Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Piecing the Fragments Together: Dynamical Insights into the Enhancement of BRD4-BD1 (BET Protein) Druggability in Cancer Chemotherapy Using Novel 8-methyl-pyrrolo[1,2-a]pyrazin-1(2H)-one Derivatives

Author(s): Oluwole B. Akawa, Opeyemi S. Soremekun, Fisayo A. Olotu and Mahmoud E.S. Solima*

Volume 23, Issue 3, 2022

Published on: 22 March, 2021

Page: [444 - 456] Pages: 13

DOI: 10.2174/1389201022666210322122056

Price: $65

Abstract

Background: Fragment-based drug discovery in recent times has been explored in the design of highly potent therapeutics.

Methods: In this study, we explored the inhibitory dynamics of Compound 38 (Cpd38), a newly synthesized Bromodomain-containing protein 4 bromodomain 1 (BRD4-BD1) protein inhibitor derived from the synthetic coupling of Fragment 47 (Fgt47) into ABBV-075 scaffold. Using dynamic simulation methods, we unraveled the augmentative effects of chemical fragmentation on improved BRD4- BD1 inhibition.

Results: Findings from this study revealed that although Fgt47 exhibited a considerable ΔGbind, its incorporation into the difluoro-phenoxy pyridine scaffold (Cpd38) notably enhanced the binding affinity. Time-based analyses of interaction dynamics further revealed that the bulkiness of Cpd38 favored its interaction at the BRD4-BD1 active site relative to the fragment. Strikingly, compared to Fgt47, Cpd38 demonstrated high mobility, which could have enabled it to bind optimally and complementarily with key residues of the active site such as Ile146, Asn140, Cys136, Tyr98, Leu94, Val87, Phe83, and Trp81.

Discussion: On the contrary, the majority of these interactions were gradually lost in Fgt47, which could further indicate the essence of coupling it with the difluoro-phenoxy pyridine scaffold. Furthermore, Cpd38 had a more altering effect on BRD4-BDI relative to Fgt47, which could also be a result of its higher inhibitory activity.

Conclusion: Conclusively, the design of highly potent therapeutics could be facilitated by the incorporation of pharmacologically active small molecule fragments into the scaffold of existing drugs.

Keywords: Fragmentation-based drug discovery, molecular dynamics simulation, prostate cancer, bromodomain and extraterminal proteins (BET), Bromodomain-containing Protein 4 Bromodomain 1 (BRD4-BD1), chemotherapy.

Graphical Abstract

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
World Health statistics overview, W.H.O. Monitoring Health for the SDGs., 2019, 2019, 1-11.
[3]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[4]
Patafio, F.M.; Brooks, S.C.; Wei, X.; Peng, Y.; Biagi, J.; Booth, C.M. Research output and the public health burden of cancer: is there any relationship? Curr. Oncol., 2016, 23(2), 75-80.
[http://dx.doi.org/10.3747/co.23.2935] [PMID: 27122971]
[5]
Solárová, Z.; Liskova, A.; Samec, M.; Kubatka, P.; Büsselberg, D.; Solár, P. Anticancer potential of lichens’ secondary metabolites. Biomolecules, 2020, 10(1)E87
[http://dx.doi.org/10.3390/biom10010087] [PMID: 31948092]
[6]
Crawford, E.D.; Petrylak, D.; Sartor, O. Navigating the evolving therapeutic landscape in advanced prostate cancer. Urol. Oncol., 2017, 35S, S1-S13.
[http://dx.doi.org/10.1016/j.urolonc.2017.01.020] [PMID: 28283376]
[7]
Wade, C.A.; Kyprianou, N. Profiling Prostate Cancer Therapeutic Resistance. Int. J. Mol. Sci., 2018, 19(3), 1-19.
[http://dx.doi.org/10.3390/ijms19030904] [PMID: 29562686]
[8]
Aly, M.; Leval, A.; Schain, F.; Liwing, J.; Lawson, J.; Vágó, E.; Nordström, T.; Andersson, T.M-L.; Sjöland, E.; Wang, C.; Eloranta, S.; Akre, O. Survival in patients diagnosed with castration-resistant prostate cancer: a population-based observational study in Sweden. Scand. J. Urol., 2020, 54(2), 115-121.
[http://dx.doi.org/10.1080/21681805.2020.1739139] [PMID: 32266854]
[9]
Donovan, M.J.; Hamann, S.; Clayton, M.; Khan, F.M.; Sapir, M.; Bayer-Zubek, V.; Fernandez, G.; Mesa-Tejada, R.; Teverovskiy, M.; Reuter, V.E.; Scardino, P.T.; Cordon-Cardo, C. Systems pathology approach for the prediction of prostate cancer progression after radical prostatectomy. J. Clin. Oncol., 2008, 26(24), 3923-3929.
[http://dx.doi.org/10.1200/JCO.2007.15.3155] [PMID: 18711180]
[10]
Duan, Y.; Guan, Y.; Qin, W.; Zhai, X.; Yu, B.; Liu, H. Targeting Brd4 for cancer therapy: inhibitors and degraders. MedChemComm, 2018, 9(11), 1779-1802.
[http://dx.doi.org/10.1039/C8MD00198G] [PMID: 30542529]
[11]
Anna, B.C.; Gerald, V. Denis. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer, 2014, 12(7), 465-477.
[http://dx.doi.org/10.1038/nrc3256]
[12]
Arrowsmith, C.H.; Bountra, C.; Fish, P.V.; Lee, K.; Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov., 2012, 11(5), 384-400.
[http://dx.doi.org/10.1038/nrd3674] [PMID: 22498752]
[13]
Li, Z.; Xiao, S.; Yang, Y.; Chen, C.; Lu, T.; Chen, Z.; Jiang, H.; Chen, S.; Luo, C.; Zhou, B. Discovery of 8-methyl-pyrrolo[1,2-a]pyrazin-1(2H)-one derivatives as highly potent and selective bromodomain and extra-terminal (BET) bromodomain inhibitors. J. Med. Chem., 2020, 63(8), 3956-3975.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01784] [PMID: 32208600]
[14]
Qin, C.; Hu, Y.; Zhou, B.; Fernandez-Salas, E.; Yang, C.Y.; Liu, L.; McEachern, D.; Przybranowski, S.; Wang, M.; Stuckey, J.; Meagher, J.; Bai, L.; Chen, Z.; Lin, M.; Yang, J.; Ziazadeh, D.N.; Xu, F.; Hu, J.; Xiang, W.; Huang, L.; Li, S.; Wen, B.; Sun, D.; Wang, S. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression. J. Med. Chem., 2018, 61(15), 6685-6704.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00506] [PMID: 30019901]
[15]
Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J.P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Müller, S.; Pawson, T.; Gingras, A.C.; Arrowsmith, C.H.; Knapp, S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell, 2012, 149(1), 214-231.
[http://dx.doi.org/10.1016/j.cell.2012.02.013] [PMID: 22464331]
[16]
Dolloff, N.G. Emerging Therapeutic Strategies for Overcoming Proteasome Inhibitor Resistance. Adv. Cancer Res., 2015, 127, 191-226.
[http://dx.doi.org/10.1016/bs.acr.2015.03.002.]
[17]
Andrews, P.R.; Craik, D.J.; Martin, J.L. Functional group contributions to drug-receptor interactions. J. Med. Chem., 1984, 27(12), 1648-1657.
[http://dx.doi.org/10.1021/jm00378a021] [PMID: 6094812]
[18]
Jencks, W.P. On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci. U.S.A, 1981, 78(7), 4046-4050.
[http://dx.doi.org/10.1073/pnas.78.7.4046]
[19]
Shuker, S. B.; Hajduk, P. J.; Meadows, R. P.; Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science (80-. ), 1996, 274(5292), 1531-1534.,
[20]
Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev., 1996, 16(1), 3-50.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:1<3:AID-MED1>3.0.CO;2-6] [PMID: 8788213]
[21]
Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov., 2016, 15(9), 605-619.
[http://dx.doi.org/10.1038/nrd.2016.109] [PMID: 27417849]
[22]
Hubbard, R.E. Fragment approaches in structure-based drug discovery. J. Synchrotron Radiat., 2008, 15(Pt 3), 227-230.
[http://dx.doi.org/10.1107/S090904950705666X] [PMID: 18421145]
[23]
Delmore, J.E.; Issa, G.C.; Lemieux, M.E.; Rahl, P.B.; Shi, J.; Jacobs, H.M.; Kastritis, E.; Gilpatrick, T.; Paranal, R.M.; Qi, J.; Chesi, M.; Schinzel, A.C.; McKeown, M.R.; Heffernan, T.P.; Vakoc, C.R.; Bergsagel, P.L.; Ghobrial, I.M.; Richardson, P.G.; Young, R.A.; Hahn, W.C.; Anderson, K.C.; Kung, A.L.; Bradner, J.E.; Mitsiades, C.S. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011, 146(6), 904-917.
[http://dx.doi.org/10.1016/j.cell.2011.08.017] [PMID: 21889194]
[24]
Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M.R.; Wang, Y.; Christie, A.L.; West, N.; Cameron, M.J.; Schwartz, B.; Heightman, T.D.; La Thangue, N.; French, C.A.; Wiest, O.; Kung, A.L.; Knapp, S.; Bradner, J.E. Selective inhibition of BET bromodomains. Nature, 2010, 468(7327), 1067-1073.
[http://dx.doi.org/10.1038/nature09504] [PMID: 20871596]
[25]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[26]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[27]
Pescatore, G.; Branca, D.; Fiore, F.; Kinzel, O.; Bufi, L.L.; Muraglia, E.; Orvieto, F.; Rowley, M.; Toniatti, C.; Torrisi, C.; Jones, P. Identification and SAR of novel pyrrolo[1,2-a]pyrazin-1(2H)-one derivatives as inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg. Med. Chem. Lett., 2010, 20(3), 1094-1099.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.026] [PMID: 20031401]
[28]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[29]
Windows, M.M.V.M.O.S. Molegro molecular viewer user manual; , 2011, p. 145.
[30]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334.AutoDock] [PMID: 19499576]
[31]
Abdullahi, M.; Olotu, F.A.; Soliman, M.E. Allosteric inhibition abrogates dysregulated LFA-1 activation: Structural insight into mechanisms of diminished immunologic disease. Comput. Biol. Chem., 2018, 73, 49-56.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.02.002] [PMID: 29427909]
[32]
Lawal, M.; Olotu, F.A.; Soliman, M.E.S. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease using bioinformatics and computational tools. Comput. Biol. Med., 2018, 98, 168-177.
[http://dx.doi.org/10.1016/j.compbiomed.2018.05.012] [PMID: 29860210]
[33]
Olotu, F.A.; Soliman, M.E.S. From mutational inactivation to aberrant gain-of-function: Unraveling the structural basis of mutant p53 oncogenic transition. J. Cell. Biochem., 2018, 119(3), 2646-2652.
[http://dx.doi.org/10.1002/jcb.26430] [PMID: 29058783]
[34]
Case, D.A.; Berryman, J.T.; Betz, R.M.; Cai, Q.; Cerutti, D.S.; Cheatham, T.E. In: The amber molecular dynamics package; Amber, 2014, p. 14.
[35]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[36]
Grest, G.S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A Gen. Phys., 1986, 33(5), 3628-3631.
[http://dx.doi.org/10.1103/PhysRevA.33.3628] [PMID: 9897103]
[37]
Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[38]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[39]
Case, D.A.; Walker, R.C.; Cheatham, T.E.; Simmerling, C.; Roitberg, A.; Merz, K.M.; Luo, R.; Darden, T. Amber 18. Univ; San Fr: California, 2018.
[40]
Case, D.A.; Darden, T.A.; Cheatham, T.E. AmberTools12 Reference Manual. AMBER 12, 2012, 535.
[41]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[42]
Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[43]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[44]
Kumi, R.O.; Soremekun, O.S.; Issahaku, A.R.; Agoni, C.; Olotu, F.A.; Soliman, M.E.S. Exploring the ring potential of 2,4-diaminopyrimidine derivatives towards the identification of novel caspase-1 inhibitors in Alzheimer’s disease therapy. J. Mol. Model., 2020, 26(4), 68.
[http://dx.doi.org/10.1007/s00894-020-4319-6] [PMID: 32130533]
[45]
Bös, F.; Pleiss, J. Multiple molecular dynamics simulations of TEM β-lactamase: dynamics and water binding of the omega-loop. Biophys. J., 2009, 97(9), 2550-2558.
[http://dx.doi.org/10.1016/j.bpj.2009.08.031] [PMID: 19883598]
[46]
Soremekun, O.S.; Olotu, F.A.; Agoni, C.; Soliman, M.E.S. Drug promiscuity: Exploring the polypharmacology potential of 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones as an inhibitor of the ‘god father’ of immune checkpoint. Comput. Biol. Chem., 2019, 80(March), 433-440.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.05.009] [PMID: 31146119]
[47]
Seifert, E. OriginPro 9.1: scientific data analysis and graphing software-software review. J. Chem. Inf. Model., 2014, 54(5), 1552.
[http://dx.doi.org/10.1021/ci500161d] [PMID: 24702057]
[48]
Chen, N.; Fang, W.; Lin, Z.; Peng, P.; Wang, J.; Zhan, J.; Hong, S.; Huang, J.; Liu, L.; Sheng, J.; Zhou, T.; Chen, Y.; Zhang, H.; Zhang, L. KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol. Immunother., 2017, 66(9), 1175-1187.
[http://dx.doi.org/10.1007/s00262-017-2005-z] [PMID: 28451792]
[49]
Wang, C.; Greene, D.; Xiao, L.; Qi, R.; Luo, R. Recent Developments and applications of the MMPBSA method. Front. Mol. Biosci., 2018, 4(JAN), 87.
[http://dx.doi.org/10.3389/fmolb.2017.00087] [PMID: 29367919]
[50]
BIOVIA, D.S. Discovery Studio 2017 Client; San Diego Dassault Systèmes, 2017.
[51]
Zhang, X.; Chen, K.; Wu, Y.D.; Wiest, O. Protein dynamics and structural waters in bromodomains. PLoS One, 2017, 12(10)e0186570
[http://dx.doi.org/10.1371/journal.pone.0186570] [PMID: 29077715]
[52]
Yokoyama, T.; Matsumoto, K.; Ostermann, A.; Schrader, T.E.; Nabeshima, Y.; Mizuguchi, M. Structural and thermodynamic characterization of the binding of isoliquiritigenin to the first bromodomain of BRD4. FEBS J., 2019, 286(9), 1656-1667.
[http://dx.doi.org/10.1111/febs.14736] [PMID: 30565859]
[53]
Vidler, L.R.; Brown, N.; Knapp, S.; Hoelder, S. Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J. Med. Chem., 2012, 55(17), 7346-7359.
[http://dx.doi.org/10.1021/jm300346w] [PMID: 22788793]
[54]
Bharatham, N.; Slavish, P.J.; Shadrick, W.R.; Young, B.M.; Shelat, A.A. The role of ZA channel water-mediated interactions in the design of bromodomain-selective BET inhibitors. J. Mol. Graph. Model., 2018, 81(1), 197-210.
[http://dx.doi.org/10.1016/j.jmgm.2018.03.005] [PMID: 29605436]
[55]
Raschka, S.; Wolf, A.J.; Bemister-Buffington, J.; Kuhn, L.A. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes. J. Comput. Aided Mol. Des., 2018, 32(4), 511-528.
[http://dx.doi.org/10.1007/s10822-018-0105-2] [PMID: 29435780]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy