Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

In situ Analysis of the Fate and Behavior of Inorganic Nanomaterials in Biological Systems by Synchrotron Radiation X-ray Probe Techniques

Author(s): Shuang Zhu, Yaling Wang* and Chunying Chen*

Volume 18, Issue 6, 2022

Published on: 16 March, 2021

Page: [723 - 738] Pages: 16

DOI: 10.2174/1573411017666210316110822

Price: $65

Abstract

Background: The comprehensive understanding of nanomaterials’ behavior in biological systems is essential in accurately modeling and predicting nanomaterials’ fate and toxicity. Synchrotron radiation (SR) X-ray techniques, based on their ability to study electronic configuration, coordination geometry, or oxidative state of nanomaterials with high sensitivity and spatial resolution, have been introduced to analyze the transformation behavior of nanomaterials in biological systems.

Methods: Previous researches in this field are classified and summarized.

Results: To start with, a brief introduction of a few widely used SR-based analytical techniques including X-ray absorption spectroscopy, X-ray fluorescence microprobe, scanning transmission Xray microscopy and circular dichroism spectroscopy is provided. Then, the recent advances of their applications in the analysis of nanomaterial behaviors are elaborated based on different nanomaterial transformation forms such as biodistribution, biomolecule interaction, decomposition, redox reaction, and recrystallization/agglomeration. Finally, a few challenges faced in this field are proposed.

Conclusion: This review summarizes the application of SR X-ray techniques in analyzing the fate of inorganic nanomaterials in biological systems. We hope it can help the readers to have a general understanding of the applications of SR-based techniques in studying nanomaterial biotransformation and to stimulate more insightful research in relevant fields.

Keywords: Synchrotron radiation, nanomaterials, behavior, fate, XANES, XRF, TXM.

Graphical Abstract

[1]
Kim, D.; Kim, J.; Park, Y.I.; Lee, N.; Hyeon, T. Recent Development of Inorganic Nanoparticles for Biomedical Imaging. ACS Cent. Sci., 2018, 4(3), 324-336.
[http://dx.doi.org/10.1021/acscentsci.7b00574] [PMID: 29632878]
[2]
Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the environment: where do we come from, where do we go to? Environ. Sci. Eur., 2018, 30(1), 6.
[http://dx.doi.org/10.1186/s12302-018-0132-6] [PMID: 29456907]
[3]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[4]
Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev., 2012, 41(6), 2323-2343.
[http://dx.doi.org/10.1039/C1CS15188F] [PMID: 22170510]
[5]
Kolosnjaj-Tabi, J.; Lartigue, L.; Javed, Y.; Luciani, N.; Pellegrino, T.; Wilhelm, C.; Alloyeau, D.; Gazeau, F. Biotransformations of magnetic nanoparticles in the body. Nano Today, 2016, 11(3), 280-284.
[http://dx.doi.org/10.1016/j.nantod.2015.10.001]
[6]
Cai, X.; Liu, X.; Jiang, J.; Gao, M.; Wang, W.; Zheng, H.; Xu, S.; Li, R. Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. Small, 2020, 16(36), e1907663.
[http://dx.doi.org/10.1002/smll.201907663] [PMID: 32406193]
[7]
Liu, J.; Wang, Z.; Liu, F.D.; Kane, A.B.; Hurt, R.H. Chemical transformations of nanosilver in biological environments. ACS Nano, 2012, 6(11), 9887-9899.
[http://dx.doi.org/10.1021/nn303449n] [PMID: 23046098]
[8]
Nowack, B.; Ranville, J.F.; Diamond, S.; Gallego-Urrea, J.A.; Metcalfe, C.; Rose, J.; Horne, N.; Koelmans, A.A.; Klaine, S.J. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem., 2012, 31(1), 50-59.
[http://dx.doi.org/10.1002/etc.726] [PMID: 22038832]
[9]
Zhang, F.; Allen, A.J.; Johnston-Peck, A.C.; Liu, J.; Pettibone, J.M. Transformation of engineered nanomaterials through the prism of silver sulfidation. Nanoscale Adv, 2019, 1(1), 241-253.
[http://dx.doi.org/10.1039/C8NA00103K] [PMID: 31276100]
[10]
Shin, S.W.; Song, I.H.; Um, S.H. Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials (Basel), 2015, 5(3), 1351-1365.
[http://dx.doi.org/10.3390/nano5031351] [PMID: 28347068]
[11]
Gatoo, M.A.; Naseem, S.; Arfat, M.Y.; Dar, A.M.; Qasim, K.; Zubair, S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res. Int., 2014, 2014, 498420.
[http://dx.doi.org/10.1155/2014/498420] [PMID: 25165707]
[12]
Zhang, A.; Meng, K.; Liu, Y.; Pan, Y.; Qu, W.; Chen, D.; Xie, S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv. Colloid Interface Sci., 2020, 284, 102261.
[http://dx.doi.org/10.1016/j.cis.2020.102261] [PMID: 32942181]
[13]
Lead, J.R.; Batley, G.E.; Alvarez, P.J.J.; Croteau, M.N.; Handy, R.D.; McLaughlin, M.J.; Judy, J.D.; Schirmer, K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. Environ. Toxicol. Chem., 2018, 37(8), 2029-2063.
[http://dx.doi.org/10.1002/etc.4147] [PMID: 29633323]
[14]
Wang, B.; Feng, W.; Chai, Z.; Zhao, Y. Probing the interaction at nano-bio interface using synchrotron radiation-based analytical techniques. Sci. China Chem., 2015, 58(5), 768-779.
[http://dx.doi.org/10.1007/s11426-015-5394-x]
[15]
Zhu, Y.; Cai, X.; Li, J.; Zhong, Z.; Huang, Q.; Fan, C. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials. Nanomedicine (Lond.), 2014, 10(3), 515-524.
[http://dx.doi.org/10.1016/j.nano.2013.11.005] [PMID: 24269988]
[16]
Li, Y.Y.; Li, Y.F.; Zhao, J.T.; Gao, Y.X.; Chen, C.Y. Accumulation and transformation of nanomaterials in ecological model organisms investigated by using synchrotron radiation techniques. J. Anal. At. Spectrom., 2015, 30(10), 2038-2047.
[http://dx.doi.org/10.1039/C5JA00235D]
[17]
Li, Y.F.; Zhao, J.; Qu, Y.; Gao, Y.; Guo, Z.; Liu, Z.; Zhao, Y.; Chen, C. Synchrotron radiation techniques for nanotoxicology. Nanomedicine (Lond.), 2015, 11(6), 1531-1549.
[http://dx.doi.org/10.1016/j.nano.2015.04.008] [PMID: 25933693]
[18]
Li, W.H.; Li, M.S.; Hu, Y.F.; Lu, J.; Lushington, A.; Li, R.Y.; Wu, T.P.; Sham, T.K.; Sun, X.L. Synchrotron-Based X-ray Absorption Fine Structures, X-ray Diffraction, and X-ray Microscopy Techniques Applied in the Study of Lithium Secondary Batteries. Small Methods, 2018, 2(8), 1700341.
[http://dx.doi.org/10.1002/smtd.201700341]
[19]
Banaś, K.; Jasiński, A.; Banaś, A.M.; Gajda, M.; Dyduch, G.; Pawlicki, B.; Kwiatek, W.M. Application of linear discriminant analysis in prostate cancer research by synchrotron radiation-induced X-ray emission. Anal. Chem., 2007, 79(17), 6670-6674.
[http://dx.doi.org/10.1021/ac070931u] [PMID: 17672524]
[20]
Yang, Y.; Li, W.; Liu, G.; Zhang, X.; Chen, J.; Wu, W.; Guan, Y.; Xiong, Y.; Tian, Y.; Wu, Z. 3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography. J. Microsc., 2010, 240(1), 14-20.
[http://dx.doi.org/10.1111/j.1365-2818.2010.03379.x] [PMID: 21050209]
[21]
Uchida, M.; McDermott, G.; Wetzler, M.; Le Gros, M.A.; Myllys, M.; Knoechel, C.; Barron, A.E.; Larabell, C.A. Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans. Proc. Natl. Acad. Sci. USA, 2009, 106(46), 19375-19380.
[http://dx.doi.org/10.1073/pnas.0906145106] [PMID: 19880740]
[22]
Liu, P.; Sun, J.; Zhao, J.; Liu, X.; Gu, X.; Li, J.; Xiao, T.; Xu, L.X. Microvascular imaging using synchrotron radiation. J. Synchrotron Radiat., 2010, 17(4), 517-521.
[http://dx.doi.org/10.1107/S0909049510018832] [PMID: 20567084]
[23]
Ide-Ektessabi, A.; Rabionet, M. The role of trace metallic elements in neurodegenerative disorders: quantitative analysis using XRF and XANES spectroscopy. Anal. Sci., 2005, 21(7), 885-892.
[http://dx.doi.org/10.2116/analsci.21.885] [PMID: 16038516]
[24]
Boyanov, M.I.; Kemner, K.M. Application of Synchrotron X-ray Absorption Spectroscopy and Microscopy Techniques to the Study of Biogeochemical Processes.Analytical Geomicrobiology; Alessi, D.S.; Veeramani, H; Kenney, J.P.L., Ed.; Cambridge University Press: Cambridge, 2019, pp. 238-261.
[http://dx.doi.org/10.1017/9781107707399.010]
[25]
Qu, Y.; Li, W.; Zhou, Y.; Liu, X.; Zhang, L.; Wang, L.; Li, Y.F.; Iida, A.; Tang, Z.; Zhao, Y.; Chai, Z.; Chen, C. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett., 2011, 11(8), 3174-3183.
[http://dx.doi.org/10.1021/nl201391e] [PMID: 21721562]
[26]
Wang, L.; Zhang, T.; Li, P.; Huang, W.; Tang, J.; Wang, P.; Liu, J.; Yuan, Q.; Bai, R.; Li, B.; Zhang, K.; Zhao, Y.; Chen, C. Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity. ACS Nano, 2015, 9(6), 6532-6547.
[http://dx.doi.org/10.1021/acsnano.5b02483] [PMID: 25994391]
[27]
Ding, J.; Guan, Y.; Cong, Y.; Chen, L.; Li, Y.F.; Zhang, L.; Zhang, L.; Wang, J.; Bai, R.; Zhao, Y.; Chen, C.; Wang, L. Single-Particle Analysis for Structure and Iron Chemistry of Atmospheric Particulate Matter. Anal. Chem., 2020, 92(1), 975-982.
[http://dx.doi.org/10.1021/acs.analchem.9b03913] [PMID: 31808334]
[28]
Wang, L.; Li, J.; Pan, J.; Jiang, X.; Ji, Y.; Li, Y.; Qu, Y.; Zhao, Y.; Wu, X.; Chen, C. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J. Am. Chem. Soc., 2013, 135(46), 17359-17368.
[http://dx.doi.org/10.1021/ja406924v] [PMID: 24215358]
[29]
Zhang, P.; Ma, Y.; Zhang, Z.; He, X.; Zhang, J.; Guo, Z.; Tai, R.; Zhao, Y.; Chai, Z. Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 2012, 6(11), 9943-9950.
[http://dx.doi.org/10.1021/nn303543n] [PMID: 23098040]
[30]
Mastrogiacomo, M.; Campi, G.; Cancedda, R.; Cedola, A. Synchrotron radiation techniques boost the research in bone tissue engineering. Acta Biomater., 2019, 89, 33-46.
[http://dx.doi.org/10.1016/j.actbio.2019.03.031] [PMID: 30880235]
[31]
Chen, C.; Li, Y.F.; Qu, Y.; Chai, Z.; Zhao, Y. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chem. Soc. Rev., 2013, 42(21), 8266-8303.
[http://dx.doi.org/10.1039/c3cs60111k] [PMID: 23868609]
[32]
Hummer, A.A.; Rompel, A. The use of X-ray absorption and synchrotron based micro-X-ray fluorescence spectroscopy to investigate anti-cancer metal compounds in vivo and in vitro. Metallomics, 2013, 5(6), 597-614.
[http://dx.doi.org/10.1039/c3mt20261e] [PMID: 23558305]
[33]
de Jonge, M.D.; Holzner, C.; Baines, S.B.; Twining, B.S.; Ignatyev, K.; Diaz, J.; Howard, D.L.; Legnini, D.; Miceli, A.; McNulty, I.; Jacobsen, C.J.; Vogt, S. Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution. Proc. Natl. Acad. Sci. USA, 2010, 107(36), 15676-15680.
[http://dx.doi.org/10.1073/pnas.1001469107] [PMID: 20720164]
[34]
Parkinson, D.Y.; McDermott, G.; Etkin, L.D.; Le Gros, M.A.; Larabell, C.A. Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography. J. Struct. Biol., 2008, 162(3), 380-386.
[http://dx.doi.org/10.1016/j.jsb.2008.02.003] [PMID: 18387313]
[35]
Wang, L.; Yan, L.; Liu, J.; Chen, C.; Zhao, Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal. Chem., 2018, 90(1), 589-614.
[http://dx.doi.org/10.1021/acs.analchem.7b04765] [PMID: 29155562]
[36]
Rawson, S.D.; Maksimcuka, J.; Withers, P.J.; Cartmell, S.H. X-ray computed tomography in life sciences. BMC Biol., 2020, 18(1), 21.
[http://dx.doi.org/10.1186/s12915-020-0753-2] [PMID: 32103752]
[37]
Jones, M.W.; Elgass, K.D.; Junker, M.D.; de Jonge, M.D.; van Riessen, G.A. Molar concentration from sequential 2-D water-window X-ray ptychography and X-ray fluorescence in hydrated cells. Sci. Rep., 2016, 6, 24280.
[http://dx.doi.org/10.1038/srep24280] [PMID: 27067957]
[38]
Miles, A.J.; Hoffmann, S.V.; Tao, Y.; Janes, R.W.; Wallace, B.A. Synchrotron radiation circular dichroism (SRCD) spectroscopy: New beamlines and new applications in biology. Spectrosc.-. Int. J., 2007, 21(5-6), 245-255.
[39]
Miles, A.J.; Wallace, B.A. Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem. Soc. Rev., 2006, 35(1), 39-51.
[http://dx.doi.org/10.1039/B316168B] [PMID: 16365641]
[40]
He, X.; Ma, Y.; Li, M.; Zhang, P.; Li, Y.; Zhang, Z. Quantifying and imaging engineered nanomaterials in vivo: challenges and techniques. Small, 2013, 9(9-10), 1482-1491.
[http://dx.doi.org/10.1002/smll.201201502] [PMID: 23027545]
[41]
Unrine, J.M.; Hunyadi, S.E.; Tsyusko, O.V.; Rao, W.; Shoults-Wilson, W.A.; Bertsch, P.M. Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ. Sci. Technol., 2010, 44(21), 8308-8313.
[http://dx.doi.org/10.1021/es101885w] [PMID: 20879765]
[42]
Bai, R.; Zhang, L.; Liu, Y.; Li, B.; Wang, L.; Wang, P.; Autrup, H.; Beer, C.; Chen, C. Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles. Toxicol. Lett., 2014, 226(1), 70-80.
[http://dx.doi.org/10.1016/j.toxlet.2014.01.041] [PMID: 24503010]
[43]
Gui, X.; He, X.; Ma, Y.H.; Zhang, P.; Li, Y.Y.; Ding, Y.Y.; Yang, K.; Li, H.F.; Rui, Y.K.; Chai, Z.F.; Zhao, Y.L.; Zhang, Z.Y. Quantifying the distribution of ceria nanoparticles in cucumber roots: the influence of labeling. Rsc Adv, 2015, 5(6), 4554-4560.
[http://dx.doi.org/10.1039/C4RA13915A]
[44]
Hernandez-Viezcas, J.A.; Castillo-Michel, H.; Andrews, J.C.; Cotte, M.; Rico, C.; Peralta-Videa, J.R.; Ge, Y.; Priester, J.H.; Holden, P.A.; Gardea-Torresdey, J.L. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano, 2013, 7(2), 1415-1423.
[http://dx.doi.org/10.1021/nn305196q] [PMID: 23320560]
[45]
Chen, Z.; Liu, Y.; Sun, B.; Li, H.; Dong, J.; Zhang, L.; Wang, L.; Wang, P.; Zhao, Y.; Chen, C. Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage through TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation. Small, 2014, 10(12), 2362-2372.
[http://dx.doi.org/10.1002/smll.201302825] [PMID: 24619705]
[46]
Liu, J.M.; Wang, L.M.; Shen, X.M.; Gao, X.F.; Chen, Y.H.; Liu, H.B.; Liu, Y.; Yin, D.T.; Liu, Y.; Xu, W.; Cai, R.; You, M.; Guo, M.Y.; Wang, Y.L.; Li, J.Y.; Li, Y.L.; Chen, C.Y. Graphdiyne-templated palladium-nanoparticle assembly as a robust oxygen generator to attenuate tumor hypoxia. Nano Today, 2020, 34, 100907.
[http://dx.doi.org/10.1016/j.nantod.2020.100907]
[47]
Smulders, S.; Ketkar-Atre, A.; Luyts, K.; Vriens, H. Nobre, Sde.S.; Rivard, C.; Van Landuyt, K.; Baken, S.; Smolders, E.; Golanski, L.; Ghosh, M.; Vanoirbeek, J.; Himmelreich, U.; Hoet, P.H. Body distribution of SiO2-Fe3O4 core-shell nanoparticles after intravenous injection and intratracheal instillation. Nanotoxicology, 2016, 10(5), 567-574.
[http://dx.doi.org/10.3109/17435390.2015.1100761] [PMID: 26525175]
[48]
Cao, M.; Wang, P.; Kou, Y.; Wang, J.; Liu, J.; Li, Y.; Li, J.; Wang, L.; Chen, C. Gadolinium(III)-Chelated Silica Nanospheres Integrating Chemotherapy and Photothermal Therapy for Cancer Treatment and Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces, 2015, 7(45), 25014-25023.
[http://dx.doi.org/10.1021/acsami.5b06938] [PMID: 26418578]
[49]
Larue, C.; Veronesi, G.; Flank, A.M.; Surble, S.; Herlin-Boime, N.; Carrière, M. Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J. Toxicol. Environ. Health A, 2012, 75(13-15), 722-734.
[http://dx.doi.org/10.1080/15287394.2012.689800] [PMID: 22788360]
[50]
Wang, J.; Chen, C.; Liu, Y.; Jiao, F.; Li, W.; Lao, F.; Li, Y.; Li, B.; Ge, C.; Zhou, G.; Gao, Y.; Zhao, Y.; Chai, Z. Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol. Lett., 2008, 183(1-3), 72-80.
[http://dx.doi.org/10.1016/j.toxlet.2008.10.001] [PMID: 18992307]
[51]
Lapied, E.; Nahmani, J.Y.; Moudilou, E.; Chaurand, P.; Labille, J.; Rose, J.; Exbrayat, J.M.; Oughton, D.H.; Joner, E.J. Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. Environ. Int., 2011, 37(6), 1105-1110.
[http://dx.doi.org/10.1016/j.envint.2011.01.009] [PMID: 21324526]
[52]
Wang, J.X.; Chen, C.Y.; Yu, H.W.; Sun, J.; Li, B.; Li, Y.F.; Gao, Y.X.; He, W.; Huang, Y.Y.; Chai, Z.F.; Zhao, Y.L.; Deng, X.Y.; Sun, H.F. Distribution of TiO2 particles in the olfactory bulb of mice after nasal inhalation using microbeam SRXRF mapping techniques. J. Radioanal. Nucl. Chem., 2007, 272(3), 527-531.
[http://dx.doi.org/10.1007/s10967-007-0617-z]
[53]
Yao, S.; Fan, J.; Chen, Z.; Zong, Y.; Zhang, J.; Sun, Z.; Zhang, L.; Tai, R.; Liu, Z.; Chen, C.; Jiang, H. Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells. IUCrJ, 2018, 5(Pt 2), 141-149.
[http://dx.doi.org/10.1107/S2052252517017912] [PMID: 29765603]
[54]
Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater., 2009, 8(7), 543-557.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[55]
Monopoli, M.P.; Aberg, C.; Salvati, A.; Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol., 2012, 7(12), 779-786.
[http://dx.doi.org/10.1038/nnano.2012.207] [PMID: 23212421]
[56]
Westmeier, D.; Hahlbrock, A.; Reinhardt, C.; Fröhlich-Nowoisky, J.; Wessler, S.; Vallet, C.; Pöschl, U.; Knauer, S.K.; Stauber, R.H. Nanomaterial-microbe cross-talk: physicochemical principles and (patho)biological consequences. Chem. Soc. Rev., 2018, 47(14), 5312-5337.
[http://dx.doi.org/10.1039/C6CS00691D] [PMID: 29770369]
[57]
Monopoli, M.P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F.B.; Dawson, K.A. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc., 2011, 133(8), 2525-2534.
[http://dx.doi.org/10.1021/ja107583h] [PMID: 21288025]
[58]
Milani, S.; Bombelli, F.B.; Pitek, A.S.; Dawson, K.A.; Rädler, J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano, 2012, 6(3), 2532-2541.
[http://dx.doi.org/10.1021/nn204951s] [PMID: 22356488]
[59]
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA, 2008, 105(38), 14265-14270.
[http://dx.doi.org/10.1073/pnas.0805135105] [PMID: 18809927]
[60]
Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; Landfester, K.; Schild, H.; Maskos, M.; Knauer, S.K.; Stauber, R.H. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol., 2013, 8(10), 772-781.
[http://dx.doi.org/10.1038/nnano.2013.181] [PMID: 24056901]
[61]
Deng, Z.J.; Liang, M.; Monteiro, M.; Toth, I.; Minchin, R.F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol., 2011, 6(1), 39-44.
[http://dx.doi.org/10.1038/nnano.2010.250] [PMID: 21170037]
[62]
Wang, X.; Wang, X.; Bai, X.; Yan, L.; Liu, T.; Wang, M.; Song, Y.; Hu, G.; Gu, Z.; Miao, Q.; Chen, C. Nanoparticle Ligand Exchange and Its Effects at the Nanoparticle-Cell Membrane Interface. Nano Lett., 2019, 19(1), 8-18.
[http://dx.doi.org/10.1021/acs.nanolett.8b02638] [PMID: 30335394]
[63]
Wang, L.; Quan, P.; Chen, S.H.; Bu, W.; Li, Y.F.; Wu, X.; Wu, J.; Zhang, L.; Zhao, Y.; Jiang, X.; Lin, B.; Zhou, R.; Chen, C. Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano-Lipid Interface. ACS Nano, 2019, 13(8), 8680-8693.
[http://dx.doi.org/10.1021/acsnano.9b00114] [PMID: 31329416]
[64]
Hsiao, I.L.; Hsieh, Y.K.; Wang, C.F.; Chen, I.C.; Huang, Y.J. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ. Sci. Technol., 2015, 49(6), 3813-3821.
[http://dx.doi.org/10.1021/es504705p] [PMID: 25692749]
[65]
Wang, B.; Wang, Q.; Chen, H.; Zhou, X.; Wang, H.; Wang, H.; Zhang, J.; Feng, W. Size-Dependent Translocation Pattern, Chemical and Biological Transformation of Nano- and Submicron-Sized Ferric Oxide Particles in the Central Nervous System. J. Nanosci. Nanotechnol., 2016, 16(6), 5553-5561.
[http://dx.doi.org/10.1166/jnn.2016.11716] [PMID: 27427596]
[66]
Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2008, 2(10), 2121-2134.
[http://dx.doi.org/10.1021/nn800511k] [PMID: 19206459]
[67]
Kurapati, R.; Bianco, A. Peroxidase mimicking DNAzymes degrade graphene oxide. Nanoscale, 2018, 10(41), 19316-19321.
[http://dx.doi.org/10.1039/C8NR06535G] [PMID: 30306169]
[68]
Li, R.; Ji, Z.; Chang, C.H.; Dunphy, D.R.; Cai, X.; Meng, H.; Zhang, H.; Sun, B.; Wang, X.; Dong, J.; Lin, S.; Wang, M.; Liao, Y.P.; Brinker, C.J.; Nel, A.; Xia, T. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano, 2014, 8(2), 1771-1783.
[http://dx.doi.org/10.1021/nn406166n] [PMID: 24417322]
[69]
Setyawati, M.I.; Yuan, X.; Xie, J.; Leong, D.T. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials, 2014, 35(25), 6707-6715.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.007] [PMID: 24881025]
[70]
Abbas, Q.; Yousaf, B. Amina; Ali, M.U.; Munir, M.A.M.; El-Naggar, A.; Rinklebe, J.; Naushad, M. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environ. Int., 2020, 138, 105646.
[http://dx.doi.org/10.1016/j.envint.2020.105646] [PMID: 32179325]
[71]
Lowry, G.V.; Gregory, K.B.; Apte, S.C.; Lead, J.R. Transformations of nanomaterials in the environment. Environ. Sci. Technol., 2012, 46(13), 6893-6899.
[http://dx.doi.org/10.1021/es300839e] [PMID: 22582927]
[72]
Davidson, R.A.; Anderson, D.S.; Van Winkle, L.S.; Pinkerton, K.E.; Guo, T. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy. J. Phys. Chem. A, 2015, 119(2), 281-289.
[http://dx.doi.org/10.1021/jp510103m] [PMID: 25517690]
[73]
Yang, X.; Gondikas, A.P.; Marinakos, S.M.; Auffan, M.; Liu, J.; Hsu-Kim, H.; Meyer, J.N. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol., 2012, 46(2), 1119-1127.
[http://dx.doi.org/10.1021/es202417t] [PMID: 22148238]
[74]
Guo, Z.L.; Zhang, P.; Xie, H.D.Q.H.; Zhao, B.; Lynch, I. First In Vivo Evidence for Compromised Brain Energy Metabolism upon Intranasal Exposure to ZnO Nanoparticles. Environ. Sci. Technol. Lett., 2020, 7(5), 315-322.
[http://dx.doi.org/10.1021/acs.estlett.0c00176]
[75]
Guo, Z.; Zhang, P.; Luo, Y.; Xie, H.Q.; Chakraborty, S.; Monikh, F.A.; Bu, L.; Liu, Y.; Ma, Y.; Zhang, Z.; Valsami-Jones, E.; Zhao, B.; Lynch, I. Intranasal exposure to ZnO nanoparticles induces alterations in cholinergic neurotransmission in rat brain. Nano Today, 2020, 35, 100977.
[http://dx.doi.org/10.1016/j.nantod.2020.100977]
[76]
Guo, Z.; Luo, Y.; Zhang, P.; Chetwynd, A.J.; Xie, Q. H.; Abdolahpur Monikh, F.; Tao, W.; Xie, C.; Liu, Y.; Xu, L.; Zhang, Z.; Valsami-Jones, E.; Lynch, I.; Zhao, B. Deciphering the particle specific effects on metabolism in rat liver and plasma from ZnO nanoparticles versus ionic Zn exposure. Environ. Int., 2020, 136, 105437.
[http://dx.doi.org/10.1016/j.envint.2019.105437] [PMID: 31881423]
[77]
Mei, L.; Zhang, X.; Yin, W.; Dong, X.; Guo, Z.; Fu, W.; Su, C.; Gu, Z.; Zhao, Y. Translocation, biotransformation-related degradation, and toxicity assessment of polyvinylpyrrolidone-modified 2H-phase nano-MoS2. Nanoscale, 2019, 11(11), 4767-4780.
[http://dx.doi.org/10.1039/C8NR10319D] [PMID: 30816394]
[78]
Ge, C.; Fang, G.; Shen, X.; Chong, Y.; Wamer, W.G.; Gao, X.; Chai, Z.; Chen, C.; Yin, J.J. Facet Energy versus Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano, 2016, 10(11), 10436-10445.
[http://dx.doi.org/10.1021/acsnano.6b06297] [PMID: 27934089]
[79]
Fang, G.; Li, W.; Shen, X.; Perez-Aguilar, J.M.; Chong, Y.; Gao, X.; Chai, Z.; Chen, C.; Ge, C.; Zhou, R. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun., 2018, 9(1), 129.
[http://dx.doi.org/10.1038/s41467-017-02502-3] [PMID: 29317632]
[80]
López-Moreno, M.L.; de la Rosa, G.; Hernández-Viezcas, J.A.; Castillo-Michel, H.; Botez, C.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ. Sci. Technol., 2010, 44(19), 7315-7320.
[http://dx.doi.org/10.1021/es903891g] [PMID: 20384348]
[81]
López-Moreno, M.L.; de la Rosa, G.; Hernández-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO(2) nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem., 2010, 58(6), 3689-3693.
[http://dx.doi.org/10.1021/jf904472e] [PMID: 20187606]
[82]
Ma, Y.; Zhang, P.; Zhang, Z.; He, X.; Zhang, J.; Ding, Y.; Zhang, J.; Zheng, L.; Guo, Z.; Zhang, L.; Chai, Z.; Zhao, Y. Where Does the Transformation of Precipitated Ceria Nanoparticles in Hydroponic Plants Take Place? Environ. Sci. Technol., 2015, 49(17), 10667-10674.
[http://dx.doi.org/10.1021/acs.est.5b02761] [PMID: 26237071]
[83]
Liu, M.; Feng, S.; Ma, Y.; Xie, C.; He, X.; Ding, Y.; Zhang, J.; Luo, W.; Zheng, L.; Chen, D.; Yang, F.; Chai, Z.; Zhao, Y.; Zhang, Z. Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO2 Nanoparticles in Cucumber Plants. ACS Appl. Mater. Interfaces, 2019, 11(18), 16905-16913.
[http://dx.doi.org/10.1021/acsami.9b01627] [PMID: 30993970]
[84]
Collin, B.; Oostveen, E.; Tsyusko, O.V.; Unrine, J.M. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ. Sci. Technol., 2014, 48(2), 1280-1289.
[http://dx.doi.org/10.1021/es404503c] [PMID: 24372151]
[85]
Servin, A.D.; Castillo-Michel, H.; Hernandez-Viezcas, J.A.; De Nolf, W.; De La Torre-Roche, R.; Pagano, L.; Pignatello, J.; Uchimiya, M.; Gardea-Torresdey, J.; White, J.C. Bioaccumulation of CeO2 Nanoparticles by Earthworms in Biochar-Amended Soil: A Synchrotron Microspectroscopy Study. J. Agric. Food Chem., 2018, 66(26), 6609-6618.
[http://dx.doi.org/10.1021/acs.jafc.7b04612] [PMID: 29281882]
[86]
Li, Y.; Zhu, N.; Liang, X.; Zheng, L.; Zhang, C.; Li, Y.F.; Zhang, Z.; Gao, Y.; Zhao, J. A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicol. Environ. Saf., 2020, 189, 109955.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109955] [PMID: 31759745]
[87]
Ma, Y.; He, X.; Zhang, P.; Zhang, Z.; Guo, Z.; Tai, R.; Xu, Z.; Zhang, L.; Ding, Y.; Zhao, Y.; Chai, Z. Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology, 2011, 5(4), 743-753.
[http://dx.doi.org/10.3109/17435390.2010.545487] [PMID: 21261455]
[88]
Zhang, P.; Ma, Y.; Zhang, Z.; He, X.; Guo, Z.; Tai, R.; Ding, Y.; Zhao, Y.; Chai, Z. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ. Sci. Technol., 2012, 46(3), 1834-1841.
[http://dx.doi.org/10.1021/es2027295] [PMID: 22191482]
[89]
Zhang, P.; Ma, Y.H.; Xie, C.J.; Guo, Z.L.; He, X.; Valsami-Jones, E.; Lynch, I.; Luo, W.H.; Zheng, L.R.; Zhang, Z.Y. Plant species-dependent transformation and translocation of ceria nanoparticles. Environ. Sci. Nano, 2019, 6(1), 60-67.
[http://dx.doi.org/10.1039/C8EN01089G]
[90]
Rui, Y.; Zhang, P.; Zhang, Y.; Ma, Y.; He, X.; Gui, X.; Li, Y.; Zhang, J.; Zheng, L.; Chu, S.; Guo, Z.; Chai, Z.; Zhao, Y.; Zhang, Z. Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environ. Pollut., 2015, 198, 8-14.
[http://dx.doi.org/10.1016/j.envpol.2014.12.017] [PMID: 25549862]
[91]
Liu, J.; Pennell, K.G.; Hurt, R.H. Kinetics and mechanisms of nanosilver oxysulfidation. Environ. Sci. Technol., 2011, 45(17), 7345-7353.
[http://dx.doi.org/10.1021/es201539s] [PMID: 21770469]
[92]
Choi, O.; Clevenger, T.E.; Deng, B.; Surampalli, R.Y.; Ross, L., Jr; Hu, Z. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res., 2009, 43(7), 1879-1886.
[http://dx.doi.org/10.1016/j.watres.2009.01.029] [PMID: 19249075]
[93]
Piticharoenphun, S.; Šiller, L.; Lemloh, M-L.; Salome, M.; Cotte, M.; Kaulich, B.; Gianoncelli, A.; Mendis, B.G.; Bangert, U.; Poolton, N.R. Agglomeration of silver nanoparticles in sea urchin. IJEPR, 2012, 1(1), 44-50.
[http://dx.doi.org/10.11159/ijepr.2012.007]
[94]
Wang, S.; Lv, J.; Ma, J.; Zhang, S. Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii. Nanotoxicology, 2016, 10(8), 1129-1135.
[http://dx.doi.org/10.1080/17435390.2016.1179809] [PMID: 27098098]
[95]
Wang, X.; Mansukhani, N.D.; Guiney, L.M.; Ji, Z.; Chang, C.H.; Wang, M.; Liao, Y.P.; Song, T.B.; Sun, B.; Li, R.; Xia, T.; Hersam, M.C. Nel, A.E. Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung. Small, 2015, 11(38), 5079-5087.
[http://dx.doi.org/10.1002/smll.201500906] [PMID: 26237579]
[96]
Wang, J.; Liu, J.; Liu, Y.; Wang, L.; Cao, M.; Ji, Y.; Wu, X.; Xu, Y.; Bai, B.; Miao, Q.; Chen, C.; Zhao, Y. Gd-Hybridized Plasmonic Au-Nanocomposites Enhanced Tumor-Interior Drug Permeability in Multimodal Imaging-Guided Therapy. Adv. Mater., 2016, 28(40), 8950-8958.
[http://dx.doi.org/10.1002/adma.201603114] [PMID: 27562240]
[97]
Wang, L.; Li, Y.F.; Zhou, L.; Liu, Y.; Meng, L.; Zhang, K.; Wu, X.; Zhang, L.; Li, B.; Chen, C. Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Anal. Bioanal. Chem., 2010, 396(3), 1105-1114.
[http://dx.doi.org/10.1007/s00216-009-3302-y] [PMID: 20016883]
[98]
Balfourier, A.; Luciani, N.; Wang, G.; Lelong, G.; Ersen, O.; Khelfa, A.; Alloyeau, D.; Gazeau, F.; Carn, F. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2020, 117(1), 103-113.
[http://dx.doi.org/10.1073/pnas.1911734116] [PMID: 31852822]
[99]
Morgan, K.S.; Parsons, D.; Cmielewski, P.; McCarron, A.; Gradl, R.; Farrow, N.; Siu, K.; Takeuchi, A.; Suzuki, Y.; Uesugi, K.; Uesugi, M.; Yagi, N.; Hall, C.; Klein, M.; Maksimenko, A.; Stevenson, A.; Hausermann, D.; Dierolf, M.; Pfeiffer, F.; Donnelley, M. Methods for dynamic synchrotron X-ray respiratory imaging in live animals. J. Synchrotron Radiat., 2020, 27(Pt 1), 164-175.
[http://dx.doi.org/10.1107/S1600577519014863] [PMID: 31868749]
[100]
Chen, H.; He, X.; Sheng, C.; Ma, Y.; Nie, H.; Xia, W.; Ying, W. Interactions between synchrotron radiation X-ray and biological tissues - theoretical and clinical significance. Int. J. Physiol. Pathophysiol. Pharmacol., 2011, 3(4), 243-248.
[PMID: 22162780]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy