Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Review Article

A Review of Anti-Cancer and Related Properties of Lichen-Extracts and Metabolites

Author(s): Ankita H. Tripathi, Nidhi Negi, Rekha Gahtori, Amrita Kumari, Penny Joshi, Lalit M. Tewari, Yogesh Joshi, Rajesh Bajpai, Dalip K. Upreti and Santosh K. Upadhyay*

Volume 22, Issue 1, 2022

Published on: 22 March, 2021

Page: [115 - 142] Pages: 28

DOI: 10.2174/1871520621666210322094647

Price: $65

Abstract

Background: Lichens are a composite consortium of a fungus and an alga. The symbiotic organisms are naturally equipped with distinct characteristics as compared to constituting organisms separately. Lichens, due to their peculiar anatomy and physiology, are the reservoir of more than 600 unique secondary metabolites, also known as ‘lichen substances’. Since ancient times, many ethnic groups from various parts of the world have known about the applications of lichens as major provenance of food/fodder, medicine, dyes, spices, perfumes, etc. Lichen substances have shown impressive antioxidant, antimicrobial, antiviral, anti-tumor, and antiinflammatory activities under experimental conditions. Usnic acid, a well-known metabolite found in several species of lichens, possesses potent antioxidant and anti-inflammatory activities. It also has significant antiproliferative potential, as revealed through testing in different cancer cell lines. Atranorin, Lecanoric acid, Norstictic acid, Lobaric acid, Stictic acid, Ramalin, Gyrophoric acid, Salazinic acid, Protolichesterinic, and Fumarprotocetraric acid are some of the other purified lichen-metabolites with potent anti-cancer activities.

Objective: This study presents an overview of lichen-derived extracts and compounds showing anti-cancer (or related) properties.

Method: The review comprehends different studies (in vivo and in vitro) backing up the possibility of lichenextracts and metabolites towards their use as antioxidant, anti-proliferative, anti-inflammatory, and Epithelialmesenchymal transition (EMT) -inhibiting agents.

Results: Various studies carried out to date show that lichen-extracts and metabolites have a range of anti-cancer and related properties that include anti-oxidative, anti-inflammatory, anti-proliferative, pro-apoptotic, and the potential of inhibition of cancer-associated EMT that is responsible for drug resistance and metastasis of cancer cells in a substantial proportion of cases.

Conclusion: Lichens are the repertoire of a plethora of lichen-metabolites with significant anti-cancer potential. However, some of the critical ‘anti-cancer related’ properties, such as the ability of EMT-inhibition and the potential of induction of apoptosis, are relatively less studied for several lichen compounds. Additionally, many lichen compounds need to be purified at a larger scale to explore their anti-cancer potential.

Keywords: Lichen-metabolites, anti-oxidative, anti-inflammatory, anti-proliferative, anti-EMT, anti-cancer drugs.

Graphical Abstract

[1]
Hawksworth, D.L.; Kirk, P.M.; Sutton, B.C.; Pegler, D.N. Ainsworth & Bisby’s Dictionary of the fungi; CAB International, International Mycological Institute: Egham, Surrey, 1995.
[2]
Bates, S.T.; Cropsey, G.W.; Caporaso, J.G.; Knight, R.; Fierer, N. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol., 2011, 77(4), 1309-1314.
[http://dx.doi.org/10.1128/AEM.02257-10] [PMID: 21169444]
[3]
Parrot, D.; Legrave, N.; Delmail, D.; Grube, M.; Suzuki, M.; Tomasi, S. Review–lichen-associated bacteria as a hot spot of chemodiversity: Focus on uncialamycin, a promising compound for future medicinal applications. Planta Med., 2016, 82(13), 1143-1152.
[http://dx.doi.org/10.1055/s-0042-105571] [PMID: 27220082]
[4]
Singh, B.N.; Upreti, D.K.; Gupta, V.K.; Dai, X.F.; Jiang, Y. Endolichenic fungi: A hidden reservoir of next generation biopharmaceuticals. Trends Biotechnol., 2017, 35(9), 808-813.
[http://dx.doi.org/10.1016/j.tibtech.2017.03.003] [PMID: 28363407]
[5]
Kellogg, J.J.; Raja, H.A. Endolichenic fungi: A new source of rich bioactive secondary metabolites on the horizon. Phytochem. Rev., 2017, 16(2), 271-293.
[http://dx.doi.org/10.1007/s11101-016-9473-1]
[6]
Ramya, K.; Thirunalasundari, T. Lichens: A myriad hue of bioresources with medicinal properties. Int. J. Life Sci. (Kathmandu), 2017, 5(3), 387-393.
[7]
Richardson, D.H. War in the world of lichens: Parasitism and symbiosis as exemplified by lichens and lichenicolous fungi. Mycol. Res., 1999, 103(6), 641-650.
[http://dx.doi.org/10.1017/S0953756298008259]
[8]
Lücking, R.; Lawrey, J.D.; Sikaroodi, M.; Gillevet, P.M.; Chaves, J.L.; Sipman, H.J.; Bungartz, F. Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am. J. Bot., 2009, 96(8), 1409-1418.
[http://dx.doi.org/10.3732/ajb.0800258] [PMID: 21628288]
[9]
Sanders, W.B. Lichens: The interface between mycology and plant morphology: Whereas most other fungi live as an absorptive mycelium inside their food substrate, the lichen fungi construct a plant-like body within which photosynthetic algal symbionts are cultivated. Bioscience, 2001, 51(12), 1025-1035.,
[http://dx.doi.org/10.1641/0006-3568(2001)051[1025:LTIBMA]2.0.CO;2]
[10]
Molnár, K.; Farkas, E. Current results on biological activities of lichen secondary metabolites: A review. Z. Natforsch. C J. Biosci., 2010, 65(3-4), 157-173.
[http://dx.doi.org/10.1515/znc-2010-3-401] [PMID: 20469633]
[11]
Upreti, D.K.; Divakar, P.K.; Nayaka, S. Commercial and ethnic use of lichens in India. Econ. Bot., 2005, 59(3), 269.,
[http://dx.doi.org/10.1663/0013-0001(2005)059[0269:CAEUOL]2.0.CO;2]
[12]
Sudhakar, A. History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther., 2009, 1(2), 1-4.
[http://dx.doi.org/10.4172/1948-5956.100000e2] [PMID: 20740081]
[13]
Papavramidou, N.; Papavramidis, T.; Demetriou, T. Ancient Greek and Greco-Roman methods in modern surgical treatment of cancer. Ann. Surg. Oncol., 2010, 17(3), 665-667.
[http://dx.doi.org/10.1245/s10434-009-0886-6] [PMID: 20049643]
[14]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[15]
Greenwell, M.; Rahman, P.K.S.M. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[PMID: 26594645]
[16]
Huneck, S. The significance of lichens and their metabolites. Naturwissenschaften, 1999, 86(12), 559-570.
[http://dx.doi.org/10.1007/s001140050676] [PMID: 10643590]
[17]
Jain, A.P.; Bhandarkar, S.; Rai, G.; Yadav, A.K.; Lodhi, S. Evaluation of Parmotrema reticulatum taylor for antibacterial and antiinflammatory activities. Indian J. Pharm. Sci., 2016, 78(1), 94-102.
[http://dx.doi.org/10.4103/0250-474X.180241] [PMID: 27168687]
[18]
Shrestha, G.; Clair, L.L.S. Lichens: A promising source of antibiotic and anticancer drugs. Phytochem. Rev., 2013, 12(1), 229-244.
[http://dx.doi.org/10.1007/s11101-013-9283-7]
[19]
Podterob, A.P. Chemical composition of lichens and their medical applications. Pharm. Chem. J., 2008, 42(10), 582-588.
[http://dx.doi.org/10.1007/s11094-009-0183-5]
[20]
Fahselt, D. Review article secondary biochemistry of lichens. Symbiosis, 1994, 16(2), 117.
[21]
Huneck, S.; Yoshimura, I. Identification of lichen substances.Identification of lichen substances; Huneck, S.; Yoshimura, I., Eds.; Springer: Berlin, Heidelberg, 1996, pp. 11-123.
[22]
Culberson, C.F.; Armaleo, D. Induction of a complete secondary-product pathway in a cultured lichen fungus. Exp. Mycol., 1992, 16(1), 52-63.
[http://dx.doi.org/10.1016/0147-5975(92)90041-O]
[23]
Müller, K. Pharmaceutically relevant metabolites from lichens. Appl. Microbiol. Biotechnol., 2001, 56(1-2), 9-16.
[http://dx.doi.org/10.1007/s002530100684] [PMID: 11499952]
[24]
Saklani, A.; Upreti, D.K. Folk uses of some lichens in Sikkim. J. Ethnopharmacol., 1992, 37(3), 229-233.
[http://dx.doi.org/10.1016/0378-8741(92)90038-S] [PMID: 1453712]
[25]
Leuckert, C.; Ahmadjian, V.; Culberson, C.F.; Johnson, A. Xanthones and depsidones of the lichen Lecanora dispersa in nature and of its mycobiont in culture. Mycologia, 1990, 82(3), 370-378.
[http://dx.doi.org/10.1080/00275514.1990.12025893]
[26]
BeGora, M.D.; Fahselt, D. Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance. Bryologist, 2001, 104(1), 134-140..
[http://dx.doi.org/10.1639/0007-2745(2001)104[0134:UAAACI]2.0.CO;2]
[27]
Bjerke, J.W.; Joly, D.; Nilsen, L.; Brossard, T. Spatial trends in usnic acid concentrations of the lichen Flavocetraria nivalis along local climatic gradients in the Arctic (Kongsfjorden, Svalbard). Polar Biol., 2004, 27(7), 409-417.
[http://dx.doi.org/10.1007/s00300-004-0590-8]
[28]
Milovanović, N.; Kostić, D.; Milovanović, V.; Đorđević, A.; Stojanović, G.S. Antimicrobial activity of the secondary metabolites of the genus Bryoria-a review. Facta Univ.-Series. Physics Chemistry and Technology, 2018, 16(2), 183-189.
[29]
Huneck, S.; Himmelreich, U.; Nicholson, G. Arthogalin, a cyclic depsipeptide from the lichen Arthothelium galapagoense. Z. Naturforsch. B, 1995, 50, 1101-1101.
[http://dx.doi.org/10.1515/znb-1995-0721]
[30]
Ernst-Russell, M.A.; Chai, C.L.; Wardlaw, J.H.; Elix, J.A. Euplectin and coneuplectin, new naphthopyrones from the lichen Flavoparmelia euplecta. J. Nat. Prod., 2000, 63(1), 129-131.
[http://dx.doi.org/10.1021/np9903245] [PMID: 10650094]
[31]
Ernst-Russell, M.A.; Elix, J.A.; Chai, C.L.; Hockless, D.C.; Hurne, A.M.; Waring, P. Structure revision and cytotoxic activity of the scabrosin esters, epidithiopiperazinediones from the lichen Xanthoparmelia scabrosa. Aust. J. Chem., 1999, 52(4), 279-283.
[http://dx.doi.org/10.1071/C99019]
[32]
Romagni, J.G.; Dayan, F.E. Structural Diversity of Lichen Metabolites and their Potential Use.In: Advances in Microbial Toxin Research and Its Biotechnological Exploitation; Upadhyay, R.K., Ed.; Springer: Boston, MA, 2002.
[http://dx.doi.org/10.1007/978-1-4757-4439-2_11]
[33]
Shukla, V.; Joshi, G.P.; Rawat, M.S.M. Lichens as a potential natural source of bioactive compounds: A review. Phytochem. Rev., 2010, 9(2), 303-314.
[http://dx.doi.org/10.1007/s11101-010-9189-6]
[34]
Dahlman, L.; Näsholm, T.; Palmqvist, K. Growth, nitrogen uptake, and resource allocation in the two tripartite lichens Nephroma arcticum and Peltigera aphthosa during nitrogen stress. New Phytol., 2002, 153(2), 307-315.
[http://dx.doi.org/10.1046/j.0028-646X.2001.00321.x]
[35]
González, A.G.; Padrón, C.E.H.; Barrera, J.B. Chemical constituents of the lichen Stereocaulon azoreum. Z. Naturforsch. C, 1992, 47(7-8), 503-507.
[http://dx.doi.org/10.1515/znc-1992-7-802]
[36]
Shukla, V.; Negi, S.; Rawat, M.S.M.; Pant, G.; Nagatsu, A. Chemical study of Ramalina africana (Ramalinaceae) from the Garhwal Himalayas. Biochem. Syst. Ecol., 2004, 32, 449-453.
[http://dx.doi.org/10.1016/j.bse.2003.08.010]
[37]
Kahriman, N.; Yazici, K.; Arslan, T.; Aslan, A.; Karaoglu, Ş.A.; Yayli, N. Chemical composition and antimicrobial activity of the essential oils from Evernia prunastri (L.) Ach. and Evernia divaricata (L.). Ach. Asian J. Chem., 2011, 23, 1937-1939.
[38]
Marijana, K.; Branislav, R.; Slobodan, S. Antimicrobial activity of the lichen Lecanora frustulosa and Parmeliopsis hyperopta and their divaricatic acid and zeorin constituents. Afr. J. Microbiol. Res., 2010, 4(9), 885-890.
[39]
Czeczuga, B. Investigations on carotenoids in Embryophyta. I. Bryophyta. Bryologist, 1980, 83(1), 21-28.
[http://dx.doi.org/10.2307/3242390]
[40]
Bačkorová, M.; Jendželovský, R.; Kello, M.; Bačkor, M.; Mikeš, J.; Fedoročko, P. Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol. In Vitro, 2012, 26(3), 462-468.
[http://dx.doi.org/10.1016/j.tiv.2012.01.017] [PMID: 22285236]
[41]
Buçukoglu, T.Z.; Albayrak, S.; Halici, M.G.; Tay, T. Antimicrobial and antioxidant activities of extracts and lichen acids obtained from some Umbilicaria species from Central Anatolia, Turkey. J. Food Process. Preserv., 2013, 37(6), 1103-1110.
[http://dx.doi.org/10.1111/j.1745-4549.2012.00811.x]
[42]
Cardile, V.; Graziano, A.C.E.; Avola, R.; Piovano, M.; Russo, A. Potential anticancer activity of lichen secondary metabolite physodic acid. Chem. Biol. Interact., 2017, 263, 36-45.
[http://dx.doi.org/10.1016/j.cbi.2016.12.007] [PMID: 28012710]
[43]
Nishanth, K.S.; Sreerag, R.S.; Deepa, I.; Mohandas, C.; Nambisan, B. Protocetraric acid: An excellent broad spectrum compound from the lichen Usnea albopunctata against medically important microbes. Nat. Prod. Res., 2015, 29(6), 574-577.
[http://dx.doi.org/10.1080/14786419.2014.953500] [PMID: 25174415]
[44]
Pejin, B.; Iodice, C.; Bogdanović, G.; Kojić, V.; Tešević, V. Stictic acid inhibits cell growth of human colon adenocarcinoma HT-29 cells. Arab. J. Chem., 2017, 10, S1240-S1242.
[http://dx.doi.org/10.1016/j.arabjc.2013.03.003]
[45]
Yilmaz, M.; Türk, A.Ö.; Tay, T.; Kivanç, M. The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Z. Natforsch. C J. Biosci., 2004, 59(3-4), 249-254.
[http://dx.doi.org/10.1515/znc-2004-3-423] [PMID: 15241936]
[46]
Gollapudi, S.R.; Telikepalli, H.; Jampani, H.B.; Mirhom, Y.W.; Drake, S.D.; Bhattiprolu, K.R.; Vander Velde, D.; Mitscher, L.A. Alectosarmentin, a new antimicrobial dibenzofuranoid lactol from the lichen, Alectoria sarmentosa. J. Nat. Prod., 1994, 57(7), 934-938.
[http://dx.doi.org/10.1021/np50109a009] [PMID: 7964789]
[47]
Goga, M.; Ručová, D.; Kolarčik, V.; Sabovljević, M.; Bačkor, M.; Lang, I. Usnic acid, as a biotic factor, changes the ploidy level in mosses. Ecol. Evol., 2018, 8(5), 2781-2787.
[http://dx.doi.org/10.1002/ece3.3908] [PMID: 29531694]
[48]
Laessøe, T.; Srikitikulchai, P.; Fournier, J.; Köpcke, B.; Stadler, M. Lepraric acid derivatives as chemotaxonomic markers in Hypoxylon aeruginosum, Chlorostroma subcubisporum and C. cyaninum, sp. nov. Fungal Biol., 2010, 114(5-6), 481-489.
[http://dx.doi.org/10.1016/j.funbio.2010.03.010] [PMID: 20943159]
[49]
Goga, M.; Elečko, J.; Marcinčinová, M.; Ručová, D.; Bačkorová, M.; Bačkor, M. Lichen metabolites: An overview of some secondary metabolites and their biological potential; Co-Evolution Secondary Metab, 2020, pp. 175-209.
[http://dx.doi.org/10.1007/978-3-319-96397-6_57]
[50]
Schinazi, R.F.; Chu, C.K.; Babu, J.R.; Oswald, B.J.; Saalmann, V.; Cannon, D.L.; Eriksson, B.F.; Nasr, M. Anthraquinones as a new class of antiviral agents against human immunodeficiency virus. Antiviral Res., 1990, 13(5), 265-272.
[http://dx.doi.org/10.1016/0166-3542(90)90071-E] [PMID: 1697740]
[51]
Gausla, Y.; Ustvedt, E.M. Is parietin a UV-B or a blue-light screening pigment in the lichen Xanthoria parietina? Photochem. Photobiol. Sci., 2003, 2(4), 424-432.
[http://dx.doi.org/10.1039/b212532c] [PMID: 12760542]
[52]
Koyama, M.; Takahashi, K.; Chou, T.C.; Darzynkiewicz, Z.; Kapuscinski, J.; Kelly, T.R.; Watanabe, K.A. Intercalating agents with covalent bond forming capability. A novel type of potential anticancer agents. 2. Derivatives of chrysophanol and emodin. J. Med. Chem., 1989, 32(7), 1594-1599.
[http://dx.doi.org/10.1021/jm00127a032] [PMID: 2738893]
[53]
Varol, M. Lichens as a promising source of unique and functional small molecules for human health and well-being.In: Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science B. V: Amsterdam, 2019; 60, pp. 425-458;
[http://dx.doi.org/10.1016/B978-0-444-64181-6.00012-7]
[54]
Manojlovic, N.T.; Vasiljevic, P.J.; Maskovic, P.Z.; Juskovic, M.; Bogdanovic-Dusanovic, G. Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae). Evid. Based Complement. Alternat. Med., 2012, 2012452431
[http://dx.doi.org/10.1155/2012/452431] [PMID: 21915186]
[55]
De Castro, M.L.; Garcıa-Ayuso, L.E. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Anal. Chim. Acta, 1998, 369(1-2), 1-10.
[http://dx.doi.org/10.1016/S0003-2670(98)00233-5]
[56]
Singh, A.K. Hydrolytic Maceration, Expression 4 and Cold Fat Extraction. Extraction Technol. Med. Aromatic Plants, 2008, 83.,
[57]
Basile, A.; Rigano, D.; Loppi, S.; Di Santi, A.; Nebbioso, A.; Sorbo, S.; Conte, B.; Paoli, L.; De Ruberto, F.; Molinari, A.M.; Altucci, L.; Bontempo, P. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. Int. J. Mol. Sci., 2015, 16(4), 7861-7875.
[http://dx.doi.org/10.3390/ijms16047861] [PMID: 25860944]
[58]
Chahra, D.; Ramdani, M.; Lograda, T.; Chalard, P.; Figueredo, G. Chemical composition and antimicrobial activity of Evernia prunastri and Ramalina farinacea from Algeria. Issues Biol. Sci. Pharmaceut. Res., 2016, 4(5), 35-42.
[59]
Arvindekar, A.U.; Laddha, K.S. An efficient microwave-assisted extraction of anthraquinones from Rheum emodi: Optimisation using RSM, UV and HPLC analysis and antioxidant studies. Ind. Crops Prod., 2016, 83, 587-595.
[http://dx.doi.org/10.1016/j.indcrop.2015.12.066]
[60]
Komaty, S.; Letertre, M.; Dang, H.D.; Jungnickel, H.; Laux, P.; Luch, A.; Carrié, D.; Merdrignac-Conanec, O.; Bazureau, J.P.; Gauffre, F.; Tomasi, S.; Paquin, L. Sample preparation for an optimized extraction of localized metabolites in lichens: Application to Pseudevernia furfuracea. Talanta, 2016, 150, 525-530.
[http://dx.doi.org/10.1016/j.talanta.2015.12.081] [PMID: 26838439]
[61]
Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta, 2011, 703(1), 8-18.
[http://dx.doi.org/10.1016/j.aca.2011.07.018] [PMID: 21843670]
[62]
Sihvonen, M.; Järvenpää, E.; Hietaniemi, V.; Huopalahti, R. Advances in supercritical carbon dioxide technologies. Trends Food Sci. Technol., 1999, 10(6-7), 217-222.
[http://dx.doi.org/10.1016/S0924-2244(99)00049-7]
[63]
Mohammadi, M.; Zambare, V.; Malek, L.; Gottardo, C.; Suntres, Z.; Christopher, L. Lichenochemicals: Extraction, purification, characterization, and application as potential anticancer agents. Expert Opin. Drug Discov., 2020, 15(5), 575-601.
[http://dx.doi.org/10.1080/17460441.2020.1730325] [PMID: 32154739]
[64]
Studzińska-Sroka, E.; Piotrowska, H.; Kucińska, M.; Murias, M.; Bylka, W. Cytotoxic activity of physodic acid and acetone extract from Hypogymnia physodes against breast cancer cell lines. Pharm. Biol., 2016, 54(11), 2480-2485.
[http://dx.doi.org/10.3109/13880209.2016.1160936] [PMID: 27049956]
[65]
Shang, J.; Fang, M.; Zhang, L.; Wang, H.; Gong, G.; Wang, Z.; Zhao, A.; Yi, H. Purification and activity characterization of polysaccharides in the medicinal lichen Umbilicaria tornata from Taibai Mountain, China. Glycoconj. J., 2018, 35(1), 107-117.
[http://dx.doi.org/10.1007/s10719-017-9806-3] [PMID: 29196839]
[66]
Zugic, A.; Jeremic, I.; Isakovic, A.; Arsic, I.; Savic, S.; Tadic, V. Evaluation of anticancer and antioxidant activity of a commercially available CO2 supercritical extract of old man’s beard (Usnea barbata). PLoS One, 2016, 11(1)e0146342
[http://dx.doi.org/10.1371/journal.pone.0146342] [PMID: 26745885]
[67]
Schinkovitz, A.; Kaur, A.; Urban, E.; Zehl, M.; Páchniková, G.; Wang, Y.; Kretschmer, N.; Slaninová, I.; Pauli, G.F.; Franzblau, S.G.; Krupitza, G.; Bauer, R.; Kopp, B. Cytotoxic constituents from Lobaria scrobiculata and a comparison of two bioassays for their evaluation. J. Nat. Prod., 2014, 77(4), 1069-1073.
[http://dx.doi.org/10.1021/np4008574] [PMID: 24725159]
[68]
Nguyen, D.M.; Do, L.M.; Nguyen, V.T.; Chavasiri, W.; Mortier, J.; Nguyen, P.P. Phenolic compounds from the lichen Lobaria orientalis. J. Nat. Prod., 2017, 80(2), 261-268.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00465] [PMID: 28181807]
[69]
Martins, M.C.B.; Lima, M.J.G.; Santiago, R.; Buril, M.L.L.; Pereira, E.C.; Legaz, M.E.; Vicente, C.; Silva, N.H.D. New biotechnological methods for producing therapeutic compounds (usnic, stictic and norstictic acids) by cell immobilization of the lichen Cladonia substellata Vainio. Indian J. Biotechnol., 2017, 13(2), 133.
[70]
Brandão, L.F.G.; Alcantara, G.B.; Matos, M.D.F.C.; Bogo, D.; dos Santos Freitas, D.; Oyama, N.M.; Honda, N.K. Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells. Chem. Pharm. Bull. (Tokyo), 2013, 61(2), 176-183.
[PMID: 23207680]
[71]
Koparal, A.T.; Ulus, G.; Zeytinoğlu, M.; Tay, T.; Türk, A.Ö. Angiogenesis inhibition by a lichen compound olivetoric acid. Phytother. Res., 2010, 24(5), 754-758.
[PMID: 19943241]
[72]
Delebassée, S.; Mambu, L.; Pinault, E.; Champavier, Y.; Liagre, B.; Millot, M. Cytochalasin E in the lichen Pleurosticta acetabulum. Anti-proliferative activity against human HT-29 colorectal cancer cells and quantitative variability. Fitoterapia, 2017, 121, 146-151.
[http://dx.doi.org/10.1016/j.fitote.2017.07.006] [PMID: 28705509]
[73]
Shrestha, G.; El-Naggar, A.M.; St Clair, L.L.; O’Neill, K.L. Anticancer activities of selected species of North American lichen extracts. Phytother. Res., 2015, 29(1), 100-107.
[http://dx.doi.org/10.1002/ptr.5233] [PMID: 25257119]
[74]
Kosanić, M.; Ranković, B.; Stanojković, T.; Rančić, A.; Manojlović, N. Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. Lebensm. Wiss. Technol., 2014, 59(1), 518-525.
[http://dx.doi.org/10.1016/j.lwt.2014.04.047]
[75]
Emsen, B.; Aslan, A.; Togar, B.; Turkez, H. In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharm. Biol., 2016, 54(9), 1748-1762.
[http://dx.doi.org/10.3109/13880209.2015.1126620] [PMID: 26704132]
[76]
Kosanić, M.; Manojlović, N.; Janković, S.; Stanojković, T.; Ranković, B. Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem. Toxicol., 2013, 53, 112-118.
[http://dx.doi.org/10.1016/j.fct.2012.11.034] [PMID: 23220145]
[77]
Manojlović, N.; Ranković, B.; Kosanić, M.; Vasiljević, P.; Stanojković, T. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine, 2012, 19(13), 1166-1172.
[http://dx.doi.org/10.1016/j.phymed.2012.07.012] [PMID: 22921748]
[78]
Ristic, S.; Rankovic, B.; Kosanić, M.; Stamenkovic, S.; Stanojković, T.; Sovrlić, M.; Manojlović, N. Biopharmaceutical potential of two Ramalina lichens and their metabolites. Curr. Pharm. Biotechnol., 2016, 17(7), 651-658.
[http://dx.doi.org/10.2174/1389201017666160401144825] [PMID: 27033512]
[79]
Huneck, S.; Yoshimura, I. Identification of lichen substances.Identification of Lichen Substances; Huneck, S.; Yoshimura, I., Eds.; Springer: Berlin, Heidelberg, 1996, pp. 11-123.
[http://dx.doi.org/10.1007/978-3-642-85243-5_2]
[80]
White, P.A.; Oliveira, R.C.; Oliveira, A.P.; Serafini, M.R.; Araújo, A.A.; Gelain, D.P.; Moreira, J.C.; Almeida, J.R.; Quintans, J.S.; Quintans-Junior, L.J.; Santos, M.R. Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: A systematic review. Molecules, 2014, 19(9), 14496-14527.
[http://dx.doi.org/10.3390/molecules190914496] [PMID: 25221871]
[81]
Melo, M.G.D.; dos Santos, J.P.A.; Serafini, M.R.; Caregnato, F.F.; Pasquali, M.A.; Rabelo, T.K.; da Rocha, R.F.; Quintans, L., Jr; Araújo, A.A.; da Silva, F.A.; Moreira, J.C.F.; Gelain, D.P. Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol. In Vitro, 2011, 25(2), 462-468.
[http://dx.doi.org/10.1016/j.tiv.2010.11.014] [PMID: 21111802]
[82]
Khanuja, S.; Tiruppadiripuliyur, R.; Gupta, V.; Chand, P.; Garg, A.; Srivastava, S.; Verma, S.; Saikia, D.; Darokar, M.; Shasany, A.; Pal, A. Antimicrobial and anticancer properties of methyl-beta-orcinolcarboxylate from lichen (Everniastrum cirrhatum). U.S. Patent 10/404,012,, 2004.
[83]
Yang, Y.; Bae, W.K.; Nam, S.J.; Jeong, M.H.; Zhou, R.; Park, S.Y.; Taş, İ.; Hwang, Y.H.; Park, M.S.; Chung, I.J.; Kim, K.K.; Hur, J.S.; Kim, H. Acetonic extracts of the endolichenic fungus EL002332 isolated from Endocarpon pusillum exhibits anticancer activity in human gastric cancer cells. Phytomedicine, 2018, 40, 106-115.
[http://dx.doi.org/10.1016/j.phymed.2018.01.006] [PMID: 29496163]
[84]
Wu, S.; Zhao, Z.; Okada, Y.; Watanabe, Y.; Takahata, T.; Inoue, T.; Otsubo, E.; Wang, J.; Lu, Y.; Nomura, M. Physiological activity of chinese lichen (Gyrophora esculenta) component, methyl 2, 4-dihydroxy-6-methylbenzoate and the related compounds. Asian J. Chem., 2014, 26(3), 702-708.
[http://dx.doi.org/10.14233/ajchem.2014.15485]
[85]
Perico-Franco, L.S.; Soriano-García, M.; Cerbón, M.A.; González-Sánchez, I.; Valencia-Islas, N. Secondary metabolites and cytotoxic potential of Lobariella pallida and Stereocaulon strictum var. compressum, two lichens from Colombian páramo region. UK J. of Pharmaceut. Biosci., 2015, 3(4), 31-38.
[http://dx.doi.org/10.20510/ukjpb/3/i4/89463]
[86]
Le Pogam, P.; Le Lamer, A.C.; Siva, B.; Legouin, B.; Bondon, A.; Graton, J.; Jacquemin, D.; Rouaud, I.; Ferron, S.; Obermayer, W.; Babu, K.S.; Boustie, J. Minor pyranonaphthoquinones from the apothecia of the lichen Ophioparma ventosa. J. Nat. Prod., 2016, 79(4), 1005-1011.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01073] [PMID: 26934105]
[87]
Duong, T.H.; Chavasiri, W.; Boustie, J. New meta-depsidones and diphenyl ethers from the lichen Parmotrema tsavoense (Krog & Swinscow) Krog & Swinscow, Parmeliaceae. Tetrahedron, 2015, 71(52), 9684-9691.
[http://dx.doi.org/10.1016/j.tet.2015.06.107]
[88]
Aravind, S.R.; Sreelekha, T.T.; Kumar, B.D.; Kumar, S.N.; Mohandas, C. Characterization of three depside compounds from a Western Ghat lichen Parmelia erumpens Kurok with special reference to antimicrobial and anticancer activity. RSC Adv, 2014, 4(65), 34632-34643.
[http://dx.doi.org/10.1039/C4RA04137B]
[89]
Mishra, T.; Shukla, S.; Meena, S.; Singh, R.; Pal, M.; Upreti, D.K.; Datta, D. Isolation and identification of cytotoxic compounds from a fruticose lichen Roccella montagnei, and it’s in silico docking study against CDK-10. Rev. Bras. Farmacogn., 2017, 27(6), 724-728.
[http://dx.doi.org/10.1016/j.bjp.2017.07.006]
[90]
Zeytinoglu, H.; Incesu, Z.; Tuylu, B.A.; Turk, A.O.; Barutca, B. Determination of genotoxic, antigenotoxic and cytotoxic potential of the extract from lichen Cetraria aculeata (Schreb.) Fr. in vitro. Phytother. Res., 2008, 22(1), 118-123.
[http://dx.doi.org/10.1002/ptr.2279] [PMID: 17726729]
[91]
Gonçalves, J.P.; Martins, M.C.B.; Buril, M.D.L.L.; Aguiar, J.D.S.; Da Silva, T.G.; dos Santos Souza, T.G.; Santos, N.P.D.S.; Chagas, C.A.; Pereira, E.C.; da Silva Falcão, E.P.; Da Silva, N.H. Antineoplastic activity and genotoxicity of organic extracts and barbatic acid isolated from the lichen Cladonia salzmannii Nyl. Int. Arch. Med., 2018, 11(53)
[http://dx.doi.org/10.3823/2594]
[92]
Kumar, J.; Dhar, P.; Tayade, A.B.; Gupta, D.; Chaurasia, O.P.; Upreti, D.K.; Arora, R.; Srivastava, R.B. Antioxidant capacities, phenolic profile and cytotoxic effects of saxicolous lichens from trans-Himalayan cold desert of Ladakh. PLoS One, 2014, 9(6)e98696
[http://dx.doi.org/10.1371/journal.pone.0098696] [PMID: 24937759]
[93]
Pol, C.S.; Savale, S.A.; Khare, R.; Verma, N.; Behera, B.C. Antioxidative, cardioprotective, and anticancer potential of two lichenized fungi, Everniastrum cirrhatum and Parmotrema reticulatum, from Western Ghats of India. J. Herbs Spices Med. Plants, 2017, 23(2), 142-156.
[http://dx.doi.org/10.1080/10496475.2017.1280578]
[94]
Baena, A.; Gómez-Giraldo, L.; Gómez, W.A.; Pelaez, C.A. Murine invariant natural killer t cells recognize glycolipids derived from extracts of the lichen Stereocaulon ramulosu. Vitae, 2015, 22(1), 13-26.
[http://dx.doi.org/10.17533/udea.vitae.v22n1a02]
[95]
Bačkorová, M.; Bačkor, M.; Mikeš, J.; Jendželovský, R.; Fedoročko, P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol. In Vitro, 2011, 25(1), 37-44.
[http://dx.doi.org/10.1016/j.tiv.2010.09.004] [PMID: 20837130]
[96]
Nguyen, T.T.; Yoon, S.; Yang, Y.; Lee, H.B.; Oh, S.; Jeong, M.H.; Kim, J.J.; Yee, S.T.; Crişan, F.; Moon, C.; Lee, K.Y.; Kim, K.K.; Hur, J.S.; Kim, H. Lichen secondary metabolites in Flavocetraria cucullata exhibit anti-cancer effects on human cancer cells through the induction of apoptosis and suppression of tumorigenic potentials. PLoS One, 2014, 9(10)e111575
[http://dx.doi.org/10.1371/journal.pone.0111575] [PMID: 25360754]
[97]
Parrot, D.; Legrave, N.; Intertaglia, L.; Rouaud, I.; Legembre, P.; Grube, M.; Suzuki, M.T.; Tomasi, S. Cyaneodimycin, a bioactive compound isolated from the culture of Streptomyces cyaneofuscatus associated with Lichina confinis. Eur. J. Org. Chem., 2016, 23, 3977-3982.
[http://dx.doi.org/10.1002/ejoc.201600252]
[98]
Porter, N.A. Mechanisms for the autoxidation of polyunsaturated lipids. Acc. Chem. Res., 1986, 19(9), 262-268.
[http://dx.doi.org/10.1021/ar00129a001]
[99]
Marnett, L.J. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res., 1999, 424(1-2), 83-95.
[http://dx.doi.org/10.1016/S0027-5107(99)00010-X] [PMID: 10064852]
[100]
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev., 2016, 20167432797
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[101]
Berlett, B.S.; Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem., 1997, 272(33), 20313-20316.
[http://dx.doi.org/10.1074/jbc.272.33.20313] [PMID: 9252331]
[102]
Salzano, S.; Checconi, P.; Hanschmann, E.M.; Lillig, C.H.; Bowler, L.D.; Chan, P.; Vaudry, D.; Mengozzi, M.; Coppo, L.; Sacre, S.; Atkuri, K.R.; Sahaf, B.; Herzenberg, L.A.; Herzenberg, L.A.; Mullen, L.; Ghezzi, P. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc. Natl. Acad. Sci. USA, 2014, 111(33), 12157-12162.
[http://dx.doi.org/10.1073/pnas.1401712111] [PMID: 25097261]
[103]
Ghezzi, P. Role of glutathione in immunity and inflammation in the lung. Int. J. Gen. Med., 2011, 4, 105-113.
[http://dx.doi.org/10.2147/IJGM.S15618] [PMID: 21403800]
[104]
Hussain, S.P.; Harris, C.C. Inflammation and cancer: An ancient link with novel potentials. Int. J. Cancer, 2007, 121(11), 2373-2380.
[http://dx.doi.org/10.1002/ijc.23173] [PMID: 17893866]
[105]
Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer, 2007, 121(11), 2381-2386.
[http://dx.doi.org/10.1002/ijc.23192] [PMID: 17893868]
[106]
Rhee, S.G. Cell signaling. H2O2, a necessary evil for cell signaling. Science, 2006, 312(5782), 1882-1883.
[http://dx.doi.org/10.1126/science.1130481] [PMID: 16809515]
[107]
Toledo Marante, F.J.; García Castellano, A.; Estévez Rosas, F.; Quintana Aguiar, J.; Bermejo Barrera, J. Identification and quantitation of allelochemicals from the lichen Lethariella canariensis: Phytotoxicity and antioxidative activity. J. Chem. Ecol., 2003, 29(9), 2049-2071.
[http://dx.doi.org/10.1023/A:1025682318001] [PMID: 14584675]
[108]
Sisodia, R.; Geol, M.; Verma, S.; Rani, A.; Dureja, P. Antibacterial and antioxidant activity of lichen species Ramalina roesleri. Nat. Prod. Res., 2013, 27(23), 2235-2239.
[http://dx.doi.org/10.1080/14786419.2013.811410] [PMID: 23822758]
[109]
Stepanenko, L.S.; Krivoshchekova, O.E.; Skirina, I.F. Functions of phenolic secondary metabolites in lichens from Far East Russia. Symbiosis, 2002, 32, 119-131.
[110]
Papadopoulou, P.; Tzakou, O.; Vagias, C.; Kefalas, P.; Roussis, V. β-orcinol metabolites from the lichen Hypotrachyna revoluta. Molecules, 2007, 12(5), 997-1005.
[http://dx.doi.org/10.3390/12050997] [PMID: 17873835]
[111]
Thadhani, V.M.; Choudhary, M.I.; Ali, S.; Omar, I.; Siddique, H.; Karunaratne, V. Antioxidant activity of some lichen metabolites. Nat. Prod. Res., 2011, 25(19), 1827-1837.
[http://dx.doi.org/10.1080/14786419.2010.529546] [PMID: 22136374]
[112]
Bayir, Y.; Odabasoglu, F.; Cakir, A.; Aslan, A.; Suleyman, H.; Halici, M.; Kazaz, C. The inhibition of gastric mucosal lesion, oxidative stress and neutrophil-infiltration in rats by the lichen constituent diffractaic acid. Phytomedicine, 2006, 13(8), 584-590.
[http://dx.doi.org/10.1016/j.phymed.2005.07.002] [PMID: 16920514]
[113]
Lohézic-Le Dévéhat, F.; Tomasi, S.; Elix, J.A.; Bernard, A.; Rouaud, I.; Uriac, P.; Boustie, J. Stictic acid derivatives from the lichen Usnea articulata and their antioxidant activities. J. Nat. Prod., 2007, 70(7), 1218-1220.
[http://dx.doi.org/10.1021/np070145k] [PMID: 17629329]
[114]
Atalay, F.; Halici, M.B.; Mavi, A.; Cakir, A.; Odabaşoğlu, F.; Kazaz, C.; Aslan, A.; Küfrevioğlu, Ö.I. Antioxidant phenolics from Lobaria pulmonaria (L.) Hoffm. and Usnea longissima Ach. lichen species. Turk. J. Chem., 2011, 35(4), 647-661.
[115]
Bhattarai, H.D.; Kim, T.; Oh, H.; Yim, J.H. A new pseudodepsidone from the Antarctic lichen Stereocaulon alpinum and its antioxidant, antibacterial activity. J. Antibiot. (Tokyo), 2013, 66(9), 559-561.
[http://dx.doi.org/10.1038/ja.2013.41] [PMID: 23677030]
[116]
Ranković, B.; Kosanić, M.; Stanojković, T.; Vasiljević, P.; Manojlović, N. Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. Int. J. Mol. Sci., 2012, 13(11), 14707-14722.
[http://dx.doi.org/10.3390/ijms131114707] [PMID: 23203090]
[117]
Şahin, S.; Oran, S.; Şahintürk, P.; Demir, C.; Öztürk, Ş. Ramalina lichens and their major metabolites as possible natural antioxidant and antimicrobial agents. J. Food Biochem., 2015, 39(4), 471-477.
[http://dx.doi.org/10.1111/jfbc.12142]
[118]
Russo, A.; Piovano, M.; Lombardo, L.; Vanella, L.; Cardile, V.; Garbarino, J. Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU-145 cells. Anticancer Drugs, 2006, 17(10), 1163-1169.
[http://dx.doi.org/10.1097/01.cad.0000236310.66080.ed] [PMID: 17075315]
[119]
Mahadik, N.; Morey, M.V.; Behera, B.C.; Makhija, U.V.; Naik, D.G. Cardiovascular-protective, antioxidative, and antimicrobial properties of natural thallus of lichen Usnea complanata. Lat. Am. J. Pharm., 2011, 30(2), 220-228.
[120]
Takenaka, Y.; Tanahashi, T.; Nagakura, N.; Hamada, N. Production of xanthones with free radical scavenging properties, emodin and sclerotiorin by the cultured lichen mycobionts of Pyrenula japonica. Z. Natforsch. C J. Biosci., 2000, 55(11-12), 910-914.
[http://dx.doi.org/10.1515/znc-2000-11-1211] [PMID: 11204195]
[121]
Khader, S.Z.; Ahmed, S.S.; Arunachalam, T.; Nayaka, S.; Balasubramanian, S.K. SyedAmeen, S.T.; Ponnusamy, P. Radical scavenging potential, antiinflammatory and antiarthritic activity of isolated isomer Methyl-γ-Orsellinate and roccellatol from Roccella montagnei Bel. Bull. Fac. Pharm. Cairo Univ., 2018, 56(1), 39-45.
[http://dx.doi.org/10.1016/j.bfopcu.2018.02.001]
[122]
de Paz, G.A.; Raggio, J.; Gómez-Serranillos, M.P.; Palomino, O.M.; González-Burgos, E.; Carretero, M.E.; Crespo, A. HPLC isolation of antioxidant constituents from Xanthoparmelia spp. J. Pharm. Biomed. Anal., 2010, 53(2), 165-171.
[http://dx.doi.org/10.1016/j.jpba.2010.04.013] [PMID: 20457504]
[123]
Kupchan, S.M.; Kopperman, H.L. l-usnic acid: Tumor inhibitor isolated from lichens. Experientia, 1975, 31(6), 625-625.
[http://dx.doi.org/10.1007/BF01944592] [PMID: 124660]
[124]
Kosanić, M.; Ranković, B.; Vukojević, J. Antioxidant properties of some lichen species. J. Food Sci. Technol., 2011, 48(5), 584-590.
[http://dx.doi.org/10.1007/s13197-010-0174-2] [PMID: 23572791]
[125]
Tomović, J.; Rančić, A.; Vasiljević, P.; Mašković, P.; Živanović, S.; Manojlović, N.; Sovrlić, M. Antioxidant activity of lichen Cetraria aculeata. Prax. Medi., 2016, 45(3-4), 93-99.
[http://dx.doi.org/10.5937/pramed1604093T]
[126]
Fernández-Moriano, C.; González-Burgos, E.; Divakar, P.K.; Crespo, A.; Gómez-Serranillos, M.P. Evaluation of the antioxidant capacities and cytotoxic effects of ten Parmeliaceae lichen species. Evid. Based Complement. Alternat. Med., 2016, 20163169751
[http://dx.doi.org/10.1155/2016/3169751] [PMID: 28074101]
[127]
Verma, N.; Behera, B.C.; Sonone, A.; Makhija, U. Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in vitro. Afr. J. Biomed. Res., 2008, 2(12), 225-231.
[128]
Manojlovic, N.T.; Vasiljevic, P.J.; Maskovic, P.Z. Chemical composition and antioxidant activity of lichen Toninia candida. Braz. J. Pharmacog., 2012, 22(2), 291-298.
[http://dx.doi.org/10.1590/S0102-695X2011005000184]
[129]
Ranković, B.R.; Kosanić, M.M.; Stanojković, T.P. Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complement. Altern. Med., 2011, 11(1), 97.
[http://dx.doi.org/10.1186/1472-6882-11-97] [PMID: 22013953]
[130]
Stojanović, G.; Stojanović, I.; Stankov-Jovanović, V.; Mitić, V.; Kostić, D. Reducing power and radical scavenging activity of four Parmeliaceae species. Cent. Eur. J. Biol., 2010, 5(6), 808-813.
[131]
Ari, F.; Celikler, S.; Oran, S.; Balikci, N.; Ozturk, S.; Ozel, M.Z.; Ozyurt, D.; Ulukaya, E. Genotoxic, cytotoxic, and apoptotic effects of Hypogymnia physodes (L.) Nyl. on breast cancer cells. Environ. Toxicol., 2014, 29(7), 804-813.
[http://dx.doi.org/10.1002/tox.21809] [PMID: 22907900]
[132]
Özen, T.; Kinalioğlu, K. Determination of antioxidant activity of various extracts of Parmelia saxatilis. Biologia, 2008, 63(2), 211-216.
[http://dx.doi.org/10.2478/s11756-008-0047-6]
[133]
Behera, B.C.; Verma, N.; Sonone, A.; Makhija, U. Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotechnol. Lett., 2005, 27(14), 991-995.
[http://dx.doi.org/10.1007/s10529-005-7847-3] [PMID: 16132842]
[134]
Kosanić, M.; Ranković, B.; Stanojković, T.; Stošić, I.; Grujičić, D.; Milošević-Djordjević, O. Lasallia pustulata lichen as possible natural antigenotoxic, antioxidant, antimicrobial and anticancer agent. Cytotechnology, 2016, 68(4), 999-1008.
[http://dx.doi.org/10.1007/s10616-015-9856-y] [PMID: 25682053]
[135]
Tanas, S.; Odabasoglu, F.; Halici, Z.; Cakir, A.; Aygun, H.; Aslan, A.; Suleyman, H. Evaluation of anti-inflammatory and antioxidant activities of Peltigera rufescens lichen species in acute and chronic inflammation models. J. Nat. Med., 2010, 64(1), 42-49.
[http://dx.doi.org/10.1007/s11418-009-0367-z] [PMID: 19830512]
[136]
Silva, J.A.; Bomfim, R.R.; Estevam, C.S.; Antoniolli, Â.R.; Araújo, A.A.; Thomazzi, S.M. Pharmacological properties of lichen Cladonia clathrata. Pharm. Biol., 2010, 48(7), 745-752.
[http://dx.doi.org/10.3109/13880200903273914] [PMID: 20645771]
[137]
Millot, M.; Delebassée, S.; Liagre, B.; Vignaud, L.; Sol, V.; Mambu, L. Screening of lichen extracts on HT-29 human colon-cancer cells. Planta Medi., 2014, 80(16), P1N5.,
[138]
Odabasoglu, F.; Cakir, A.; Suleyman, H.; Aslan, A.; Bayir, Y.; Halici, M.; Kazaz, C. Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J. Ethnopharmacol., 2006, 103(1), 59-65.
[http://dx.doi.org/10.1016/j.jep.2005.06.043] [PMID: 16169175]
[139]
Ghate, N.B.; Chaudhuri, D.; Sarkar, R.; Sajem, A.L.; Panja, S.; Rout, J.; Mandal, N. An antioxidant extract of tropical lichen, Parmotrema reticulatum, induces cell cycle arrest and apoptosis in breast carcinoma cell line MCF-7. PLoS One, 2013, 8(12)e82293
[http://dx.doi.org/10.1371/journal.pone.0082293] [PMID: 24358166]
[140]
Aoussar, N.; Rhallabi, N.; Mhand, R.A.; Manzali, R.; Bouksaim, M.; Douira, A.; Mellouki, F. Seasonal variation of antioxidant activity and phenolic content of Pseudevernia furfuracea, Evernia prunastri and Ramalina farinacea from Morocco. J. Saudi Soc. Agric. Sci., 2018, 19(1), 1-7.
[http://dx.doi.org/10.1016/j.jssas.2018.03.004]
[141]
Turkez, H.; Aydin, E.; Aslan, A. Xanthoria elegans (Link) (lichen) extract counteracts DNA damage and oxidative stress of mitomycin C in human lymphocytes. Cytotechnology, 2012, 64(6), 679-686.
[http://dx.doi.org/10.1007/s10616-012-9447-0] [PMID: 22447390]
[142]
Rangel-Churio, J.O.; Pinto-Zárate, J.H. Colombian Páramo Vegetation Database (CPVD)–the database on high Andean páramo vegetation in Colombia. Vegetation databases for the 21st century. Biodivers. Conserv., 2012, 4, 275-286.
[143]
Ganesan, A.; Thangapandian, M.; Ponnusamy, P.; Sundararaj, J.P.; Nayaka, S. Antioxidant and antibacterial activity of parmeliod lichens from Shevaroy hills of Eastern Ghats, India. Int. J. Pharm. Tech. Res., 2015, 8(9), 13-23.
[144]
Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res., 2014, 2014149185
[http://dx.doi.org/10.1155/2014/149185] [PMID: 24901008]
[145]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[146]
Pourahmad, J.; Salimi, A.; Seydi, E. Role of Oxygen Free Radicals in Cancer Development and Treatment.Free Radicals and Diseases; Ahmad, R., Ed.; IntechOpen: Croatia, 2016, pp. 315-327.
[http://dx.doi.org/10.5772/64787]
[147]
Melo, M.G.; Araújo, A.A.; Serafini, M.R.; Carvalho, L.F.; Bezerra, M.S.; Ramos, C.S.; Bonjardim, L.R.; Albuquerque-Júnior, R.L.; Lima, J.T.; Siqueira, R.S.; Fortes, V.S. Anti-inflammatory and toxicity studies of atranorin extracted from Cladina kalbii Ahti in rodents. Braz. J. Pharm. Sci., 2011, 47(4), 861-872.
[http://dx.doi.org/10.1590/S1984-82502011000400024]
[148]
Ingólfsdóttir, K.; Wiedemann, B.; Birgisdóttir, M.; Nenninger, A.; Jónsdóttir, S.; Wagner, H. Inhibitory effects of baeomycesic acid from the lichen Thamnolia subuliformis on 5-lipoxygenase in vitro. Phytomedicine, 1997, 4(2), 125-128.
[http://dx.doi.org/10.1016/S0944-7113(97)80056-6] [PMID: 23195399]
[149]
Bugni, T.S.; Andjelic, C.D.; Pole, A.R.; Rai, P.; Ireland, C.M.; Barrows, L.R. Biologically active components of a Papua New Guinea analgesic and anti-inflammatory lichen preparation. Fitoterapia, 2009, 80(5), 270-273.
[http://dx.doi.org/10.1016/j.fitote.2009.03.003] [PMID: 19289158]
[150]
Ingólfsdóttir, K.; Gissurarson, S.R.; Nenninger, A.; Neszmelyi, A.; Wiedemann, B.; Wagner, H. Biologically active alkamide from the lichen Stereocaulon alpinum. Phytomedicine, 1997, 4(4), 331-334.
[http://dx.doi.org/10.1016/S0944-7113(97)80042-6] [PMID: 23195583]
[151]
Bessadóttir, M.; Skúladóttir, E.Á.; Gowan, S.; Eccles, S.; Ögmundsdóttir, S.; Ogmundsdóttir, H.M. Effects of anti-proliferative lichen metabolite, protolichesterinic acid on fatty acid synthase, cell signalling and drug response in breast cancer cells. Phytomedicine, 2014, 21(12), 1717-1724.
[http://dx.doi.org/10.1016/j.phymed.2014.08.006] [PMID: 25442282]
[152]
Verma, N.; Bhera, B.C. Future Directions in the Study of Pharmaceutical Potential of Lichens.Lichen Secondary Metabolites; Ranković, B., Ed.; Springer Cham: Switzerland, 2019, pp. 237-260.
[http://dx.doi.org/10.1007/978-3-030-16814-8_9]
[153]
Oettl, S.K.; Gerstmeier, J.; Khan, S.Y.; Wiechmann, K.; Bauer, J.; Atanasov, A.G.; Malainer, C.; Awad, E.M.; Uhrin, P.; Heiss, E.H.; Waltenberger, B.; Remias, D.; Breuss, J.M.; Boustie, J.; Dirsch, V.M.; Stuppner, H.; Werz, O.; Rollinger, J.M. Imbricaric acid and perlatolic acid: Multi-targeting anti-inflammatory depsides from Cetrelia monachorum. PLoS One, 2013, 8(10)e76929
[http://dx.doi.org/10.1371/journal.pone.0076929] [PMID: 24130812]
[154]
Umezawa, H.; Shibamoto, N.; Naganawa, H.; Ayukawa, S.; Matsuzaki, M.; Takeuchi, T.; Kono, K.; Sakamoto, T. Isolation of lecanoric acid, an inhibitor of histidine decarboxylase from a fungus. J. Antibiot. (Tokyo), 1974, 27(8), 587-596.
[http://dx.doi.org/10.7164/antibiotics.27.587] [PMID: 4436144]
[155]
Brisdelli, F.; Perilli, M.; Sellitri, D.; Piovano, M.; Garbarino, J.A.; Nicoletti, M.; Bozzi, A.; Amicosante, G.; Celenza, G. Cytotoxic activity and antioxidant capacity of purified lichen metabolites: An in vitro study. Phytother. Res., 2013, 27(3), 431-437.
[http://dx.doi.org/10.1002/ptr.4739] [PMID: 22628260]
[156]
Ingolfsdottir, K.; Gissurarson, S.R.; Müller-Jakic, B.; Breu, W.; Wagner, H. Inhibitory effects of the lichen metabolite lobaric acid on arachidonate metabolism in vitro. Phytomedicine, 1996, 2(3), 243-246.
[http://dx.doi.org/10.1016/S0944-7113(96)80049-3] [PMID: 23194623]
[157]
Ogmundsdóttir, H.M.; Zoëga, G.M.; Gissurarson, S.R.; Ingólfsdóttir, K. Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes. J. Pharm. Pharmacol., 1998, 50(1), 107-115.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb03312.x] [PMID: 9504441]
[158]
Ingolfsdottir, K.; Breu, W.; Huneck, S.; Gudjonsdottir, G.A.; Müller-Jakic, B.; Wagner, H. In vitro inhibition of 5-lipoxygenase by protolichesterinic acid from Cetraria islandica. Phytomedicine, 1994, 1(3), 187-191.
[http://dx.doi.org/10.1016/S0944-7113(11)80063-2] [PMID: 23195937]
[159]
Kim, J.W.; Song, K.S.; Yoo, I.D.; Chang, H.W.; Yu, S.H.; Bae, K.G.; Min, T.J. Two phenolic compounds isolated from Umbilicaria esculenta as phospholipase A2 inhibitors. Korean J. Mycol., 1996, 24(3), 237-242.
[160]
Sankawa, U.; Shibuya, M.; Ebizuka, Y.; Noguchi, H.; Kinoshita, T.; Iitaka, Y.; Endo, A.; Kitahara, N. Depside as potent inhibitor of prostaglandin biosynthesis: A new active site model for fatty acid cyclooxygenase. Prostaglandins, 1982, 24(1), 21-34.
[http://dx.doi.org/10.1016/0090-6980(82)90174-5] [PMID: 6812170]
[161]
Bauer, J.; Waltenberger, B.; Noha, S.M.; Schuster, D.; Rollinger, J.M.; Boustie, J.; Chollet, M.; Stuppner, H.; Werz, O. Discovery of depsides and depsidones from lichen as potent inhibitors of microsomal prostaglandin E2 synthase-1 using pharmacophore models. ChemMedChem, 2012, 7(12), 2077-2081.
[http://dx.doi.org/10.1002/cmdc.201200345] [PMID: 23109349]
[162]
Kumar, K.C.S.; Müller, K. Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. J. Nat. Prod., 1999, 62(6), 821-823.
[http://dx.doi.org/10.1021/np980378z] [PMID: 10395495]
[163]
Munzi, S.; Triggiani, D.; Ceccarelli, D.; Climati, E.; Tiezzi, A.; Pisani, T.; Paoli, L.; Loppi, S. Antiproliferative activity of three lichen species belonging to the genus Peltigera. Plant Biosyst.-. Int. J. Dealing Aspects Plant Biol., 2014, 148(1), 83-87.
[164]
Park, H.J.; Jang, Y.J.; Yim, J.H.; Lee, H.K.; Pyo, S. Ramalin isolated from Ramalina terebrata attenuates atopic dermatitis-like skin lesions in Balb/c mice and cutaneous immune responses in keratinocytes and mast cells. Phytother. Res., 2016, 30(12), 1978-1987.
[http://dx.doi.org/10.1002/ptr.5703] [PMID: 27558640]
[165]
Studzińska-Sroka, E.; Dubino, A. Lichens as a source of chemical compounds with anti-inflammatory activity. Herba Pol., 2018, 64(1), 56-64.
[http://dx.doi.org/10.2478/hepo-2018-0005]
[166]
Tatipamula, V.B.; Vedula, G.S. Anti-inflammatory properties of Dirinaria consimilis extracts in albino rats. J. Biomed. Sci., 2017, 4(1), 3-8.
[http://dx.doi.org/10.3126/jbs.v4i1.20572] [PMID: 28056995]
[167]
Pereira, E.C.; da Silva, N.H.; Santos, R.A.; Sudário, A.P.; Rodrigues, E. Silva, A.A.; de Sousa Maia, M.B. Determination of Teloschistes flavicans (sw) norm anti-inflammatory activity. Pharmacognosy Res., 2010, 2(4), 205-210.
[http://dx.doi.org/10.4103/0974-8490.69102] [PMID: 21808568]
[168]
Dobrescu, D.; Tănăsescu, M.; Mezdrea, A.; Ivan, C.; Ordosch, E.; Neagoe, F.; Rizeanu, A.; Trifu, L.; Enescu, V. Contributions to the complex study of some lichens-Usnea genus. Pharmacological studies on Usnea barbata and Usnea hirta species. Rom. J. Physiol., 1993, 30(1-2), 101-107.
[PMID: 7982010]
[169]
Dahake, A.P.; Chakma, R.C.; Chakma, C.; Joshi, D. Antimicrobial and anti-inflammatory activity of Roccella belangeriana. Int. J. Pharmacog. Phytochem. Res., 2010, 2(1), 18-20.
[170]
Süleyman, H.; Odabasoglu, F.; Aslan, A.; Cakir, A.; Karagoz, Y.; Gocer, F.; Halici, M.; Bayir, Y. Anti-inflammatory and antiulcerogenic effects of the aqueous extract of Lobaria pulmonaria (L.) Hoffm. Phytomedicine, 2003, 10(6-7), 552-557.
[http://dx.doi.org/10.1078/094471103322331539] [PMID: 13678242]
[171]
Tatipamula, V.B.; Vedula, G.S. In vitro anti-inflammatory and cytotoxicity studies of two mangrove associated lichens, Dirinaria consimilis and Ramalina leiodea extracts. Hygeia J.D. Med., 2018, 10(1), 16-26.
[http://dx.doi.org/10.15254/H.J.D.Med.10.2018.174]
[172]
Tatipamula, V.B.; Vedula, G.S. Fibrinolytic, anti-inflammatory and cytotoxic potentialities of extracts and chemical constituents of manglicolous lichen, Graphis ajarekarii Patw. &. CR Kulk. Nat. Prod. J., 2020, 10(1), 87-93.
[http://dx.doi.org/10.2174/2210315508666180604101813]
[173]
Jin, J.Q.; Li, C.Q.; He, L.C. Down-regulatory effect of usnic acid on nuclear factor-kappaB-dependent tumor necrosis factor-α and inducible nitric oxide synthase expression in lipopolysaccharide-stimulated macrophages RAW 264.7. Phytother. Res., 2008, 22(12), 1605-1609.
[http://dx.doi.org/10.1002/ptr.2531] [PMID: 19003951]
[174]
Güvenç, A.; Küpeli Akkol, E.; Süntar, I.; Keleş, H.; Yıldız, S.; Calış, I. Biological activities of Pseudevernia furfuracea (L.) Zopf extracts and isolation of the active compounds. J. Ethnopharmacol., 2012, 144(3), 726-734.
[http://dx.doi.org/10.1016/j.jep.2012.10.021] [PMID: 23107822]
[175]
Bucar, F.; Schneider, I.; Ogmundsdóttir, H.; Ingólfsdóttir, K. Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets. Phytomedicine, 2004, 11(7-8), 602-606.
[http://dx.doi.org/10.1016/j.phymed.2004.03.004] [PMID: 15636173]
[176]
Mallavadhani, U.V.; Tirupathamma, R.S.; Sagarika, G.; Ramakrishna, S. Isolation, chemical modification, and anticancer activity of major metabolites of the lichen Parmotrema mesotropum. Chem. Nat. Compd., 2019, 55(5), 825-831.
[http://dx.doi.org/10.1007/s10600-019-02824-2]
[177]
Mishchenko, N.P.; Stepanenko, L.S.; Krivoshchekova, O.E.; Maksimov, O.B. Anthraquinones of the lichen Asahinea chrysantha. Chem. Nat. Compd., 1980, 16(2), 117-121.
[http://dx.doi.org/10.1007/BF00638766]
[178]
Correche, E.; Carrasco, M.; Giannini, F.; Piovano, M.; Garbarino, J.; Enriz, D. Cytotoxic screening activity of secondary lichen metabolites. Lat. Am. J. Pharm., 2002, 21(4), 273-278.
[179]
Fiedler, P.; Gambaro, V.; Garbarino, J.A.; Quilhot, W. Epiphorellic acids 1 and 2, two diaryl ethers from the lichen Cornicularia epiphorella. Phytochemistry, 1986, 25(2), 461-465.
[http://dx.doi.org/10.1016/S0031-9422(00)85501-6]
[180]
Kosanić, M.; Ranković, B.; Stanojković, T. Antioxidant, antimicrobial, and anticancer activity of 3 Umbilicaria species. J. Food Sci., 2012, 77(1), T20-T25.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02459.x] [PMID: 22260138]
[181]
Yu, X.; Guo, Q.; Su, G.; Yang, A.; Hu, Z.; Qu, C.; Wan, Z.; Li, R.; Tu, P.; Chai, X. Usnic acid derivatives with cytotoxic and antifungal activities from the lichen Usnea longissima. J. Nat. Prod., 2016, 79(5), 1373-1380.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00109] [PMID: 27186821]
[182]
Seo, C.; Yim, J.H.; Lee, H.K.; Park, S.M.; Sohn, J.H.; Oh, H. Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett., 2008, 49(1), 29-31.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.022]
[183]
Tokiwano, T.; Satoh, H.; Obara, T.; Hirota, H.; Yoshizawa, Y.; Yamamoto, Y. A lichen substance as an antiproliferative compound against HL-60 human leukemia cells: 16-O-acetyl-leucotylic acid isolated from Myelochroa aurulenta. Biosci. Biotechnol. Biochem., 2009, 73(11), 2525-2527.
[http://dx.doi.org/10.1271/bbb.90419] [PMID: 19897905]
[184]
Bogo, D.; Matos, M.D.; Honda, N.K.; Pontes, E.C.; Oguma, P.M.; da Silva Santos, E.C.; de Carvalho, J.E.; Nomizo, A. In vitro antitumour activity of orsellinates. Z. Naturforsch. C, 2010, 65(1-2), 43-48.
[http://dx.doi.org/10.1515/znc-2010-1-208]
[185]
Pathak, A. Potenial of Methyl-B-Orcinol carboxylate as antibiofilm agent: An in silico study. Int. J. Pharma Sci., 2017, 8(3), 305-315.
[186]
Yang, Y.; Park, S.Y.; Nguyen, T.T.; Yu, Y.H.; Nguyen, T.V.; Sun, E.G.; Udeni, J.; Jeong, M.H.; Pereira, I.; Moon, C.; Ha, H.H.; Kim, K.K.; Hur, J.S.; Kim, H. Lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility. PLoS One, 2015, 10(9)e0137889
[http://dx.doi.org/10.1371/journal.pone.0137889] [PMID: 26371759]
[187]
Stojanović, I.Z.; Najman, S.; Jovanović, O.; Petrović, G.; Najdanović, J.; Vasiljević, P.; Smelcerović, A. Effects of depsidones from Hypogymnia physodes on HeLa cell viability and growth. Folia Biol. (Praha), 2014, 60(2), 89-94.
[PMID: 24785112]
[188]
Paudel, B.; Bhattarai, H.D.; Koh, H.Y.; Lee, S.G.; Han, S.J.; Lee, H.K.; Oh, H.; Shin, H.W.; Yim, J.H. Ramalin, a novel nontoxic antioxidant compound from the Antarctic lichen Ramalina terebrata. Phytomedicine, 2011, 18(14), 1285-1290.
[http://dx.doi.org/10.1016/j.phymed.2011.06.007] [PMID: 21802926]
[189]
Liu, H.; Liu, Y.Q.; Liu, Y.Q.; Xu, A.H.; Young, C.Y.; Yuan, H.Q.; Lou, H.X. A novel anticancer agent, retigeric acid B, displays proliferation inhibition, S phase arrest and apoptosis activation in human prostate cancer cells. Chem. Biol. Interact., 2010, 188(3), 598-606.
[http://dx.doi.org/10.1016/j.cbi.2010.07.024] [PMID: 20692244]
[190]
Kılıç, N.; Aras, S.; Cansaran-Duman, D. Determination of vulpinic acid effect on apoptosis and mRNA expression levels in breast cancer cell lines. Anticancer. Agents Med. Chem., 2018, 18(14), 2032-2041.
[191]
Šeklić, D.S.; Obradović, A.D.; Stanković, M.S.; Živanović, M.N.; Mitrović, T.L.; Stamenković, S.M.; Marković, S.D. Proapoptotic and antimigratory effects of Pseudevernia furfuracea and Platismatia glauca on colon cancer cell lines. Food Technol. Biotechnol., 2018, 56(3), 421-430.
[http://dx.doi.org/10.17113/ftb.56.03.18.5727] [PMID: 30510485]
[192]
Grujičić, D.; Stošić, I.; Kosanić, M.; Stanojković, T.; Ranković, B.; Milošević-Djordjević, O. Evaluation of in vitro antioxidant, antimicrobial, genotoxic and anticancer activities of lichen Cetraria islandica. Cytotechnology, 2014, 66(5), 803-813.
[http://dx.doi.org/10.1007/s10616-013-9629-4] [PMID: 24590925]
[193]
Poornima, S.; Ponmurugan, P.; Mythili Gnanamangai, B.; Nagarjun, N.; Ayyappadasan, G. Evaluation of antimicrobial, antioxidant and anticancer activities of few macrolichens collected from Eastern Ghats of Tamil Nadu, India. Int. Res. J. Pharm., 2017, 8(3), 39-43.
[http://dx.doi.org/10.7897/2230-8407.080334]
[194]
De Jesus, E.; Hur, J.S.; Notarte, K.I. Antibacterial, antioxidant, and cytotoxic activities of the corticolous lichens Canoparmelia aptata, Pannaria sp., and Parmotrema gardneri collected from Mt. Banahaw, Quezon, Philippines. CREAM, 2016, 6, 173-183.
[http://dx.doi.org/10.5943/cream/6/3/4]
[195]
Studzinska-Sroka, E.; Galanty, A.; Bylka, W. Atranorin-an interesting lichen secondary metabolite. Mini Rev. Med. Chem., 2017, 17(17), 1633-1645.
[http://dx.doi.org/10.2174/1389557517666170425105727] [PMID: 28443519]
[196]
Kosanić, M.A.; Ristić, S.V.; Stanojković, T.A.; Manojlović, N.E.; Ranković, B.R. Extracts of five Cladonia lichens as sources of biologically active compounds. Farmacia, 2018, 66, 644-651.
[http://dx.doi.org/10.31925/farmacia.2018.4.13]
[197]
Ozturk, S.; Erkisa, M.; Oran, S.; Ulukaya, E.; Celikler, S.; Ari, F. Lichens exerts an anti-proliferative effect on human breast and lung cancer cells through induction of apoptosis. Drug Chem. Toxicol., 2021, 44(3), 259-267.
[http://dx.doi.org/10.1080/01480545.2019.1573825] [PMID: 30835567]
[198]
El-Garawani, I.M.; Elkhateeb, W.A.; Zaghlol, G.M.; Almeer, R.S.; Ahmed, E.F.; Rateb, M.E.; Abdel Moneim, A.E. Candelariella vitellina extract triggers in vitro and in vivo cell death through induction of apoptosis: A novel anticancer agent. Food Chem. Toxicol., 2019, 127, 110-119.
[http://dx.doi.org/10.1016/j.fct.2019.03.003] [PMID: 30853555]
[199]
Lian, W.J.; He, X.Q.; Yao, Q.; Song, Z.Y.; Wang, J. Anticancer activity of ethyl acetate extract from Lethariella cladonioides in vitro and in vivo. Pharmacogn. Res, 2020, 12(1), 40.
[http://dx.doi.org/10.4103/pr.pr_70_19]
[200]
Letwin, L.; Malek, L.; Suntres, Z.; Christopher, L. Cytotoxic and antibiotic potential of secondary metabolites from the lichen Umbilicaria muhlenbergii. Curr. Pharm. Biotechnol., 2020, 21(14), 1516-1527.
[http://dx.doi.org/10.2174/1389201021666200504114515] [PMID: 32364069]
[201]
Tram, N.T.; Anh, D.H.; Thuc, H.H.; Tuan, N.T. Investigation of chemical constituents and cytotoxic activity of the lichen Usnea undulata. Vietnam J. Chem., 2020, 58(1), 63-66.
[http://dx.doi.org/10.1002/vjch.2019000130]
[202]
Mitrović, T.; Stamenković, S.; Cvetković, V.; Tošić, S.; Stanković, M.; Radojević, I.; Stefanović, O.; Comić, L.; Dačić, D.; Curčić, M.; Marković, S. Antioxidant, antimicrobial and antiproliferative activities of five lichen species. Int. J. Mol. Sci., 2011, 12(8), 5428-5448.
[http://dx.doi.org/10.3390/ijms12085428] [PMID: 21954369]
[203]
Ren, M.R.; Hur, J.S.; Kim, J.Y.; Park, K.W.; Park, S.C.; Seong, C.N.; Jeong, I.Y.; Byun, M.W.; Lee, M.K.; Seo, K.I. Anti-proliferative effects of Lethariella zahlbruckneri extracts in human HT-29 human colon cancer cells. Food Chem. Toxicol., 2009, 47(9), 2157-2162.
[http://dx.doi.org/10.1016/j.fct.2009.05.042] [PMID: 19501127]
[204]
Ivanova, V.; Bačkor, M.; Dahse, H.M.; Graefe, U. Molecular structural studies of lichen substances with antimicrobial, antiproliferative, and cytotoxic effects from Parmelia subrudecta. Prep. Biochem. Biotechnol., 2010, 40(4), 377-388.
[http://dx.doi.org/10.1080/10826068.2010.525432] [PMID: 21108141]
[205]
Alexandrino, C.A.; Honda, N.K.; Matos, M.D.; Portugal, L.C.; Souza, P.R.; Perdomo, R.T.; Guimarães, R.D.; Kadri, M.C.; Silva, M.C.; Bogo, D. Antitumor effect of depsidones from lichens on tumor cell lines and experimental murine melanoma. Rev. Bras. Farmacogn., 2019, 29(4), 449-456.
[http://dx.doi.org/10.1016/j.bjp.2019.04.005]
[206]
Ebrahim, H.Y. Discovery and Rational Optimization of Natural Product Scaffolds for The Control of Breast Malignancies.Doctoral dissertation, University of Louisiana: Monroe, 2016.,
[207]
Ingólfsdóttir, K.; Gudmundsdóttir, G.F.; Ogmundsdóttir, H.M.; Paulus, K.; Haraldsdóttir, S.; Kristinsson, H.; Bauer, R. Effects of tenuiorin and methyl orsellinate from the lichen Peltigera leucophlebia on 5-/15-lipoxygenases and proliferation of malignant cell lines in vitro. Phytomedicine, 2002, 9(7), 654-658.
[http://dx.doi.org/10.1078/094471102321616481] [PMID: 12487331]
[208]
Hirayama, T.; Fujikawa, F.; Kasahara, T.; Otsuka, M.; Nishida, N.; Mizuno, D. Anti-tumor activities of some lichen products and their degradation products (author’s transl). Yakugaku Zasshi, 1980, 100(7), 755-759.
[http://dx.doi.org/10.1248/yakushi1947.100.7_755] [PMID: 7205564]
[209]
Ari, F.; Aztopal, N.; Oran, S.; Bozdemir, S.; Celikler, S.; Ozturk, S.; Ulukaya, E. Parmelia sulcata Taylor and Usnea filipendula Stirt induce apoptosis-like cell death and DNA damage in cancer cells. Cell Prolif., 2014, 47(5), 457-464.
[http://dx.doi.org/10.1111/cpr.12123] [PMID: 25081971]
[210]
Jeon, Y.J.; Kim, S.; Kim, J.H.; Youn, U.J.; Suh, S.S. The comprehensive roles of ATRANORIN, a secondary metabolite from the Antarctic Lichen Stereocaulon caespitosum, in HCC tumorigenesis. Molecules, 2019, 24(7), 1414.
[http://dx.doi.org/10.3390/molecules24071414] [PMID: 30974882]
[211]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[212]
Han, Y.T.; Chen, X.H.; Gao, H.; Ye, J.L.; Wang, C.B. Physcion inhibits the metastatic potential of human colorectal cancer SW620 cells in vitro by suppressing the transcription factor SOX2. Acta Pharmacol. Sin., 2016, 37(2), 264-275.
[http://dx.doi.org/10.1038/aps.2015.115] [PMID: 26707141]
[213]
Yang, Y.; Bae, W.K.; Lee, J.Y.; Choi, Y.J.; Lee, K.H.; Park, M.S.; Yu, Y.H.; Park, S.Y.; Zhou, R.; Taş, İ.; Gamage, C.; Paik, M.J.; Lee, J.H.; Chung, I.J.; Kim, K.K.; Hur, J.S.; Kim, S.K.; Ha, H.H.; Kim, H. Potassium usnate, a water-soluble usnic acid salt, shows enhanced bioavailability and inhibits invasion and metastasis in colorectal cancer. Sci. Rep., 2018, 8(1), 16234.
[http://dx.doi.org/10.1038/s41598-018-34709-9] [PMID: 30390003]
[214]
Hill, C.; Wang, Y. The importance of epithelial-mesenchymal transition and autophagy in cancer drug resistance. Cancer Drug Resist., 2020, 3(1), 38.
[215]
Taş, İ.; Han, J.; Park, S.Y.; Yang, Y.; Zhou, R.; Gamage, C.D.B.; Van Nguyen, T.; Lee, J.Y.; Choi, Y.J.; Yu, Y.H.; Moon, K.S.; Kim, K.K.; Ha, H.H.; Kim, S.K.; Hur, J.S.; Kim, H. Physciosporin suppresses the proliferation, motility and tumourigenesis of colorectal cancer cells. Phytomedicine, 2019, 56, 10-20.
[http://dx.doi.org/10.1016/j.phymed.2018.09.219] [PMID: 30668330]
[216]
Lee, K.; Oh, S.; Ahn, E.; Lee, J.; Jung, S.; Moon, K. Lichen secondary metabolite, usnic acid, inhibit glioblastoma progression through the reduction of epithelial-mesenchymal transition and glioma stemness factors. Neuro-oncol., 2016, 18(4), 54.
[http://dx.doi.org/10.1093/neuonc/now188.188] [PMID: 26995790]
[217]
Goncu, B.; Sevgi, E.; Kizilarslan Hancer, C.; Gokay, G.; Ozten, N. Differential anti-proliferative and apoptotic effects of lichen species on human prostate carcinoma cells. PLoS One, 2020, 15(9)e0238303
[http://dx.doi.org/10.1371/journal.pone.0238303] [PMID: 32997661]
[218]
Tang, J.Y.; Wu, K.H.; Wang, Y.Y.; Farooqi, A.A.; Huang, H.W.; Yuan, S.F.; Jian, R.I.; Tsao, L.Y.; Chen, P.A.; Chang, F.R.; Cheng, Y.B.; Hu, H.C.; Chang, H.W. Methanol extract of Usnea barbata induces cell killing, apoptosis, and DNA damage against oral cancer cells through oxidative stress. Antioxidants, 2020, 9(8), 694.
[http://dx.doi.org/10.3390/antiox9080694] [PMID: 32756347]
[219]
Guzow-Krzemińska, B.; Guzow, K.; Herman-Antosiewicz, A. Usnic acid derivatives as cytotoxic agents against cancer cells and the mechanisms of their activity. Curr. Pharmacol. Rep., 2019, 5(6), 429-439.
[http://dx.doi.org/10.1007/s40495-019-00202-8]
[220]
Hong, J.M.; Suh, S.S.; Kim, T.K.; Kim, J.E.; Han, S.J.; Youn, U.J.; Yim, J.H.; Kim, I.C. Anti-cancer activity of lobaric acid and lobarstin extracted from the antarctic lichen Stereocaulon alpnum. Molecules, 2018, 23(3), 658.
[http://dx.doi.org/10.3390/molecules23030658] [PMID: 29538328]
[221]
Palacios-Moreno, J.; Rubio, C.; Quilhot, W.; Cavieres, M.F.; de la Peña, E.; Quiñones, N.V.; Díaz, H.; Carrión, F.; Henríquez-Roldán, C.F.; Weinstein-Oppenheimer, C.R. Epanorin, a lichen secondary metabolite, inhibits proliferation of MCF-7 breast cancer cells. Biol. Res., 2019, 52(1), 55.
[http://dx.doi.org/10.1186/s40659-019-0261-4] [PMID: 31601259]
[222]
Reddy, S.D.; Siva, B.; Kumar, K.; Babu, V.S.P.; Sravanthi, V.; Boustie, J.; Nayak, V.L.; Tiwari, A.K.; Rao, C.H.V.; Sridhar, B.; Shashikala, P.; Babu, K.S. Comprehensive analysis of secondary metabolites in Usnea longissima (Lichenized Ascomycetes, Parmeliaceae) using UPLC-ESI-QTOF-MS/MS and pro-apoptotic activity of barbatic acid. Molecules, 2019, 24(12), 2270.
[http://dx.doi.org/10.3390/molecules24122270] [PMID: 31216770]
[223]
Coskun, Z.M.; Ersoz, M.; Acikgoz, B.; Karalti, I.; Cobanoglu, G.; Sesal, C. Anti-proliferative and apoptotic effects of methanolic extracts from different Cladonia species on human breast cancer cells. Folia Biol. (Praha), 2015, 61(3), 97-103.
[PMID: 26213854]
[224]
Yurdacan, B.; Egeli, U.; Eskiler, G.G.; Eryilmaz, I.E.; Cecener, G.; Tunca, B. The role of usnic acid-induced apoptosis and autophagy in hepatocellular carcinoma. Hum. Exp. Toxicol., 2019, 38(2), 201-215.
[http://dx.doi.org/10.1177/0960327118792052] [PMID: 30084279]
[225]
Yang, Y.; Bhosle, S.R.; Yu, Y.H.; Park, S.Y.; Zhou, R.; Taş, İ.; Gamage, C.D.B.; Kim, K.K.; Pereira, I.; Hur, J.S.; Ha, H.H.; Kim, H. Tumidulin, a lichen secondary metabolite, decreases the stemness potential of colorectal cancer cells. Molecules, 2018, 23(11), 2968.
[http://dx.doi.org/10.3390/molecules23112968] [PMID: 30441806]
[226]
Cohen, P.A.; Towers, G.N. The anthraquinones of Heterodermia obscurata. Phytochemistry, 1995, 40(3), 911-915.
[http://dx.doi.org/10.1016/0031-9422(95)00407-X]
[227]
Karunaratne, D.N.; Jayalal, R.G.U.; Karunaratne, V. Lichen Polysaccharides.The Complex World of Polysaccharides; Karunaratne, D.N., Ed.; InTech Open: UK, 2012, pp. 215-226.
[228]
Takahashi, K.; Takeda, T.; Shibata, S. Polysaccharides of lichen symbionts. Chem. Pharm. Bull. (Tokyo), 1979, 27(1), 238-241.
[http://dx.doi.org/10.1248/cpb.27.238]
[229]
Nishikawa, Y.; Tanaka, M.; Shibata, S.; Fukuoka, F. Polysaccharides of lichens and fungi. IV. Antitumour active O-acetylated pustulan-type glucans from the lichens of Umbilicaria species. Chem. Pharm. Bull. (Tokyo), 1970, 18(7), 1431-1434.
[http://dx.doi.org/10.1248/cpb.18.1431] [PMID: 5453975]
[230]
Kim, H.S.; Kim, J.Y.; Lee, H.K.; Kim, M.S.; Lee, S.R.; Kang, J.S.; Kim, H.M.; Lee, K.A.; Hong, J.T.; Kim, Y.; Han, S.B. Dendritic cell activation by glucan isolated from Umbilicaria esculenta. Immune Netw., 2010, 10(6), 188-197.
[http://dx.doi.org/10.4110/in.2010.10.6.188] [PMID: 21286379]
[231]
Sun, Y.; Li, J.; Zhang, Y.; Tu, Y.; Huang, C.; Tao, J.; Yang, M.; Yang, L. The polysaccharide extracted from Umbilicaria esculenta inhibits proliferation of melanoma cells through ROS-activated mitochondrial apoptosis pathway. Biol. Pharm. Bull., 2018, 41(1), 57-64.,
[http://dx.doi.org/10.1248/bpb.b17-00562] [PMID: 29311483]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy