Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

认知未受损老年人白质高强度和白质-淀粉样蛋白沉积之间的纵向关联

卷 18, 期 1, 2021

发表于: 24 March, 2021

页: [8 - 13] 页: 6

弟呕挨: 10.2174/1567205018666210324125116

价格: $65

摘要

背景:白质(WM) β -淀粉样蛋白摄取被用作计算皮质标准摄取值比(SUVr)的参考区域。然而,白质高强度(WMH)可能对WM -淀粉样蛋白摄取有影响。我们的研究旨在调查认知功能正常的老年人WMH和WM -淀粉样蛋白沉积之间的关系。 方法:研究人员分析了83名阿尔茨海默病神经成像倡议(ADNI)数据集中的认知未受损个体的数据。所有参与者均有完整的基线和4年随访信息,包括WMH体积、WM 18F-AV-45 SUVr和认知功能,包括adni -记忆(ADNI-Mem)和adni -执行功能(ADNI-EF)评分。采用横断面和纵向线性回归分析来确定WMH和WM SUVr与认知测量之间的关系。 结果:基线时较低的WM 18F-AV-45 SUVr与较年轻的年龄(β=0.01, P=0.037)和较大的WMH体积(β=-0.049, P=0.048)相关。纵向分析发现WM 18F-AV-45 SUVr逐年增加与WM体积逐年减少相关(β=-0.016, P=0.041)。ADNI-Mem评分逐年下降与WM体积逐年增加(β=-0.070, P=0.001)、WM 18F-AV-45 SUVr逐年减少(β=0.559, P=0.030)和受教育年限减少(β=0.011, P=0.044)相关。wm18f - av - 45suvr与ADNI-EF无显著相关性(P>0.05)。 结论:WM中β -淀粉样蛋白沉积减少与认知未受损老年人更高的WMH负荷和记忆下降相关。使用WM 18F-AV-45 SUVr作为评估皮质18F-AV-45 SUVr的参考时,应考虑WMH体积。

关键词: 白质高强度,白质-淀粉样蛋白,认知功能,认知障碍,记忆功能障碍,高脂血症

[1]
Wen W, Sachdev P. The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage 2004; 22(1): 144-54.
[http://dx.doi.org/10.1016/j.neuroimage.2003.12.027] [PMID: 15110004]
[2]
Hopkins RO, Beck CJ, Burnett DL, Weaver LK, Victoroff J, Bigler ED. Prevalence of white matter hyperintensities in a young healthy population. J Neuroimag: Off J Am Soc Neuroimag 2006; 16(3): 243-51.
[http://dx.doi.org/10.1111/j.1552-6569.2006.00047.x]
[3]
de Leeuw FE, de Groot JC, Achten E, et al. Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 2001; 70(1): 9-14.
[http://dx.doi.org/10.1136/jnnp.70.1.9] [PMID: 11118240]
[4]
Murray ME, Senjem ML, Petersen RC, et al. Functional impact of white matter hyperintensities in cognitively normal elderly subjects. Arch Neurol 2010; 67(11): 1379-85.
[http://dx.doi.org/10.1001/archneurol.2010.280] [PMID: 21060015]
[5]
Frey BM, Petersen M, Mayer C, Schulz M, Cheng B, Thomalla G. Characterization of white matter hyperintensities in large-scale MRI-studies. Front Neurol 2019; 10: 238.
[http://dx.doi.org/10.3389/fneur.2019.00238] [PMID: 30972001]
[6]
Abraham HMA, Wolfson L, Moscufo N, Guttmann CRG, Kaplan RF, White WB. Cardiovascular risk factors and small vessel disease of the brain: Blood pressure, white matter lesions, and functional decline in older persons. J Cereb Blood Flow Metab 2016; 36(1): 132-42.
[http://dx.doi.org/10.1038/jcbfm.2015.121] [PMID: 26036933]
[7]
Tamura Y, Araki A. Diabetes mellitus and white matter hyperintensity. Geriatr Gerontol Int 2015; 15(Suppl. 1): 34-42.
[http://dx.doi.org/10.1111/ggi.12666] [PMID: 26671155]
[8]
Power MC, Deal JA, Sharrett AR, et al. Smoking and white matter hyperintensity progression: The ARIC-MRI Study. Neurology 2015; 84(8): 841-8.
[http://dx.doi.org/10.1212/WNL.0000000000001283] [PMID: 25632094]
[9]
Jimenez-Conde J, Biffi A, Rahman R, et al. Hyperlipidemia and reduced white matter hyperintensity volume in patients with ischemic stroke. Stroke 2010; 41(3): 437-42.
[http://dx.doi.org/10.1161/STROKEAHA.109.563502] [PMID: 20133919]
[10]
Scott JA, Braskie MN, Tosun D, et al. Cerebral amyloid is associated with greater white-matter hyperintensity accrual in cognitively normal older adults. Neurobiol Aging 2016; 48: 48-52.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.014] [PMID: 27639120]
[11]
Skoog I, Kern S, Zetterberg H, et al. Low cerebrospinal fluid Aβ42 and Aβ40 are related to white matter lesions in cognitively normal elderly. J Alzheimers Dis 2018; 62(4): 1877-86.
[http://dx.doi.org/10.3233/JAD-170950] [PMID: 29614655]
[12]
Grimmer T, Faust M, Auer F, et al. White matter hyperintensities predict amyloid increase in Alzheimer’s disease. Neurobiol Aging 2012; 33(12): 2766-73.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.01.016] [PMID: 22410648]
[13]
Lowe VJ, Lundt E, Knopman D, et al. Comparison of [18F]Flutemetamol and [11C]Pittsburgh Compound-B in cognitively normal young, cognitively normal elderly, and Alzheimer’s disease dementia individuals. Neuroimage Clin 2017; 16: 295-302.
[http://dx.doi.org/10.1016/j.nicl.2017.08.011] [PMID: 28856092]
[14]
Villemagne VL, Mulligan RS, Pejoska S, et al. Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2012; 39(6): 983-9.
[http://dx.doi.org/10.1007/s00259-012-2088-x] [PMID: 22398958]
[15]
Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 2008; 29(10): 1456-65.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.03.029] [PMID: 17499392]
[16]
Vandenberghe R, Van Laere K, Ivanoiu A, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: A phase 2 trial. Ann Neurol 2010; 68(3): 319-29.
[http://dx.doi.org/10.1002/ana.22068] [PMID: 20687209]
[17]
Landau SM, Fero A, Baker SL, Koeppe R, Mintun M, Chen K, et al. Measurement of longitudinal β-amyloid change with 18F-florbetapir PET and standardized uptake value ratios. J Nuc Med: Off Pub, Soc Nuc Med 2015; 56(4): 567-74.
[18]
Zeydan B, Schwarz CG, Lowe VJ, et al. Investigation of white matter PiB uptake as a marker of white matter integrity. Ann Clin Transl Neurol 2019; 6(4): 678-88.
[http://dx.doi.org/10.1002/acn3.741] [PMID: 31019992]
[19]
Goodheart AE, Tamburo E, Minhas D, et al. Reduced binding of Pittsburgh Compound-B in areas of white matter hyperintensities. Neuroimage Clin 2015; 9: 479-83.
[http://dx.doi.org/10.1016/j.nicl.2015.09.009] [PMID: 26594630]
[20]
Crane PK, Carle A, Gibbons LE, et al. Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging Behav 2012; 6(4): 502-16.
[http://dx.doi.org/10.1007/s11682-012-9186-z] [PMID: 22782295]
[21]
Gibbons LE, Carle AC, Mackin RS, et al. A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging Behav 2012; 6(4): 517-27.
[http://dx.doi.org/10.1007/s11682-012-9176-1] [PMID: 22644789]
[22]
Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004; 55(3): 306-19.
[http://dx.doi.org/10.1002/ana.20009] [PMID: 14991808]
[23]
van Gelderen P, de Zwart JA, Duyn JH. Pittfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med 2008; 59(4): 788-95.
[http://dx.doi.org/10.1002/mrm.21515] [PMID: 18383289]
[24]
Fodero-Tavoletti MT, Rowe CC, McLean CA, et al. Characterization of PiB binding to white matter in Alzheimer disease and other dementias. J Nucl Med 2009; 50(2): 198-204.
[http://dx.doi.org/10.2967/jnumed.108.057984] [PMID: 19164220]
[25]
Lowe VJ, Lundt ES, Senjem ML, et al. White matter reference region in PET studies of 11C-Pittsburgh compound B uptake: Effects of age and amyloid-β deposition. J Nucl Med 2018; 59(10): 1583-9.
[http://dx.doi.org/10.2967/jnumed.117.204271] [PMID: 29674420]
[26]
Braz ID, Fisher JP. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans. J Physiol 2016; 594(16): 4471-83.
[http://dx.doi.org/10.1113/JP271081] [PMID: 26435295]
[27]
Stankoff B, Freeman L, Aigrot M-S, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-¹¹C]-2-(4′-methylaminophenyl)- 6-hydroxybenzothiazole. Ann Neurol 2011; 69(4): 673-80.
[http://dx.doi.org/10.1002/ana.22320] [PMID: 21337603]
[28]
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol 2019; 18(7): 684-96.
[http://dx.doi.org/10.1016/S1474-4422(19)30079-1] [PMID: 31097385]
[29]
Murray ME, Vemuri P, Preboske GM, et al. A quantitative postmortem MRI design sensitive to white matter hyperintensity differences and their relationship with underlying pathology. J Neuropathol Exp Neurol 2012; 71(12): 1113-22.
[http://dx.doi.org/10.1097/NEN.0b013e318277387e] [PMID: 23147507]
[30]
Erten-Lyons D, Woltjer R, Kaye J, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age. Neurology 2013; 81(11): 977-83.
[http://dx.doi.org/10.1212/WNL.0b013e3182a43e45] [PMID: 23935177]
[31]
Cabeza R, Ciaramelli E, Olson IR, Moscovitch M. The parietal cortex and episodic memory: An attentional account. Nat Rev Neurosci 2008; 9(8): 613-25.
[http://dx.doi.org/10.1038/nrn2459] [PMID: 18641668]
[32]
Fletcher PC, Henson RNA. Frontal lobes and human memory: Insights from functional neuroimaging. Brain 2001; 124(Pt 5): 849-81.
[http://dx.doi.org/10.1093/brain/124.5.849] [PMID: 11335690]
[33]
Rizvi B, Lao PJ, Colón J, et al. Tract-defined regional white matter hyperintensities and memory. Neuroimage Clin 2020; 25: 102143.
[http://dx.doi.org/10.1016/j.nicl.2019.102143] [PMID: 31887716]
[34]
Wang Y-L, Chen W, Cai W-J, et al. Associations of white matter hyperintensities with cognitive decline: A longitudinal study. J Alzheimers Dis 2020; 73(2): 759-68.
[http://dx.doi.org/10.3233/JAD-191005] [PMID: 31839612]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy