Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Role of Aberrant Lipid Metabolism of Cancer Stem Cells in Cancer Progression

Author(s): Juan Zhou, Jing Zhao and Chunxia Su*

Volume 21, Issue 8, 2021

Published on: 16 March, 2021

Page: [631 - 639] Pages: 9

DOI: 10.2174/1568009619666210316112333

Price: $65

Abstract

Cancer stem cells (CSCs) represent a small population of cancer cells that are able to self-renew and initiate tumors, which undergo epigenetic, epithelial-mesenchymal, immunological, and metabolic reprogramming to adapt to the tumor microenvironment as well as survive host defense or therapeutic insults. The metabolic reprogramming that accompanies cancer onset is known to be critical for the disease pathogenesis. A coordinated dysregulation of lipid metabolism is observed in nearly all cancer types. In addition to fulfilling the basic requirements of structural lipids for membrane synthesis, lipids function importantly as signaling molecules and contribute to energy homeostasis. In this review, we summarize the current progress in the attractive research field of aberrant lipid metabolism regarding CSCs in cancer progression, which provides insights into therapeutic agents targeting CSCs based upon their modulation of lipid metabolism.

Keywords: Cancer stem cells (CSCs), lipid metabolism, cancer progression, tumor microenvironment, dysregulation of lipid metabolism, energy homeostasis.

Next »
Graphical Abstract

[1]
Batlle, E.; Clevers, H. Cancer stem cells revisited. Nat. Med., 2017, 23(10), 1124-1134.
[http://dx.doi.org/10.1038/nm.4409] [PMID: 28985214]
[2]
Prieto-Vila, M.; Takahashi, R.U.; Usuba, W.; Kohama, I.; Ochiya, T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci., 2017, 18(12), 2574.
[http://dx.doi.org/10.3390/ijms18122574] [PMID: 29194401]
[3]
Lytle, N.K.; Barber, A.G.; Reya, T. Stem cell fate in cancer growth, progression and therapy resistance. Nat. Rev. Cancer, 2018, 18(11), 669-680.
[http://dx.doi.org/10.1038/s41568-018-0056-x] [PMID: 30228301]
[4]
Nandy, S.B.; Lakshmanaswamy, R. Cancer stem cells and metastasis. Prog. Mol. Biol. Transl. Sci., 2017, 151, 137-176.
[http://dx.doi.org/10.1016/bs.pmbts.2017.07.007] [PMID: 29096892]
[5]
Sciacovelli, M.; Frezza, C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J., 2017, 284(19), 3132-3144.
[http://dx.doi.org/10.1111/febs.14090] [PMID: 28444969]
[6]
El Hout, M.; Cosialls, E.; Mehrpour, M.; Hamaï, A. Crosstalk between autophagy and metabolic regulation of cancer stem cells. Mol. Cancer, 2020, 19(1), 27.
[http://dx.doi.org/10.1186/s12943-019-1126-8] [PMID: 32028963]
[7]
Li, L.; Bi, Z.; Wadgaonkar, P.; Lu, Y.; Zhang, Q.; Fu, Y.; Thakur, C.; Wang, L.; Chen, F. Metabolic and epigenetic reprogramming in the arsenic-induced cancer stem cells. Semin. Cancer Biol., 2019, 57, 10-18.
[http://dx.doi.org/10.1016/j.semcancer.2019.04.003] [PMID: 31009762]
[8]
Park, E.K.; Lee, J.C.; Park, J.W.; Bang, S.Y.; Yi, S.A.; Kim, B.K.; Park, J.H.; Kwon, S.H.; You, J.S.; Nam, S.W.; Cho, E.J.; Han, J.W. Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53. Cell Death Dis., 2015, 6(11), e1964.
[http://dx.doi.org/10.1038/cddis.2015.313] [PMID: 26539911]
[9]
Lee, S.Y.; Ju, M.K.; Jeon, H.M.; Lee, Y.J.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Oncogenic metabolism acts as a prerequisite step for induction of cancer metastasis and cancer stem cell phenotype. Oxid. Med. Cell. Longev., 2018, 2018, 1027453.
[http://dx.doi.org/10.1155/2018/1027453] [PMID: 30671168]
[10]
Yi, M.; Li, J.; Chen, S.; Cai, J.; Ban, Y.; Peng, Q.; Zhou, Y.; Zeng, Z.; Peng, S.; Li, X.; Xiong, W.; Li, G.; Xiang, B. Emerging role of lipid metabolism alterations in Cancer stem cells. J. Exp. Clin. Cancer Res., 2018, 37(1), 118.
[http://dx.doi.org/10.1186/s13046-018-0784-5] [PMID: 29907133]
[11]
Zhao, G.; Cardenas, H.; Matei, D. Ovarian cancer-why lipids matter. Cancers (Basel), 2019, 11(12), 1870.
[http://dx.doi.org/10.3390/cancers11121870] [PMID: 31769430]
[12]
Pepino, M.Y.; Kuda, O.; Samovski, D.; Abumrad, N.A. Structure- function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr., 2014, 34, 281-303.
[http://dx.doi.org/10.1146/annurev-nutr-071812-161220] [PMID: 24850384]
[13]
Jay, A.G.; Hamilton, J.A. The enigmatic membrane fatty acid transporter CD36: New insights into fatty acid binding and their effects on uptake of oxidized LDL. Prostaglandins Leukot. Essent. Fatty Acids, 2018, 138, 64-70.
[http://dx.doi.org/10.1016/j.plefa.2016.05.005] [PMID: 27288302]
[14]
Xu, W.H.; Qu, Y.Y.; Wang, J.; Wang, H.K.; Wan, F.N.; Zhao, J.Y.; Zhang, H.L.; Ye, D.W. Elevated CD36 expression correlates with increased visceral adipose tissue and predicts poor prognosis in ccRCC patients. J. Cancer, 2019, 10(19), 4522-4531.
[http://dx.doi.org/10.7150/jca.30989] [PMID: 31528216]
[15]
Nath, A.; Chan, C. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Sci. Rep., 2016, 6, 18669.
[http://dx.doi.org/10.1038/srep18669] [PMID: 26725848]
[16]
Ghoneum, A.; Gonzalez, D.; Abdulfattah, A.Y.; Said, N. Metabolic plasticity in ovarian cancer stem cells. Cancers (Basel), 2020, 12(5), 1267.
[http://dx.doi.org/10.3390/cancers12051267] [PMID: 32429566]
[17]
Hale, J.S.; Otvos, B.; Sinyuk, M.; Alvarado, A.G.; Hitomi, M.; Stoltz, K.; Wu, Q.; Flavahan, W.; Levison, B.; Johansen, M.L.; Schmitt, D.; Neltner, J.M.; Huang, P.; Ren, B.; Sloan, A.E.; Silverstein, R.L.; Gladson, C.L.; DiDonato, J.A.; Brown, J.M.; McIntyre, T.; Hazen, S.L.; Horbinski, C.; Rich, J.N.; Lathia, J.D. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells, 2014, 32(7), 1746-1758.
[http://dx.doi.org/10.1002/stem.1716] [PMID: 24737733]
[18]
Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; Bescós, C.; Di Croce, L.; Benitah, S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 2017, 541(7635), 41-45.
[http://dx.doi.org/10.1038/nature20791] [PMID: 27974793]
[19]
Sachs, K.; Sarver, A.L.; Noble-Orcutt, K.E.; LaRue, R.S.; Antony, M.L.; Chang, D.; Lee, Y.; Navis, C.M.; Hillesheim, A.L.; Nykaza, I.R.; Ha, N.A.; Hansen, C.J.; Karadag, F.K.; Bergerson, R.J.; Verneris, M.R.; Meredith, M.M.; Schomaker, M.L.; Linden, M.A.; Myers, C.L.; Largaespada, D.A.; Sachs, Z. Single-cell gene expression analyses reveal distinct self-renewing and proliferating subsets in the leukemia stem cell compartment in acute myeloid leukemia. Cancer Res., 2020, 80(3), 458-470.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2932] [PMID: 31784425]
[20]
Landberg, N.; von Palffy, S.; Askmyr, M.; Lilljebjörn, H.; Sandén, C.; Rissler, M.; Mustjoki, S.; Hjorth-Hansen, H.; Richter, J.; Ågerstam, H.; Järås, M.; Fioretos, T. CD36 defines primitive chronic myeloid leukemia cells less responsive to imatinib but vulnerable to antibody-based therapeutic targeting. Haematologica, 2018, 103(3), 447-455.
[http://dx.doi.org/10.3324/haematol.2017.169946] [PMID: 29284680]
[21]
McKillop, I.H.; Girardi, C.A.; Thompson, K.J. Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell. Signal., 2019, 62, 109336.
[http://dx.doi.org/10.1016/j.cellsig.2019.06.001] [PMID: 31170472]
[22]
Morihiro, Y.; Yasumoto, Y.; Vaidyan, L.K.; Sadahiro, H.; Uchida, T.; Inamura, A.; Sharifi, K.; Ideguchi, M.; Nomura, S.; Tokuda, N.; Kashiwabara, S.; Ishii, A.; Ikeda, E.; Owada, Y.; Suzuki, M. Fatty acid binding protein 7 as a marker of glioma stem cells. Pathol. Int., 2013, 63(11), 546-553.
[http://dx.doi.org/10.1111/pin.12109] [PMID: 24274717]
[23]
De Rosa, A.; Pellegatta, S.; Rossi, M.; Tunici, P.; Magnoni, L.; Speranza, M.C.; Malusa, F.; Miragliotta, V.; Mori, E.; Finocchiaro, G.; Bakker, A. A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells. PLoS One, 2012, 7(12), e52113.
[http://dx.doi.org/10.1371/journal.pone.0052113] [PMID: 23284888]
[24]
Ameer, F.; Scandiuzzi, L.; Hasnain, S.; Kalbacher, H.; Zaidi, N. De novo lipogenesis in health and disease. Metabolism, 2014, 63(7), 895-902.
[http://dx.doi.org/10.1016/j.metabol.2014.04.003] [PMID: 24814684]
[25]
Jafari, N.; Drury, J.; Morris, A.J.; Onono, F.O.; Stevens, P.D.; Gao, T.; Liu, J.; Wang, C.; Lee, E.Y.; Weiss, H.L.; Evers, B.M.; Zaytseva, Y.Y. De Novo fatty acid synthesis-driven sphingolipid metabolism promotes metastatic potential of colorectal cancer. Mol. Cancer Res., 2019, 17(1), 140-152.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0199] [PMID: 30154249]
[26]
Nickels, J.T., Jr New links between lipid accumulation and cancer progression. J. Biol. Chem., 2018, 293(17), 6635-6636.
[http://dx.doi.org/10.1074/jbc.H118.002654] [PMID: 29703762]
[27]
Swierczynski, J; Hebanowska, A; Sledzinski, T Role of abnormal lipid metabolism in development, progression, diagnosis, and therapy of pancreatic cancer. World J Gastroenterol., 2014, 20(9), 2279-2303.
[http://dx.doi.org/10.3748/wjg.v20.i9.2279]
[28]
Penfold, L.; Woods, A.; Muckett, P.; Nikitin, A.Y.; Kent, T.R.; Zhang, S.; Graham, R.; Pollard, A.; Carling, D. CAMKK2 promotes prostate cancer independently of AMPK via increased lipogenesis. Cancer Res., 2018, 78(24), 6747-6761.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0585] [PMID: 30242113]
[29]
Li, G.; Li, M.; Hu, J.; Lei, R.; Xiong, H.; Ji, H.; Yin, H.; Wei, Q.; Hu, G. The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis. Oncogene, 2017, 36(7), 989-998.
[http://dx.doi.org/10.1038/onc.2016.265] [PMID: 27641336]
[30]
Jones, S.F.; Infante, J.R. Molecular pathways: Fatty acid synthase. Clin. Cancer Res., 2015, 21(24), 5434-5438.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0126] [PMID: 26519059]
[31]
Pandey, P.R.; Xing, F.; Sharma, S.; Watabe, M.; Pai, S.K.; Iiizumi-Gairani, M.; Fukuda, K.; Hirota, S.; Mo, Y.Y.; Watabe, K. Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer. Oncogene, 2013, 32(42), 5111-5122.
[http://dx.doi.org/10.1038/onc.2012.519] [PMID: 23208501]
[32]
Brandi, J.; Dando, I.; Pozza, E.D.; Biondani, G.; Jenkins, R.; Elliott, V.; Park, K.; Fanelli, G.; Zolla, L.; Costello, E.; Scarpa, A.; Cecconi, D.; Palmieri, M. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways. J. Proteomics, 2017, 150, 310-322.
[http://dx.doi.org/10.1016/j.jprot.2016.10.002] [PMID: 27746256]
[33]
Yasumoto, Y.; Miyazaki, H.; Vaidyan, L.K.; Kagawa, Y.; Ebrahimi, M.; Yamamoto, Y.; Ogata, M.; Katsuyama, Y.; Sadahiro, H.; Suzuki, M.; Owada, Y. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells. PLoS One, 2016, 11(1), e0147717.
[http://dx.doi.org/10.1371/journal.pone.0147717] [PMID: 26808816]
[34]
Pandey, P.R.; Okuda, H.; Watabe, M.; Pai, S.K.; Liu, W.; Kobayashi, A.; Xing, F.; Fukuda, K.; Hirota, S.; Sugai, T.; Wakabayashi, G.; Koeda, K.; Kashiwaba, M.; Suzuki, K.; Chiba, T.; Endo, M.; Fujioka, T.; Tanji, S.; Mo, Y.Y.; Cao, D.; Wilber, A.C.; Watabe, K. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res. Treat., 2011, 130(2), 387-398.
[http://dx.doi.org/10.1007/s10549-010-1300-6] [PMID: 21188630]
[35]
Vazquez-Martin, A.; Corominas-Faja, B.; Cufi, S.; Vellon, L.; Oliveras-Ferraros, C.; Menendez, O.J.; Joven, J.; Lupu, R.; Menendez, J.A. The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells. Cell Cycle, 2013, 12(2), 207-218.
[http://dx.doi.org/10.4161/cc.23352] [PMID: 23287468]
[36]
Schcolnik-Cabrera, A.; Chávez-Blanco, A.; Domínguez-Gómez, G.; Taja-Chayeb, L.; Morales-Barcenas, R.; Trejo-Becerril, C.; Perez-Cardenas, E.; Gonzalez-Fierro, A.; Dueñas-González, A. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin. Investig. Drugs, 2018, 27(5), 475-489.
[http://dx.doi.org/10.1080/13543784.2018.1471132] [PMID: 29723075]
[37]
Menendez, J.A.; Lupu, R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin. Ther. Targets, 2017, 21(11), 1001-1016.
[http://dx.doi.org/10.1080/14728222.2017.1381087] [PMID: 28922023]
[38]
DeBose-Boyd, R.A.; Ye, J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem. Sci., 2018, 43(5), 358-368.
[http://dx.doi.org/10.1016/j.tibs.2018.01.005] [PMID: 29500098]
[39]
Shimano, H.; Sato, R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat. Rev. Endocrinol., 2017, 13(12), 710-730.
[http://dx.doi.org/10.1038/nrendo.2017.91] [PMID: 28849786]
[40]
Perone, Y.; Farrugia, A.J.; Rodríguez-Meira, A.; Győrffy, B.; Ion, C.; Uggetti, A.; Chronopoulos, A.; Marrazzo, P.; Faronato, M.; Shousha, S.; Davies, C.; Steel, J.H.; Patel, N.; Del Rio Hernandez, A.; Coombes, C.; Pruneri, G.; Lim, A.; Calvo, F.; Magnani, L. SREBP1 drives Keratin-80-dependent cytoskeletal changes and invasive behavior in endocrine-resistant ERα breast cancer. Nat. Commun., 2019, 10(1), 2115.
[http://dx.doi.org/10.1038/s41467-019-09676-y] [PMID: 31073170]
[41]
Wen, Y.A.; Xiong, X.; Zaytseva, Y.Y.; Napier, D.L.; Vallee, E.; Li, A.T.; Wang, C.; Weiss, H.L.; Evers, B.M.; Gao, T. Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer. Cell Death Dis., 2018, 9(3), 265.
[http://dx.doi.org/10.1038/s41419-018-0330-6] [PMID: 29449559]
[42]
Li, X.; Wu, J.B.; Li, Q.; Shigemura, K.; Chung, L.W.; Huang, W.C. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget, 2016, 7(11), 12869-12884.
[http://dx.doi.org/10.18632/oncotarget.7331] [PMID: 26883200]
[43]
Peck, B.; Schulze, A. Lipid desaturation - the next step in targeting lipogenesis in cancer? FEBS J., 2016, 283(15), 2767-2778.
[http://dx.doi.org/10.1111/febs.13681] [PMID: 26881388]
[44]
Li, J.; Condello, S.; Thomes-Pepin, J.; Ma, X.; Xia, Y.; Hurley, T.D.; Matei, D.; Cheng, J.X. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell, 2017, 20(3), 303-314.e5.
[http://dx.doi.org/10.1016/j.stem.2016.11.004] [PMID: 28041894]
[45]
Qin, X.Y.; Su, T.; Yu, W.; Kojima, S. Lipid desaturation-associated endoplasmic reticulum stress regulates MYCN gene expression in hepatocellular carcinoma cells. Cell Death Dis., 2020, 11(1), 66.
[http://dx.doi.org/10.1038/s41419-020-2257-y] [PMID: 31988297]
[46]
ALJohani, A.M.; Syed, D.N.; Ntambi, J.M. Insights into stearoyl-coa desaturase-1 regulation of systemic metabolism. Trends Endocrinol. Metab., 2017, 28(12), 831-842.
[http://dx.doi.org/10.1016/j.tem.2017.10.003] [PMID: 29089222]
[47]
Noto, A.; Raffa, S.; De Vitis, C.; Roscilli, G.; Malpicci, D.; Coluccia, P.; Di Napoli, A.; Ricci, A.; Giovagnoli, M.R.; Aurisicchio, L.; Torrisi, M.R.; Ciliberto, G.; Mancini, R. Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells. Cell Death Dis., 2013, 4(12), e947.
[http://dx.doi.org/10.1038/cddis.2013.444] [PMID: 24309934]
[48]
Noto, A.; De Vitis, C.; Pisanu, M.E.; Roscilli, G.; Ricci, G.; Catizone, A.; Sorrentino, G.; Chianese, G.; Taglialatela-Scafati, O.; Trisciuoglio, D.; Del Bufalo, D.; Di Martile, M.; Di Napoli, A.; Ruco, L.; Costantini, S.; Jakopin, Z.; Budillon, A.; Melino, G.; Del Sal, G.; Ciliberto, G.; Mancini, R. Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ. Oncogene, 2017, 36(32), 4671-4672.
[http://dx.doi.org/10.1038/onc.2017.212] [PMID: 28628115]
[49]
Pisanu, M.E.; Noto, A.; De Vitis, C.; Morrone, S.; Scognamiglio, G.; Botti, G.; Venuta, F.; Diso, D.; Jakopin, Z.; Padula, F.; Ricci, A.; Mariotta, S.; Giovagnoli, M.R.; Giarnieri, E.; Amelio, I.; Agostini, M.; Melino, G.; Ciliberto, G.; Mancini, R. Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. Cancer Lett., 2017, 406, 93-104.
[http://dx.doi.org/10.1016/j.canlet.2017.07.027] [PMID: 28797843]
[50]
Pisanu, M.E.; Maugeri-Saccà, M.; Fattore, L.; Bruschini, S.; De Vitis, C.; Tabbì, E.; Bellei, B.; Migliano, E.; Kovacs, D.; Camera, E.; Picardo, M.; Jakopin, Z.; Cippitelli, C.; Bartolazzi, A.; Raffa, S.; Torrisi, M.R.; Fulciniti, F.; Ascierto, P.A.; Ciliberto, G.; Mancini, R. Inhibition of stearoyl-CoA desaturase 1 reverts BRAF and MEK inhibition-induced selection of cancer stem cells in BRAF- mutated melanoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 318.
[http://dx.doi.org/10.1186/s13046-018-0989-7] [PMID: 30558661]
[51]
Ma, X.L.; Sun, Y.F.; Wang, B.L.; Shen, M.N.; Zhou, Y.; Chen, J.W.; Hu, B.; Gong, Z.J.; Zhang, X.; Cao, Y.; Pan, B.S.; Zhou, J.; Fan, J.; Guo, W.; Yang, X.R. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer, 2019, 19(1), 760.
[http://dx.doi.org/10.1186/s12885-019-5963-z] [PMID: 31370822]
[52]
Choi, S.; Yoo, Y.J.; Kim, H.; Lee, H.; Chung, H.; Nam, M.H.; Moon, J.Y.; Lee, H.S.; Yoon, S.; Kim, W.Y. Clinical and biochemical relevance of monounsaturated fatty acid metabolism targeting strategy for cancer stem cell elimination in colon cancer. Biochem. Biophys. Res. Commun., 2019, 519(1), 100-105.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.137] [PMID: 31481234]
[53]
Vriens, K.; Christen, S.; Parik, S.; Broekaert, D.; Yoshinaga, K.; Talebi, A.; Dehairs, J.; Escalona-Noguero, C.; Schmieder, R.; Cornfield, T.; Charlton, C.; Romero-Pérez, L.; Rossi, M.; Rinaldi, G.; Orth, M.F.; Boon, R.; Kerstens, A.; Kwan, S.Y.; Faubert, B.; Méndez-Lucas, A.; Kopitz, C.C.; Chen, T.; Fernandez-Garcia, J.; Duarte, J.A.G.; Schmitz, A.A.; Steigemann, P.; Najimi, M.; Hägebarth, A.; Van Ginderachter, J.A.; Sokal, E.; Gotoh, N.; Wong, K.K.; Verfaillie, C.; Derua, R.; Munck, S.; Yuneva, M.; Beretta, L.; DeBerardinis, R.J.; Swinnen, J.V.; Hodson, L.; Cassiman, D.; Verslype, C.; Christian, S.; Grünewald, S.; Grünewald, T.G.P.; Fendt, S.M. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature, 2019, 566(7744), 403-406.
[http://dx.doi.org/10.1038/s41586-019-0904-1] [PMID: 30728499]
[54]
Walther, T.C.; Chung, J.; Farese, R.V., Jr Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol., 2017, 33, 491-510.
[http://dx.doi.org/10.1146/annurev-cellbio-100616-060608] [PMID: 28793795]
[55]
Olzmann, J.A.; Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 137-155.
[http://dx.doi.org/10.1038/s41580-018-0085-z] [PMID: 30523332]
[56]
Tirinato, L.; Pagliari, F.; Limongi, T.; Marini, M.; Falqui, A.; Seco, J.; Candeloro, P.; Liberale, C.; Di Fabrizio, E. An overview of lipid droplets in cancer and cancer stem cells. Stem Cells Int., 2017, 2017, 1656053.
[http://dx.doi.org/10.1155/2017/1656053] [PMID: 28883835]
[57]
Petan, T.; Jarc, E.; Jusović, M. Lipid droplets in cancer: guardians of fat in a stressful world. Molecules, 2018, 23(8), 1941.
[http://dx.doi.org/10.3390/molecules23081941] [PMID: 30081476]
[58]
Hershey, B.J.; Vazzana, R.; Joppi, D.L.; Havas, K.M. Lipid droplets define a sub-population of breast cancer stem cells. J. Clin. Med., 2019, 9(1), 87.
[http://dx.doi.org/10.3390/jcm9010087] [PMID: 31905780]
[59]
Tirinato, L.; Liberale, C.; Di Franco, S.; Candeloro, P.; Benfante, A.; La Rocca, R.; Potze, L.; Marotta, R.; Ruffilli, R.; Rajamanickam, V.P.; Malerba, M.; De Angelis, F.; Falqui, A.; Carbone, E.; Todaro, M.; Medema, J.P.; Stassi, G.; Di Fabrizio, E. Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells, 2015, 33(1), 35-44.
[http://dx.doi.org/10.1002/stem.1837] [PMID: 25186497]
[60]
Giampietri, C.; Petrungaro, S.; Cordella, M.; Tabolacci, C.; Tomaipitinca, L.; Facchiano, A.; Eramo, A.; Filippini, A.; Facchiano, F.; Ziparo, E. Lipid Storage and autophagy in melanoma cancer cells. Int. J. Mol. Sci., 2017, 18(6), 1271.
[http://dx.doi.org/10.3390/ijms18061271] [PMID: 28617309]
[61]
Houten, S.M.; Violante, S.; Ventura, F.V.; Wanders, R.J. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol., 2016, 78, 23-44.
[http://dx.doi.org/10.1146/annurev-physiol-021115-105045] [PMID: 26474213]
[62]
Ma, Y.; Temkin, S.M.; Hawkridge, A.M.; Guo, C.; Wang, W.; Wang, X.Y.; Fang, X. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett., 2018, 435, 92-100.
[http://dx.doi.org/10.1016/j.canlet.2018.08.006] [PMID: 30102953]
[63]
Corbet, C.; Feron, O. Emerging roles of lipid metabolism in cancer progression. Curr. Opin. Clin. Nutr. Metab. Care, 2017, 20(4), 254-260.
[http://dx.doi.org/10.1097/MCO.0000000000000381] [PMID: 28403011]
[64]
Wang, C.; Shao, L.; Pan, C.; Ye, J.; Ding, Z.; Wu, J.; Du, Q.; Ren, Y.; Zhu, C. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Stem Cell Res. Ther., 2019, 10(1), 175.
[http://dx.doi.org/10.1186/s13287-019-1265-2] [PMID: 31196164]
[65]
Chen, C.L.; Uthaya Kumar, D.B.; Punj, V.; Xu, J.; Sher, L.; Tahara, S.M.; Hess, S.; Machida, K. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab., 2016, 23(1), 206-219.
[http://dx.doi.org/10.1016/j.cmet.2015.12.004] [PMID: 26724859]
[66]
Ito, K.; Carracedo, A.; Weiss, D.; Arai, F.; Ala, U.; Avigan, D.E.; Schafer, Z.T.; Evans, R.M.; Suda, T.; Lee, C.H.; Pandolfi, P.P. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med., 2012, 18(9), 1350-1358.
[http://dx.doi.org/10.1038/nm.2882] [PMID: 22902876]
[67]
Qu, Q.; Zeng, F.; Liu, X.; Wang, Q.J.; Deng, F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis., 2016, 7(5), e2226.
[http://dx.doi.org/10.1038/cddis.2016.132] [PMID: 27195673]
[68]
Melone, M.A.B.; Valentino, A.; Margarucci, S.; Galderisi, U.; Giordano, A.; Peluso, G. The carnitine system and cancer metabolic plasticity. Cell Death Dis., 2018, 9(2), 228.
[http://dx.doi.org/10.1038/s41419-018-0313-7] [PMID: 29445084]
[69]
Shi, J.; Fu, H.; Jia, Z.; He, K.; Fu, L.; Wang, W. High Expression of CPT1A Predicts Adverse Outcomes: A Potential Therapeutic Target for Acute Myeloid Leukemia. EBioMedicine, 2016, 14, 55-64.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.025] [PMID: 27916548]
[70]
Ricciardi, M.R.; Mirabilii, S.; Allegretti, M.; Licchetta, R.; Calarco, A.; Torrisi, M.R.; Foà, R.; Nicolai, R.; Peluso, G.; Tafuri, A. Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood, 2015, 126(16), 1925-1929.
[http://dx.doi.org/10.1182/blood-2014-12-617498] [PMID: 26276667]
[71]
Zaugg, K.; Yao, Y.; Reilly, P.T.; Kannan, K.; Kiarash, R.; Mason, J.; Huang, P.; Sawyer, S.K.; Fuerth, B.; Faubert, B.; Kalliomäki, T.; Elia, A.; Luo, X.; Nadeem, V.; Bungard, D.; Yalavarthi, S.; Growney, J.D.; Wakeham, A.; Moolani, Y.; Silvester, J.; Ten, A.Y.; Bakker, W.; Tsuchihara, K.; Berger, S.L.; Hill, R.P.; Jones, R.G.; Tsao, M.; Robinson, M.O.; Thompson, C.B.; Pan, G.; Mak, T.W. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev., 2011, 25(10), 1041-1051.
[http://dx.doi.org/10.1101/gad.1987211] [PMID: 21576264]
[72]
Park, J.H.; Vithayathil, S.; Kumar, S.; Sung, P.L.; Dobrolecki, L.E.; Putluri, V.; Bhat, V.B.; Bhowmik, S.K.; Gupta, V.; Arora, K.; Wu, D.; Tsouko, E.; Zhang, Y.; Maity, S.; Donti, T.R.; Graham, B.H.; Frigo, D.E.; Coarfa, C.; Yotnda, P.; Putluri, N.; Sreekumar, A.; Lewis, M.T.; Creighton, C.J.; Wong, L.C.; Kaipparettu, B.A. Fatty acid oxidation-driven Src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer. Cell Rep., 2016, 14(9), 2154-2165.
[http://dx.doi.org/10.1016/j.celrep.2016.02.004] [PMID: 26923594]
[73]
Shao, H.; Mohamed, E.M.; Xu, G.G.; Waters, M.; Jing, K.; Ma, Y.; Zhang, Y.; Spiegel, S.; Idowu, M.O.; Fang, X. Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer. Oncotarget, 2016, 7(4), 3832-3846.
[http://dx.doi.org/10.18632/oncotarget.6757] [PMID: 26716645]
[74]
Wang, Y.N.; Zeng, Z.L.; Lu, J.; Wang, Y.; Liu, Z.X.; He, M.M.; Zhao, Q.; Wang, Z.X.; Li, T.; Lu, Y.X.; Wu, Q.N.; Yu, K.; Wang, F.; Pu, H.Y.; Li, B.; Jia, W.H.; Shi, M.; Xie, D.; Kang, T.B.; Huang, P.; Ju, H.Q.; Xu, R.H. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene, 2018, 37(46), 6025-6040.
[http://dx.doi.org/10.1038/s41388-018-0384-z] [PMID: 29995871]
[75]
Schlaepfer, I.R.; Rider, L.; Rodrigues, L.U.; Gijón, M.A.; Pac, C.T.; Romero, L.; Cimic, A.; Sirintrapun, S.J.; Glodé, L.M.; Eckel, R.H.; Cramer, S.D. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther., 2014, 13(10), 2361-2371.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0183] [PMID: 25122071]
[76]
Aiderus, A.; Black, M.A.; Dunbier, A.K. Fatty acid oxidation is associated with proliferation and prognosis in breast and other cancers. BMC Cancer, 2018, 18(1), 805.
[http://dx.doi.org/10.1186/s12885-018-4626-9] [PMID: 30092766]
[77]
Du, W.; Zhang, L.; Brett-Morris, A.; Aguila, B.; Kerner, J.; Hoppel, C.L.; Puchowicz, M.; Serra, D.; Herrero, L.; Rini, B.I.; Campbell, S.; Welford, S.M. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat. Commun., 2017, 8(1), 1769.
[http://dx.doi.org/10.1038/s41467-017-01965-8] [PMID: 29176561]
[78]
Wang, T.; Fahrmann, J.F.; Lee, H.; Li, Y.J.; Tripathi, S.C.; Yue, C.; Zhang, C.; Lifshitz, V.; Song, J.; Yuan, Y.; Somlo, G.; Jandial, R.; Ann, D.; Hanash, S.; Jove, R.; Yu, H. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab., 2018, 27(1), 136-150.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.11.001] [PMID: 29249690]
[79]
Carvalho, M.A.; Zecchin, K.G.; Seguin, F.; Bastos, D.C.; Agostini, M.; Rangel, A.L.; Veiga, S.S.; Raposo, H.F.; Oliveira, H.C.; Loda, M.; Coletta, R.D.; Graner, E. Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model. Int. J. Cancer, 2008, 123(11), 2557-2565.
[http://dx.doi.org/10.1002/ijc.23835] [PMID: 18770866]
[80]
Dowling, S.; Cox, J.; Cenedella, R.J. Inhibition of fatty acid synthase by Orlistat accelerates gastric tumor cell apoptosis in culture and increases survival rates in gastric tumor bearing mice in vivo. Lipids, 2009, 44(6), 489-498.
[http://dx.doi.org/10.1007/s11745-009-3298-2] [PMID: 19381703]
[81]
Menendez, J.A.; Vellon, L.; Lupu, R. Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene. Ann. Oncol., 2005, 16(8), 1253-1267.
[http://dx.doi.org/10.1093/annonc/mdi239] [PMID: 15870086]
[82]
Nagao, K.; Shinohara, N.; Smit, F.; de Weijert, M.; Jannink, S.; Owada, Y.; Mulders, P.; Oosterwijk, E.; Matsuyama, H. Fatty acid binding protein 7 may be a marker and therapeutic targets in clear cell renal cell carcinoma. BMC Cancer, 2018, 18(1), 1114.
[http://dx.doi.org/10.1186/s12885-018-5060-8] [PMID: 30442117]
[83]
Li, X.; Chen, Y.T.; Hu, P.; Huang, W.C. Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol. Cancer Ther., 2014, 13(4), 855-866.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0797] [PMID: 24493696]
[84]
Siqingaowa, S.S.; Sekar, S.; Gopalakrishnan, V.; Taghibiglou, C. Sterol regulatory element-binding protein 1 inhibitors decrease pancreatic cancer cell viability and proliferation. Biochem. Biophys. Res. Commun., 2017, 488(1), 136-140.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.023] [PMID: 28483521]
[85]
Gao, S.; Shi, Z.; Li, X.; Li, W.; Wang, Y.; Liu, Z.; Jiang, J. Fatostatin suppresses growth and enhances apoptosis by blocking SREBP-regulated metabolic pathways in endometrial carcinoma. Oncol. Rep., 2018, 39(4), 1919-1929.
[http://dx.doi.org/10.3892/or.2018.6265] [PMID: 29436682]
[86]
Zhou, C.; Qian, W.; Ma, J.; Cheng, L.; Jiang, Z.; Yan, B.; Li, J.; Duan, W.; Sun, L.; Cao, J.; Wang, F.; Wu, E.; Wu, Z.; Ma, Q.; Li, X. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1. Cell Prolif., 2019, 52(1), e12514.
[http://dx.doi.org/10.1111/cpr.12514] [PMID: 30341797]
[87]
Tracz-Gaszewska, Z.; Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers (Basel), 2019, 11(7), 948.
[http://dx.doi.org/10.3390/cancers11070948] [PMID: 31284458]
[88]
Winterton, S.E.; Capota, E.; Wang, X.; Chen, H.; Mallipeddi, P.L.; Williams, N.S.; Posner, B.A.; Nijhawan, D.; Ready, J.M. Discovery of cytochrome P450 4F11 activated inhibitors of stearoyl coenzyme A desaturase. J. Med. Chem., 2018, 61(12), 5199-5221.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00052] [PMID: 29869888]
[89]
Theodoropoulos, P.C.; Gonzales, S.S.; Winterton, S.E.; Rodriguez-Navas, C.; McKnight, J.S.; Morlock, L.K.; Hanson, J.M.; Cross, B.; Owen, A.E.; Duan, Y.; Moreno, J.R.; Lemoff, A.; Mirzaei, H.; Posner, B.A.; Williams, N.S.; Ready, J.M.; Nijhawan, D. Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase. Nat. Chem. Biol., 2016, 12(4), 218-225.
[http://dx.doi.org/10.1038/nchembio.2016] [PMID: 26829472]
[90]
Cheng, S.; Wang, G.; Wang, Y.; Cai, L.; Qian, K.; Ju, L.; Liu, X.; Xiao, Y.; Wang, X. Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARγ-mediated pathway in bladder cancer. Clin. Sci. (Lond.), 2019, 133(15), 1745-1758.
[http://dx.doi.org/10.1042/CS20190587] [PMID: 31358595]
[91]
Yao, C.H.; Liu, G.Y.; Wang, R.; Moon, S.H.; Gross, R.W.; Patti, G.J. Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLoS Biol., 2018, 16(3), e2003782.
[http://dx.doi.org/10.1371/journal.pbio.2003782] [PMID: 29596410]
[92]
Heuer, T.S.; Ventura, R.; Mordec, K.; Lai, J.; Fridlib, M.; Buckley, D.; Kemble, G. FASN inhibition and taxane treatment combine to enhance anti-tumor efficacy in diverse xenograft tumor models through disruption of tubulin palmitoylation and microtubule organization and FASN inhibition-mediated effects on oncogenic signaling and gene expression. EBioMedicine, 2017, 16, 51-62.
[http://dx.doi.org/10.1016/j.ebiom.2016.12.012] [PMID: 28159572]
[93]
Shen, M.; Tsai, Y.; Zhu, R.; Keng, P.C.; Chen, Y.; Chen, Y.; Lee, S.O. FASN-TGF-β1-PD-L1 axis contributes to the development of resistance to NK cell cytotoxicity of cisplatin-resistant lung cancer cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2018, 1863(3), 313-322.
[http://dx.doi.org/10.1016/j.bbalip.2017.12.012] [PMID: 29306075]
[94]
Liu, C.; Chikina, M.; Deshpande, R.; Menk, A.V.; Wang, T.; Tabib, T.; Brunazzi, E.A.; Vignali, K.M.; Sun, M.; Stolz, D.B.; Lafyatis, R.A.; Chen, W.; Delgoffe, G.M.; Workman, C.J.; Wendell, S.G.; Vignali, D.A.A. Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8+ T cell-derived interferon-γ. Immunity, 2019, 51(2), 381-397.e6.
[http://dx.doi.org/10.1016/j.immuni.2019.06.017] [PMID: 31350177]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy