.; Deng, R.X. Characterization of Paeonia ostii seed and oil sourced from different cultivation areas in China. Ind. Crops Prod., 2019, 133, 63-71.
[http://dx.doi.org/10.1016/j.indcrop.2019.01.054]
[14]
Mukhtar, T.; Kayani, M.Z.; Hussain, M.A. Nematicidal activities of Cannabis sativa L. and Zanthoxylum alatum Roxb. against Meloidogyne incognita. Ind. Crops Prod., 2013, 42, 447-453.
[http://dx.doi.org/10.1016/j.indcrop.2012.06.027]
[15]
Ntalli, N.G.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag. Sci., 2011, 67(3), 341-351.
[http://dx.doi.org/10.1002/ps.2070] [PMID: 21308960]
[16]
Caboni, P.; Ntalli, N.G.; Aissani, N.; Cavoski, I.; Angioni, A. Nematicidal activity of (E,E)-2,4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica. J. Agric. Food Chem., 2012, 60(4), 1146-1151.
[http://dx.doi.org/10.1021/jf2044586] [PMID: 22224661]
[17]
Caboni, P.; Sarais, G.; Aissani, N.; Tocco, G.; Sasanelli, N.; Liori, B.; Carta, A.; Angioni, A. Nematicidal activity of 2-thiophenecarboxaldehyde and methylisothiocyanate from caper (Capparis spinosa) against Meloidogyne incognita. J. Agric. Food Chem., 2012, 60(30), 7345-7351.
[http://dx.doi.org/10.1021/jf302075w] [PMID: 22769561]
[18]
Campbell, B.E.; Tarleton, M.; Gordon, C.P.; Sakoff, J.A.; Gilbert, J.; McCluskey, A.; Gasser, R.B. Norcantharidin analogues with nematocidal activity in Haemonchus contortus. Bioorg. Med. Chem. Lett., 2011, 21(11), 3277-3281.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.031] [PMID: 21536433]
[19]
Seo, S.M.; Kim, J.; Kim, E.; Park, H.M.; Kim, Y.J.; Park, I.K. Structure-activity relationship of aliphatic compounds for nematicidal activity against pine wood nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem., 2010, 58(3), 1823-1827.
[http://dx.doi.org/10.1021/jf902575f] [PMID: 20055406]
[20]
Zasada, I.A.; Meyer, S.L.F.; Morra, M.J. Brassicaceous seed meals as soil amendments to suppress the plant-parasitic nematodes Pratylenchus penetrans and Meloidogyne incognita. J. Nematol., 2009, 41(3), 221-227.
[PMID: 22736818]
[21]
Deng, R.X.; Yang, X.; Wang, Y.X.; Du, M.Z.; Hao, X.T.; Liu, P. Optimization of ultrasound-assisted extraction of monoterpene glycoside from oil peony seed cake. J. Food Sci., 2018, 83(12), 2943-2953.
[http://dx.doi.org/10.1111/1750-3841.14378] [PMID: 30415477]
[22]
Liu, P.; Zhang, Y.; Gao, J.Y.; Du, M.Z.; Zhang, K.; Zhang, J.L.; Xue, N.C.; Yan, M.; Qu, C.X.; Deng, R.X. HPLC-DAD analysis of 15 monoterpene glycosides in oil peony seed cakes sourced from different cultivation areas in China. Ind. Crops Prod., 2018, 118, 259-270.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.033]
[23]
Liu, P.; Zhang, Y.; Xu, Y.F.; Zhu, X.Y.; Xu, X.F.; Chang, S.; Deng, R.X. Three new monoterpene glycosides from oil peony seed cake. Ind. Crops Prod., 2018, 111, 371-378.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.043]
[24]
Liu, P.; Xu, Y.F.; Gao, X.D.; Zhu, X.Y.; Du, M.Z.; Wang, Y.X.; Deng, R.X.; Gao, J.Y. Optimization of ultrasonic-assisted extraction of oil from the seed kernels and isolation of monoterpene glycosides from the oil residue of Paeonia lactiflora Pall. Ind. Crops Prod., 2017, 107, 260-270.
[http://dx.doi.org/10.1016/j.indcrop.2017.04.013]
[25]
Zhang, Y.; Liu, P.; Gao, J.Y.; Wang, X.S.; Yan, M.; Xue, N.C.; Qu, C.X.; Deng, R.X. Paeonia veitchii seeds as a promising high potential by-product: Proximate composition, phytochemical components, bioactivity evaluation and potential applications. Ind. Crops Prod., 2018, 125, 248-260.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.067]
[26]
Hu, Y.S.; Han, X.; Yu, P.J.; Jiao, M.M.; Liu, X.H.; Shi, J.B. Novel paeonol derivatives: Design, synthesis and anti-inflammatory activity in vitro and in vivo. Bioorg. Chem., 2020, 98103735
[http://dx.doi.org/10.1016/j.bioorg.2020.103735] [PMID: 32171986]
[27]
Lai, P.H.; Tian, G.H.; Ji, X.H.; Liu, C.F.; Guo, Y.M. Synthesis and antimicrobial activity of novel 2¢-hydroxy-4¢-methoxy-3-nitrochalcone. Chin. J. Synth. Chem, 2010, 18, 465-467.
[28]
Chen, B.; Ning, M.; Yang, G. Effect of paeonol on antioxidant and immune regulatory activity in hepatocellular carcinoma rats. Molecules, 2012, 17(4), 4672-4683.
[http://dx.doi.org/10.3390/molecules17044672] [PMID: 22522397]
[29]
Lau, C.H.; Chan, C.M.; Chan, Y.W.; Lau, K.M.; Lau, T.W.; Lam, F.C.; Law, W.T.; Che, C.T.; Leung, P.C.; Fung, K.P.; Ho, Y.Y.; Lau, C.B.S. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine, 2007, 14(11), 778-784.
[http://dx.doi.org/10.1016/j.phymed.2007.01.007] [PMID: 17298878]
[30]
Tsai, C.Y.; Kapoor, M.; Huang, Y.P.; Lin, H.H.; Liang, Y.C.; Lin, Y.L.; Huang, S.C.; Liao, W.N.; Chen, J.K.; Huang, J.S.; Hsu, M.H. Synthesis and evaluation of aminothiazole-paeonol derivatives as potential anticancer agents. Molecules, 2016, 21(2), 145.
[http://dx.doi.org/10.3390/molecules21020145] [PMID: 26821004]
[31]
Yin, J.; Wu, N.; Zeng, F.; Cheng, C.; Kang, K.; Yang, H. Paeonol induces apoptosis in human ovarian cancer cells. Acta Histochem., 2013, 115(8), 835-839.
[http://dx.doi.org/10.1016/j.acthis.2013.04.004] [PMID: 23768958]
[32]
Chou, T.C. Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. Br. J. Pharmacol., 2003, 139(6), 1146-1152.
[http://dx.doi.org/10.1038/sj.bjp.0705360] [PMID: 12871833]
[33]
Che, Z.P.; Yang, J.M.; Sun, D.; Tian, Y.E.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Combinatorial synthesis of a series of paeonol-based phenylsulfonyl hydrazone derivatives as insecticidal agents. Comb. Chem. High Throughput Screen., 2020, 23(3), 232-238.
[http://dx.doi.org/10.2174/1386207323666200127121129] [PMID: 31985371]
[34]
Chen, G.Q.; Yang, J.M.; Sun, D.; Han, X.X.; Tian, Y.E.; Liu, S.M.; Jiang, J.; Che, Z.P. Syntheses and insecticidal activities of some paeonol-based phenylsulfonylhydrazone derivatives against Mythimna separata in vivo. Chem. Bull, 2020, 83, 139-143.
[35]
Tian, Y.E.; Sun, D.; Han, X.X.; Yang, J.M.; Zhang, S.; Feng, N.N.; Zhu, L.N.; Xu, Z.Y.; Che, Z.P.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Synthesis, anti-oomycete activity, and SAR studies of paeonol derivatives. J. Asian Nat. Prod. Res., 2021, 23, 138-149.
[http://dx.doi.org/10.1080/10286020.2020.1718116] [PMID: 32009450]
[36]
Jiang, Y.Q.; Ren, B.Q.; Lv, X.M.; Zhang, W.W.; Li, W.; Xu, G.Q. Design, synthesis and antifungal activity of novel paeonol derivatives linked with 1,2,3-triazole moiety by the click reaction. J. Chem. Res., 2015, 39, 243-246.
[http://dx.doi.org/10.3184/174751915X14284938334623]
[37]
Wu, X.H.; Wu, G.R.; Zhang, W.M.; Gu, G.P.; Sha, S.; Wang, X.D. The sulfonation of paeonol and survey of sulfonate and comparative study on bacteriostatic effects. In: J. Nanjing Norm. Univ. (Nat. Sci. Ed.);; , 2003. 26, pp. 99-102.
[38]
Liu, G.K.; Chen, Q.J.; Wu, Z.J.; Lin, Q.Y.; Xie, L.H. Inhibition of the infectivity of tobacco mosaic virus by paeonol. In: J. Fujian Agric. For. Uni. (Nat. Sci. Ed.);; , 2006. 35, pp. 17-20.
[39]
Chang, F.C.; Wu, G.R.; Wu, X.H.; Lu, C.M.; Zhang, W.M.; Shi, G.X. Freshness preservative effects of sodium paeonol sulfonate on Artemisia selengensis during storage. In: J. Nanjing Norm. Univ. (Nat. Sci. Ed.);; , 2005. 28, pp. 88-91.
[40]
Wu, T.; Shen, Q.; Wu, X.H.; Miao, Y.Q.; Wu, G.R. Comparison study on effects of panol and sodium paeonol sulfonate (SPS) on cherry fruits preservation. Shipin Kexue, 2007, 28, 330-334.
[41]
Tian, Y.E.; Sun, D.; Yang, J.M.; Che, Z.P.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Synthesis of sulfonate derivatives of maltol and their biological activity against Phytophthora capsici and Bursaphelenchus xylophilus in vitro. J. Asian Nat. Prod. Res., 2020, 22(6), 578-587.
[http://dx.doi.org/10.1080/10286020.2019.1608958] [PMID: 31046458]
[42]
Che, Z.; Zhang, S.; Shao, Y.; Fan, L.; Xu, H.; Yu, X.; Zhi, X.; Yao, X.; Zhang, R. Synthesis and quantitative structure-activity relationship (QSAR) study of novel N-arylsulfonyl-3-acylindole arylcarbonyl hydrazone derivatives as nematicidal agents. J. Agric. Food Chem., 2013, 61(24), 5696-5705.
[http://dx.doi.org/10.1021/jf400536q] [PMID: 23738496]
[43]
Che, Z.; Yu, X.; Fan, L.; Xu, H. Insight into dihalogenation of E-ring of podophyllotoxins, and their acyloxyation derivatives at the C4 position as insecticidal agents. Bioorg. Med. Chem. Lett., 2013, 23(20), 5592-5598.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.044] [PMID: 24018192]
[44]
Che, Z.P.; Yu, X.; Zhi, X.Y.; Fan, L.L.; Yao, X.J.; Xu, H. Synthesis of novel 4α-(acyloxy)-2¢(2¢,6¢)-(di)halogenopodophyllotoxin derivatives as insecticidal agents. J. Agric. Food Chem., 2013, 61, 8148-8155.
[http://dx.doi.org/10.1021/jf4025079] [PMID: 23915199]
[45]
Xia, Y.; Xie, S.; Ma, X.; Wu, H.; Wang, X.; Gao, X. The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiol. Lett., 2011, 322(2), 99-107.
[http://dx.doi.org/10.1111/j.1574-6968.2011.02336.x] [PMID: 21671997]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy