Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

GCSF as a Potential Molecular Target for Overall Survival of Hepatocellular Carcinoma

Author(s): Heng Cao, Peng Guo, Xiaohui Wu, Jiankun Li, Chenlong Ge and Shunxiang Wang*

Volume 25, Issue 6, 2022

Published on: 22 March, 2021

Page: [1005 - 1023] Pages: 19

DOI: 10.2174/1386207324666210322124003

Abstract

Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive tract in the world. Therefore, it is important to carry out studies on the molecular mechanisms of early diagnosis and treatment of HCC to reduce mortality.

Methods: Bioinformatic analysis was performed to explore the significant role of GCSF on the occurrence and development of neoplasm. Differently expressed genes (DEGs) were screened, and the significant hub genes related to GCSF were identified by the multiple algorithms of Cytoscape. Functional annotation for DEGs, pathological stage, and overall survival analysis were implemented. In addition, the verification for the role of GCSF on HCC was made via the clinical samples. A total of 70 participates diagnosed as HCC were recruited from November 2014 to November 2019. The immunohistochemistry assay, qRT-PCR, receiver operating characteristic (ROC) curves, and overall survival analysis were carried out.

Results: GCSF was related to the tumor size, and the expression of GCSF was up-regulated in hepatocellular carcinoma tissues. The enrichment results of GO and KEGG analysis were mainly enriched in “Inflammatory response”, “Protein binding”, “Metabolic pathways”, and “Proteasome”. The tumor diameter (P < 0.001), and survival time (P < 0.001) were significantly associated with the expression of GCSF via the verification of clinical data. The univariate and multivariate Cox proportional regression analysis manifested that high expression of GCSF in patients with HCC was related to poor OS.

Conclusion: The expression level of GCSF is significantly associated with the prognostic survival of HCC, and it is expected to become a new prognostic marker of HCC, providing a novel idea for future basic research as well as targeted therapy.

Keywords: GCSF, hepatocellular carcinoma, overall survival, tumor diameter, bioinformatics, viral infection.

Next »
Graphical Abstract

[1]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends-An Update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[2]
Boland, P.; Wu, J. Systemic therapy for hepatocellular carcinoma: beyond sorafenib. Linchuang Zhongliuxue Zazhi, 2018, 7(5), 50.
[http://dx.doi.org/10.21037/cco.2018.10.10] [PMID: 30395717]
[3]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[5]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[6]
Burke, S. Health care financing’s federal heritage. Calif. Nurse, 1986, 82(10), 8-9.
[PMID: 3098381]
[7]
Ronot, M.; Purcell, Y.; Vilgrain, V. Hepatocellular Carcinoma: Current Imaging Modalities for Diagnosis and Prognosis. Dig. Dis. Sci., 2019, 64(4), 934-950.
[http://dx.doi.org/10.1007/s10620-019-05547-0] [PMID: 30825108]
[8]
Tsuchiya, N.; Sawada, Y.; Endo, I.; Saito, K.; Uemura, Y.; Nakatsura, T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J. Gastroenterol., 2015, 21(37), 10573-10583.
[http://dx.doi.org/10.3748/wjg.v21.i37.10573] [PMID: 26457017]
[9]
Jiang, Y.; Sun, A.; Zhao, Y.; Ying, W.; Sun, H.; Yang, X.; Xing, B.; Sun, W.; Ren, L.; Hu, B.; Li, C.; Zhang, L.; Qin, G.; Zhang, M.; Chen, N.; Zhang, M.; Huang, Y.; Zhou, J.; Zhao, Y.; Liu, M.; Zhu, X.; Qiu, Y.; Sun, Y.; Huang, C.; Yan, M.; Wang, M.; Liu, W.; Tian, F.; Xu, H.; Zhou, J.; Wu, Z.; Shi, T.; Zhu, W.; Qin, J.; Xie, L.; Fan, J.; Qian, X.; He, F. Chinese Human Proteome Project (CNHPP) Consortium. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature, 2019, 567(7747), 257-261.
[http://dx.doi.org/10.1038/s41586-019-0987-8] [PMID: 30814741]
[10]
Lieschke, G.J.; Burgess, A.W. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (1). N. Engl. J. Med., 1992, 327(1), 28-35.
[http://dx.doi.org/10.1056/NEJM199207023270106] [PMID: 1375975]
[11]
Nagata, H.; Komatsu, S.; Takaki, W.; Okayama, T.; Sawabe, Y.; Ishii, M.; Kishimoto, M.; Otsuji, E.; Konosu, H. Granulocyte colony-stimulating factor-producing hepatocellular carcinoma with abrupt changes. World J. Clin. Oncol., 2016, 7(5), 380-386.
[http://dx.doi.org/10.5306/wjco.v7.i5.380] [PMID: 27777880]
[12]
Iwasa, K.; Noguchi, M.; Mori, K.; Ohta, N.; Miyazaki, I.; Nonomura, A.; Mizukami, Y.; Nakamura, S.; Michigishi, T. Anaplastic thyroid carcinoma producing the granulocyte colony stimulating factor (G-CSF): report of a case. Surg. Today, 1995, 25(2), 158-160.
[http://dx.doi.org/10.1007/BF00311090] [PMID: 7539648]
[13]
Hori, S.; Miyake, M.; Onishi, S.; Morizawa, Y.; Nakai, Y.; Tatsumi, Y.; Onishi, K.; Iida, K.; Gotoh, D.; Itami, Y.; Tanaka, N.; Fujimoto, K. Evaluation of pro and anti tumor effects induced by three colony stimulating factors, G CSF, GM CSF and M CSF, in bladder cancer cells: Is G CSF a friend of bladder cancer cells? Int. J. Oncol., 2019, 54(6), 2237-2249.
[http://dx.doi.org/10.3892/ijo.2019.4772] [PMID: 31081057]
[14]
Izumo, W.; Furukawa, K.; Katsuragawa, H.; Tezuka, T.; Furukawa, T.; Hataji, K.; Komatsu, A.; Shigematsu, K.; Yamamoto, M. Granulocyte-colony stimulating factor-producing gallbladder carcinoma-include analysis all case reports: A case report. Int. J. Surg. Case Rep., 2016, 21, 87-90.
[http://dx.doi.org/10.1016/j.ijscr.2016.02.037] [PMID: 26945490]
[15]
Moro, K.; Nagahashi, M.; Naito, T.; Nagai, Y.; Katada, T.; Minagawa, M.; Hasegawa, J.; Tani, T.; Shimakage, N.; Usuda, H.; Gabriel, E.; Kawaguchi, T.; Takabe, K.; Wakai, T. Gastric adenosquamous carcinoma producing granulocyte-colony stimulating factor: a case of a rare malignancy. Surg. Case Rep., 2017, 3(1), 67.
[http://dx.doi.org/10.1186/s40792-017-0338-7] [PMID: 28493097]
[16]
Kaminska, J.; Kowalska, M.; Kotowicz, B.; Fuksiewicz, M.; Glogowski, M.; Wojcik, E.; Chechlinska, M.; Steffen, J. Pretreatment serum levels of cytokines and cytokine receptors in patients with non-small cell lung cancer, and correlations with clinicopathological features and prognosis. M-CSF - an independent prognostic factor. Oncology, 2006, 70(2), 115-125.
[http://dx.doi.org/10.1159/000093002] [PMID: 16645324]
[17]
Aapro, M.; Krendyukov, A.; Höbel, N.; Gascon, P. Treatment patterns and outcomes in patients with non-small cell lung cancer receiving biosimilar filgrastim for prophylaxis of chemotherapy-induced/febrile neutropaenia: Results from the MONITOR-GCSF study. Eur. J. Cancer Care (Engl.), 2019, 28(4)e13034
[http://dx.doi.org/10.1111/ecc.13034] [PMID: 30968997]
[18]
Sakamoto, Y.; Kamiyama, T.; Yokoo, H.; Shimada, S.; Einama, T.; Wakayama, K.; Orimo, T.; Kamachi, H.; Naka, T.; Mitsuhashi, T.; Taketomi, A. Hepatocellular carcinoma producing granulocyte colony-stimulating factor: diagnosis and treatment. Int Cancer Conf J, 2018, 8(1), 12-16.
[http://dx.doi.org/10.1007/s13691-018-0346-x] [PMID: 31149540]
[19]
Li, C.; Zhou, D.; Jiang, X.; Liu, M.; Tang, H.; Mei, Z. Identifying hepatocellular carcinoma-related hub genes by bioinformatics analysis and CYP2C8 is a potential prognostic biomarker. Gene, 2019, 698, 9-18.
[http://dx.doi.org/10.1016/j.gene.2019.02.062] [PMID: 30825595]
[20]
Zhou, S.L.; Zhou, Z.J.; Hu, Z.Q.; Song, C.L.; Luo, Y.J.; Luo, C.B.; Xin, H.Y.; Yang, X.R.; Shi, Y.H.; Wang, Z.; Huang, X.W.; Cao, Y.; Fan, J.; Zhou, J. Genomic sequencing identifies WNK2 as a driver in hepatocellular carcinoma and a risk factor for early recurrence. J. Hepatol., 2019, 71(6), 1152-1163.
[http://dx.doi.org/10.1016/j.jhep.2019.07.014] [PMID: 31349001]
[21]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[PMID: 23193258]
[22]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7)e47
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[23]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[24]
Su, G; Morris, JH; Demchak, B; Bader, GD Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics., 2014. 47, 8.13.1-24.
[25]
Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res., 2015, 43(Database issue), D1049-D1056.
[PMID: 25428369]
[26]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[27]
Dennis, G., Jr; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol., 2003, 4(5), 3.
[http://dx.doi.org/10.1186/gb-2003-4-5-p3] [PMID: 12734009]
[28]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[29]
Maere, S.; Heymans, K.; Kuiper, M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21(16), 3448-3449.
[http://dx.doi.org/10.1093/bioinformatics/bti551] [PMID: 15972284]
[30]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[31]
Shi, Y.; Yang, F.; Wei, S.; Xu, G. Identification of Key Genes Affecting Results of Hyperthermia in Osteosarcoma Based on Integrative ChIP-Seq/TargetScan Analysis. Med. Sci. Monit., 2017, 23, 2042-2048.
[http://dx.doi.org/10.12659/MSM.901191] [PMID: 28453502]
[32]
Mente, S.; Kuhn, M. The use of the R language for medicinal chemistry applications. Curr. Top. Med. Chem., 2012, 12(18), 1957-1964.
[http://dx.doi.org/10.2174/156802612804910322] [PMID: 23110531]
[33]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[34]
Hou, G.X.; Liu, P.; Yang, J.; Wen, S. Mining expression and prognosis of topoisomerase isoforms in non-small-cell lung cancer by using Oncomine and Kaplan-Meier plotter. PLoS One, 2017, 12(3)e0174515
[http://dx.doi.org/10.1371/journal.pone.0174515] [PMID: 28355294]
[35]
Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; McMorran, R.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. The Comparative Toxicogenomics Database: update 2019. Nucleic Acids Res., 2019, 47(D1), D948-D954.
[http://dx.doi.org/10.1093/nar/gky868] [PMID: 30247620]
[36]
Novikova, M.V.; Khromova, N.V.; Kopnin, P.B. Components of the Hepatocellular Carcinoma Microenvironment and Their Role in Tumor Progression. Biochemistry (Mosc.), 2017, 82(8), 861-873.
[http://dx.doi.org/10.1134/S0006297917080016] [PMID: 28941454]
[37]
Kanaya, N.; Aoki, H.; Yamasaki, R.; Morihiro, T.; Takeuchi, H. Granulocyte Colony-Stimulating Factor-Producing Gallbladder Cancer. Acta Med. Okayama, 2016, 70(5), 393-396.
[PMID: 27777433]
[38]
Morris, K.T.; Castillo, E.F.; Ray, A.L.; Weston, L.L.; Nofchissey, R.A.; Hanson, J.A.; Samedi, V.G.; Pinchuk, I.V.; Hudson, L.G.; Beswick, E.J. Anti-G-CSF treatment induces protective tumor immunity in mouse colon cancer by promoting protective NK cell, macrophage and T cell responses. Oncotarget, 2015, 6(26), 22338-22347.
[http://dx.doi.org/10.18632/oncotarget.4169] [PMID: 26061815]
[39]
Morris, K.T. Khan, H.; Ahmad, A.; Weston, L.L.; Nofchissey, R.A.; Pinchuk, I.V.; Beswick, E.J. G-CSF and G-CSFR are highly expressed in human gastric and colon cancers and promote carcinoma cell proliferation and migration. Br. J. Cancer, 2014, 110(5), 1211-1220.
[http://dx.doi.org/10.1038/bjc.2013.822] [PMID: 24448357]
[40]
Asano, S.; Urabe, A.; Okabe, T.; Sato, N.; Kondo, Y. Demonstration of granulopoietic factor(s) in the plasma of nude mice transplanted with a human lung cancer and in the tumor tissue. Blood, 1977, 49(5), 845-852.
[http://dx.doi.org/10.1182/blood.V49.5.845.845] [PMID: 300638]
[41]
Joshita, S.; Nakazawa, K.; Koike, S.; Kamijo, A.; Matsubayashi, K.; Miyabayashi, H.; Furuta, K.; Kitano, K.; Yoshizawa, K.; Tanaka, E. A case of granulocyte-colony stimulating factor-producing hepatocellular carcinoma confirmed by immunohistochemistry. J. Korean Med. Sci., 2010, 25(3), 476-480.
[http://dx.doi.org/10.3346/jkms.2010.25.3.476] [PMID: 20191051]
[42]
Mabuchi, S.; Matsumoto, Y.; Morii, E.; Morishige, K.; Kimura, T. The first 2 cases of granulocyte colony-stimulating factor producing adenocarcinoma of the uterine cervix. Int. J. Gynecol. Pathol., 2010, 29(5), 483-487.
[http://dx.doi.org/10.1097/PGP.0b013e3181d29729] [PMID: 20736776]
[43]
Hasegawa, S.; Suda, T.; Negi, K.; Hattori, Y. Lung large cell carcinoma producing granulocyte-colony-stimulating factor. Ann. Thorac. Surg., 2007, 83(1), 308-310.
[http://dx.doi.org/10.1016/j.athoracsur.2006.04.049] [PMID: 17184692]
[44]
Segawa, K.; Ueno, Y.; Kataoka, T. In vivo tumor growth enhancement by granulocyte colony-stimulating factor. Jpn. J. Cancer Res., 1991, 82(4), 440-447.
[http://dx.doi.org/10.1111/j.1349-7006.1991.tb01868.x] [PMID: 1710615]
[45]
Wang, J.; Yao, L.; Zhao, S.; Zhang, X.; Yin, J.; Zhang, Y.; Chen, X.; Gao, M.; Ling, E.A.; Hao, A.; Li, G. Granulocyte-colony stimulating factor promotes proliferation, migration and invasion in glioma cells. Cancer Biol. Ther., 2012, 13(6), 389-400.
[http://dx.doi.org/10.4161/cbt.19237] [PMID: 22313638]
[46]
Kowanetz, M.; Wu, X.; Lee, J.; Tan, M.; Hagenbeek, T.; Qu, X.; Yu, L.; Ross, J.; Korsisaari, N.; Cao, T.; Bou-Reslan, H.; Kallop, D.; Weimer, R.; Ludlam, M.J.; Kaminker, J.S.; Modrusan, Z.; van Bruggen, N.; Peale, F.V.; Carano, R.; Meng, Y.G.; Ferrara, N. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21248-21255.
[http://dx.doi.org/10.1073/pnas.1015855107] [PMID: 21081700]
[47]
Kakinoki, K.; Takemori, Y.; Noda, Y.; Hoso, M. [An autopsy case of intrahepatic cholangiocarcinoma producing granulocyte-colony stimulating factor]. Nippon Shokakibyo Gakkai Zasshi, 2000, 97(9), 1165-1169.
[PMID: 11021096]
[48]
Suzumura, K.; Iimuro, Y.; Asano, Y.; Kuroda, N.; Hirano, T.; Yamanaka, J.; Okada, T.; Okamoto, T.; Torii, I.; Fujimoto, J. Granulocyte-colony stimulating factor-producing gallbladder carcinoma. Int. Surg., 2014, 99(5), 577-583.
[http://dx.doi.org/10.9738/INTSURG-D-13-00129.1] [PMID: 25216424]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy