Abstract
Background: The prediction of drug-protein interaction (DPI) plays an important role in drug discovery and repositioning. Unfortunately, traditional experimental validation of DPIs is expensive and time-consuming. Therefore, it is necessary to develop in silico methods for the identification of potential DPIs.
Methods: In this work, the identification of DPIs was performed by the generated recommendation of the unexplored interaction of the drug-protein bipartite graph. Three kinds of recommenders were proposed to predict the potential DPIs.
Results: The simulation results showed that the proposed models obtained good performance in crossvalidation and independent test.
Conclusion: Our recommendation strategy based on collaborative filtering can effectively improve the DPI identification performance, especially for certain DPIs lacking chemical structure similarity or genomic sequence similarity.
Keywords: Drug discovery, recommender system, bipartite graph, drug-protein interaction, collaborative filtering, Jaccard index.
Graphical Abstract
[http://dx.doi.org/10.1634/theoncologist.2010-0079] [PMID: 20489184]
[http://dx.doi.org/10.1038/s41467-017-00680-8] [PMID: 28924171]
[http://dx.doi.org/10.2174/1573409915666190613113822] [PMID: 31198115]
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[http://dx.doi.org/10.1016/j.phrs.2016.06.018] [PMID: 27329331]
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[http://dx.doi.org/10.1155/2013/621423]
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[http://dx.doi.org/10.2174/0929866526666190410124110] [PMID: 30968771]
[http://dx.doi.org/10.1002/minf.201400009] [PMID: 27485302]
[http://dx.doi.org/10.1016/j.ins.2017.08.045]
[http://dx.doi.org/10.1021/acs.jproteome.6b00618] [PMID: 28264154]
[http://dx.doi.org/10.1093/bioinformatics/btn162] [PMID: 18586719]
[http://dx.doi.org/10.1093/bioinformatics/bts670] [PMID: 23162055]
[http://dx.doi.org/10.1038/s41598-017-10724-0] [PMID: 28894115]
[http://dx.doi.org/10.1016/j.compbiolchem.2011.10.003] [PMID: 22099632]
[http://dx.doi.org/10.2174/15680266113139990121] [PMID: 23889048]
[http://dx.doi.org/10.1186/1752-0509-4-S2-S6] [PMID: 20840733]
[http://dx.doi.org/10.1186/s12859-016-0890-3] [PMID: 26801218]
[http://dx.doi.org/10.1145/2487575.2487670]
[http://dx.doi.org/10.1371/journal.pcbi.1004760] [PMID: 26872142]
[http://dx.doi.org/10.1038/srep40376] [PMID: 28079135]
[http://dx.doi.org/10.1186/s12859-017-1845-z] [PMID: 28978313]
[http://dx.doi.org/10.1109/JBHI.2015.2513200] [PMID: 26731781]
[http://dx.doi.org/10.1016/j.neucom.2016.03.080]
[http://dx.doi.org/10.1038/srep13867] [PMID: 26350590]
[http://dx.doi.org/10.1016/j.aca.2016.01.014] [PMID: 26851083]
[http://dx.doi.org/10.1137/S003614450342480]
[http://dx.doi.org/10.1126/science.1173299] [PMID: 19628854]
[http://dx.doi.org/10.1039/c2mb00002d] [PMID: 22538619]
[http://dx.doi.org/10.1093/bioinformatics/btw228] [PMID: 27153662]
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[http://dx.doi.org/10.1145/245108.245121]
[http://dx.doi.org/10.1093/nar/gkt1068] [PMID: 24203711]
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[http://dx.doi.org/10.1093/nar/gkj067]
[PMID: 23203881]
[http://dx.doi.org/10.1093/nar/gkr912] [PMID: 22067455]
[http://dx.doi.org/10.1093/nar/gkj102] [PMID: 16381885]
[http://dx.doi.org/10.1038/35065725] [PMID: 11258382]
[http://dx.doi.org/10.1109/ICDM.2008.22]
[http://dx.doi.org/10.1007/978-3-540-72079-9_9]
[http://dx.doi.org/10.1016/0360-8352(91)90099-R]
[http://dx.doi.org/10.1186/s13059-019-1758-4] [PMID: 31477170]
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[http://dx.doi.org/10.1001/archpsyc.1988.01800330013001] [PMID: 3046553]
[http://dx.doi.org/10.1001/archpsyc.1988.01800330013001] [PMID: 3046553]
[http://dx.doi.org/10.1038/sj.tpj.6500285] [PMID: 15492763]
[PMID: 8035341]
[http://dx.doi.org/10.1016/j.patrec.2005.10.010]
[http://dx.doi.org/10.1016/S0001-2998(78)80014-2] [PMID: 112681]
[http://dx.doi.org/10.1093/bioinformatics/bti623] [PMID: 16096348]