Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Use of Zebrafish as a Non-traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns

Author(s): Fabiano V. Costa*, Luiz V. Rosa, Vanessa A. Quadros, Murilo S. de Abreu, Adair R. S. Santos, Lynne U. Sneddon, Allan V. Kalueff and Denis B. Rosemberg*

Volume 20, Issue 3, 2022

Published on: 07 February, 2022

Page: [476 - 493] Pages: 18

DOI: 10.2174/1570159X19666210311104408

Price: $65

conference banner
Abstract

The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) is a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish responses to painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from evolutionary and translational perspectives. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research.

Keywords: Non-traditional pain models, zebrafish, noxious stimuli, nociceptors, pain-related behaviors, anti-pain medication screening.

Graphical Abstract

[1]
Garcia-Larrea, L.; Bastuji, H. Pain and consciousness. Prog. Neuropsychopharm. Biol. Psychiat., 2018, 87(Pt B), 193-199.
[http://dx.doi.org/10.1016/j.pnpbp.2017.10.007]
[2]
Mogil, J.S.; Davis, K.D.; Derbyshire, S.W. The necessity of animal models in pain research. Pain, 2010, 151(1), 12-17.
[http://dx.doi.org/10.1016/j.pain.2010.07.015] [PMID: 20696526]
[3]
Yekkirala, A.S.; Roberson, D.P.; Bean, B.P.; Woolf, C.J. Breaking barriers to novel analgesic drug development. Nat. Rev. Drug Discov., 2017, 16(8), 545-564.
[http://dx.doi.org/10.1038/nrd.2017.87] [PMID: 28596533]
[4]
Piel, M.J.; Kroin, J.S.; van Wijnen, A.J.; Kc, R.; Im, H.J. Pain assessment in animal models of osteoarthritis. Gene, 2014, 537(2), 184-188.
[http://dx.doi.org/10.1016/j.gene.2013.11.091] [PMID: 24333346]
[5]
Blackburn-Munro, G. Pain-like behaviours in animals-how human are they? Trends Pharmacol. Sci., 2004, 25(6), 299-305.
[http://dx.doi.org/10.1016/j.tips.2004.04.008] [PMID: 15165744]
[6]
Tracey, I.; Mantyh, P.W. The cerebral signature for pain perception and its modulation. Neuron, 2007, 55(3), 377-391.
[http://dx.doi.org/10.1016/j.neuron.2007.07.012] [PMID: 17678852]
[7]
Gregory, N.S.; Harris, A.L.; Robinson, C.R.; Dougherty, P.M.; Fuchs, P.N.; Sluka, K.A. An overview of animal models of pain: disease models and outcome measures. J. Pain, 2013, 14(11), 1255-1269.
[http://dx.doi.org/10.1016/j.jpain.2013.06.008] [PMID: 24035349]
[8]
Bobinski, F.; Teixeira, J.M.; Sluka, K.A.; Santos, A.R.S. Interleukin-4 mediates the analgesia produced by low-intensity exercise in mice with neuropathic pain. Pain, 2018, 159(3), 437-450.
[http://dx.doi.org/10.1097/j.pain.0000000000001109] [PMID: 29140923]
[9]
Martins, D.F.; Martins, T.C.; Batisti, A.P.; Dos Santos Leonel, L.; Bobinski, F.; Belmonte, L.A.O.; Mazzardo-Martins, L.; Cargnin-Ferreira, E.; Santos, A.R.S. Long-Term Regular Eccentric Exercise Decreases Neuropathic Pain-like Behavior and Improves Motor Functional Recovery in an Axonotmesis Mouse Model: the Role of Insulin-like Growth Factor-1. Mol. Neurobiol., 2018, 55(7), 6155-6168.
[http://dx.doi.org/10.1007/s12035-017-0829-3] [PMID: 29250715]
[10]
Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284.
[http://dx.doi.org/10.1016/j.cell.2009.09.028] [PMID: 19837031]
[11]
Coderre, T.J.; Melzack, R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J. Neurosci., 1992, 12(9), 3665-3670.
[http://dx.doi.org/10.1523/JNEUROSCI.12-09-03665.1992] [PMID: 1326610]
[12]
Woolf, C.J. What is this thing called pain? J. Clin. Invest., 2010, 120(11), 3742-3744.
[http://dx.doi.org/10.1172/JCI45178] [PMID: 21041955]
[13]
Malafoglia, V.; Bryant, B.; Raffaeli, W.; Giordano, A.; Bellipanni, G. The zebrafish as a model for nociception studies. J. Cell. Physiol., 2013, 228(10), 1956-1966.
[http://dx.doi.org/10.1002/jcp.24379] [PMID: 23559073]
[14]
Meotti, F.C.; Coelho, I dos S.; Santos, A.R. The nociception induced by glutamate in mice is potentiated by protons released into the solution. J. Pain, 2010, 11(6), 570-578.
[http://dx.doi.org/10.1016/j.jpain.2009.09.012] [PMID: 20338819]
[15]
Stevenson, G.W.; Bilsky, E.J.; Negus, S.S. Targeting pain-suppressed behaviors in preclinical assays of pain and analgesia: effects of morphine on acetic acid-suppressed feeding in C57BL/6J mice. J. Pain, 2006, 7(6), 408-416.
[http://dx.doi.org/10.1016/j.jpain.2006.01.447] [PMID: 16750797]
[16]
Sneddon, L.U.; Braithwaite, V.A.; Gentle, M.J. Novel object test: examining nociception and fear in the rainbow trout. J. Pain, 2003, 4(8), 431-440.
[http://dx.doi.org/10.1067/S1526-5900(03)00717-X] [PMID: 14622663]
[17]
Du, X.; Yuan, B.; Wang, J.; Zhang, X.; Tian, L.; Zhang, T.; Li, X.; Zhang, F. Effect of heat-reinforcing needling on serum metabolite profiles in rheumatoid arthritis rabbits with cold syndrome Zhongguo Zhenjiu, 2017, 37(9), 977-983.
[PMID: 29354920]
[18]
MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov., 2015, 14(10), 721-731.
[http://dx.doi.org/10.1038/nrd4627] [PMID: 26361349]
[19]
Stewart, A.M.; Braubach, O.; Spitsbergen, J.; Gerlai, R.; Kalueff, A.V. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci., 2014, 37(5), 264-278.
[http://dx.doi.org/10.1016/j.tins.2014.02.011] [PMID: 24726051]
[20]
Fontana, B. D.; Mezzomo, N. J.; Kalueff, A. V.; Rosemberg, D. B. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol, 2018, 299(Pt A), 157-171.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.004]
[21]
Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci., 2014, 35(2), 63-75.
[http://dx.doi.org/10.1016/j.tips.2013.12.002] [PMID: 24412421]
[22]
Hoo, J.Y.; Kumari, Y.; Shaikh, M.F.; Hue, S.M.; Goh, B.H. Zebrafish: A Versatile Animal Model for Fertility Research. BioMed Res. Int., 2016, 20169732780
[http://dx.doi.org/10.1155/2016/9732780] [PMID: 27556045]
[23]
Avdesh, A.; Chen, M.; Martin-Iverson, M.T.; Mondal, A.; Ong, D.; Rainey-Smith, S.; Taddei, K.; Lardelli, M.; Groth, D.M.; Verdile, G.; Martins, R.N. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. J. Vis. Exp., 2012, (69)e4196
[http://dx.doi.org/10.3791/4196] [PMID: 23183629]
[24]
Stewart, A.M.; Gerlai, R.; Kalueff, A.V. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery. Front. Behav. Neurosci., 2015, 9, 14.
[http://dx.doi.org/10.3389/fnbeh.2015.00014] [PMID: 25729356]
[25]
Kithcart, A.; MacRae, C.A. Using zebrafish for high-throughput screening of novel cardiovascular Drugs. JACC Basic Transl. Sci., 2017, 2(1), 1-12.
[http://dx.doi.org/10.1016/j.jacbts.2017.01.004] [PMID: 30167552]
[26]
Chen, X.; Gays, D.; Santoro, M.M. Transgenic zebrafish. Methods Mol. Biol., 2016, 1464, 107-114.
[http://dx.doi.org/10.1007/978-1-4939-3999-2_10] [PMID: 27858360]
[27]
Kawakami, K.; Asakawa, K.; Hibi, M.; Itoh, M.; Muto, A.; Wada, H. Gal4 driver transgenic zebrafish: powerful tools to study developmental biology, organogenesis, and neuroscience. Adv. Genet., 2016, 95, 65-87.
[http://dx.doi.org/10.1016/bs.adgen.2016.04.002] [PMID: 27503354]
[28]
Rougeot, J.; Torraca, V.; Zakrzewska, A.; Kanwal, Z.; Jansen, H.J.; Sommer, F.; Spaink, H.P.; Meijer, A.H. RNAseq profiling of leukocyte populations in zebrafish larvae reveals a cxcl11 chemokine gene as a marker of macrophage polarization during mycobacterial infection. Front. Immunol., 2019, 10, 832.
[http://dx.doi.org/10.3389/fimmu.2019.00832] [PMID: 31110502]
[29]
Gu, G.E.; Park, C.S.; Cho, H.J.; Ha, T.H.; Bae, J.; Kwon, O.S.; Lee, J.S.; Lee, C.S. Fluorescent polydopamine nanoparticles as a probe for zebrafish sensory hair cells targeted in vivo imaging. Sci. Rep., 2018, 8(1), 4393.
[http://dx.doi.org/10.1038/s41598-018-22828-2] [PMID: 29535354]
[30]
Liu, C.X.; Li, C.Y.; Hu, C.C.; Wang, Y.; Lin, J.; Jiang, Y.H.; Li, Q.; Xu, X. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Mol. Autism, 2018, 9, 23.
[http://dx.doi.org/10.1186/s13229-018-0204-x] [PMID: 29619162]
[31]
Gonzalez-Nunez, V.; Rodríguez, R.E. The zebrafish: a model to study the endogenous mechanisms of pain. ILAR J., 2009, 50(4), 373-386.
[http://dx.doi.org/10.1093/ilar.50.4.373] [PMID: 19949253]
[32]
Magalhães, F.E.A.; de Sousa, C.Á.P.B.; Santos, S.A.A.R.; Menezes, R.B.; Batista, F.L.A.; Abreu, A.O.; de Oliveira, M.V.; Moura, L.F.W.G.; Raposo, R.D.S.; Campos, A.R. Adult zebrafish (Danio rerio): An alternative behavioral model of formalin-induced nociception. Zebrafish, 2017, 14(5), 422-429.
[http://dx.doi.org/10.1089/zeb.2017.1436] [PMID: 28704145]
[33]
Taylor, J.C.; Dewberry, L.S.; Totsch, S.K.; Yessick, L.R.; DeBerry, J.J.; Watts, S.A.; Sorge, R.E. A novel zebrafish-based model of nociception. Physiol. Behav., 2017, 174, 83-88.
[http://dx.doi.org/10.1016/j.physbeh.2017.03.009] [PMID: 28288793]
[34]
Costa, F.V.; Rosa, L.V.; Quadros, V.A.; Santos, A.R.S.; Kalueff, A.V.; Rosemberg, D.B. Understanding nociception-related phenotypes in adult zebrafish: Behavioral and pharmacological characterization using a new acetic acid model. Behav. Brain Res., 2019, 359, 570-578.
[http://dx.doi.org/10.1016/j.bbr.2018.10.009] [PMID: 30296529]
[35]
Thomson, J.S.; Al-Temeemy, A.A.; Isted, H.; Spencer, J.W.; Sneddon, L.U. Assessment of behaviour in groups of zebrafish (Danio rerio) using an intelligent software monitoring tool, the chromatic fish analyser. J. Neurosci. Methods, 2019, 328108433
[http://dx.doi.org/10.1016/j.jneumeth.2019.108433] [PMID: 31520651]
[36]
Gau, P.; Poon, J.; Ufret-Vincenty, C.; Snelson, C.D.; Gordon, S.E.; Raible, D.W.; Dhaka, A. The zebrafish ortholog of TRPV1 is required for heat-induced locomotion. J. Neurosci., 2013, 33(12), 5249-5260.
[http://dx.doi.org/10.1523/JNEUROSCI.5403-12.2013] [PMID: 23516290]
[37]
Prober, D.A.; Zimmerman, S.; Myers, B.R.; McDermott, B.M., Jr; Kim, S.H.; Caron, S.; Rihel, J.; Solnica-Krezel, L.; Julius, D.; Hudspeth, A.J.; Schier, A.F. Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J. Neurosci., 2008, 28(40), 10102-10110.
[http://dx.doi.org/10.1523/JNEUROSCI.2740-08.2008] [PMID: 18829968]
[38]
Dooley, K.; Zon, L.I. Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev., 2000, 10(3), 252-256.
[http://dx.doi.org/10.1016/S0959-437X(00)00074-5] [PMID: 10826982]
[39]
Rose, J.D. The Neurobehavioral Nature of Fishes and the Question of Awareness and Pain. Fish. Sci., 2002, 10(1), 1-38.
[40]
Braithwaite, V.A.; Boulcott, P. Pain perception, aversion and fear in fish. Dis. Aquat. Organ., 2007, 75(2), 131-138.
[http://dx.doi.org/10.3354/dao075131] [PMID: 17578252]
[41]
Nordgreen, J.; Horsberg, T.E.; Ranheim, B.; Chen, A.C. Somatosensory evoked potentials in the telencephalon of Atlantic salmon (Salmo salar) following galvanic stimulation of the tail. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 2007, 193(12), 1235-1242.
[http://dx.doi.org/10.1007/s00359-007-0283-1] [PMID: 17987296]
[42]
Reilly, S.C.; Quinn, J.P.; Cossins, A.R.; Sneddon, L.U. Behavioural analysis of a nociceptive event in fish: Comparisons between three species demonstrate specific responses. Appl. Anim. Behav. Sci., 2008, 114, 248-259.
[http://dx.doi.org/10.1016/j.applanim.2008.01.016]
[43]
Sanchez-Simon, F.M.; Rodriguez, R.E. Developmental expression and distribution of opioid receptors in zebrafish. Neuroscience, 2008, 151(1), 129-137.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.086] [PMID: 18082336]
[44]
Alvarez, F.A.; Rodriguez-Martin, I.; Gonzalez-Nuñez, V.; Marrón Fernández de Velasco, E.; Gonzalez Sarmiento, R.; Rodríguez, R.E. New kappa opioid receptor from zebrafish Danio rerio. Neurosci. Lett., 2006, 405(1-2), 94-99.
[http://dx.doi.org/10.1016/j.neulet.2006.06.028] [PMID: 16842913]
[45]
Barrallo, A.; González-Sarmiento, R.; Alvar, F.; Rodríguez, R.E. ZFOR2, a new opioid receptor-like gene from the teleost zebrafish (Danio rerio). Brain Res. Mol. Brain Res., 2000, 84(1-2), 1-6.
[http://dx.doi.org/10.1016/S0169-328X(00)00152-2] [PMID: 11113526]
[46]
Dymowska, A.K.; Boyle, D.; Schultz, A.G.; Goss, G.G. The role of acid-sensing ion channels in epithelial Na+ uptake in adult zebrafish (Danio rerio). J. Exp. Biol., 2015, 218(Pt 8), 1244-1251.
[http://dx.doi.org/10.1242/jeb.113118] [PMID: 25722005]
[47]
Viña, E.; Parisi, V.; Abbate, F.; Cabo, R.; Guerrera, M.C.; Laurà, R.; Quirós, L.M.; Pérez-Varela, J.C.; Cobo, T.; Germanà, A.; Vega, J.A.; García-Suárez, O. Acid-sensing ion channel 2 (ASIC2) is selectively localized in the cilia of the non-sensory olfactory epithelium of adult zebrafish. Histochem. Cell Biol., 2015, 143(1), 59-68.
[http://dx.doi.org/10.1007/s00418-014-1264-4] [PMID: 25161120]
[48]
van der Vaart, M.; Spaink, H.P.; Meijer, A.H. Pathogen recognition and activation of the innate immune response in zebrafish. Adv. Hematol., 2012, 2012159807
[http://dx.doi.org/10.1155/2012/159807] [PMID: 22811714]
[49]
Watzke, J.; Schirmer, K.; Scholz, S. Bacterial lipopolysaccharides induce genes involved in the innate immune response in embryos of the zebrafish (Danio rerio). Fish Shellfish Immunol., 2007, 23(4), 901-905.
[http://dx.doi.org/10.1016/j.fsi.2007.03.004] [PMID: 17442590]
[50]
Levanti, M.; Randazzo, B.; Viña, E.; Montalbano, G.; Garcia-Suarez, O.; Germanà, A.; Vega, J.A.; Abbate, F. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds. Ann. Anat., 2016, 207, 32-37.
[http://dx.doi.org/10.1016/j.aanat.2016.06.006] [PMID: 27513962]
[51]
Sneddon, L.U.; Braithwaite, V.A.; Gentle, M.J. Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc. Biol. Sci., 2003, 270(1520), 1115-1121.
[http://dx.doi.org/10.1098/rspb.2003.2349] [PMID: 12816648]
[52]
Maximino, C. Modulation of nociceptive-like behavior in zebrafish (Danio rerio) by environmental stressors. Psychol. Neurosci., 2011, 4(1), 149-155.
[http://dx.doi.org/10.3922/j.psns.2011.1.017]
[53]
Caron, S.J.; Prober, D.; Choy, M.; Schier, A.F. In vivo birthdating by BAPTISM reveals that trigeminal sensory neuron diversity depends on early neurogenesis. Development, 2008, 135(19), 3259-3269.
[http://dx.doi.org/10.1242/dev.023200] [PMID: 18755773]
[54]
Pan, Y.A.; Choy, M.; Prober, D.A.; Schier, A.F. Robo2 determines subtype-specific axonal projections of trigeminal sensory neurons. Development, 2012, 139(3), 591-600.
[http://dx.doi.org/10.1242/dev.076588] [PMID: 22190641]
[55]
Marron Fdez de Velasco, E.; Law, P.Y.; Rodríguez, R.E. Mu opioid receptor from the zebrafish exhibits functional characteristics as those of mammalian mu opioid receptor. Zebrafish, 2009, 6(3), 259-268.
[http://dx.doi.org/10.1089/zeb.2009.0594] [PMID: 19761379]
[56]
Chu Sin Chung, P.; Kieffer, B.L. Delta opioid receptors in brain function and diseases. Pharmacol. Ther., 2013, 140(1), 112-120.
[http://dx.doi.org/10.1016/j.pharmthera.2013.06.003] [PMID: 23764370]
[57]
Rachinger-Adam, B.; Conzen, P.; Azad, S.C. Pharmacology of peripheral opioid receptors. Curr. Opin. Anaesthesiol., 2011, 24(4), 408-413.
[http://dx.doi.org/10.1097/ACO.0b013e32834873e5] [PMID: 21659869]
[58]
Corbett, A.D.; Henderson, G.; McKnight, A.T.; Paterson, S.J. 75 years of opioid research: the exciting but vain quest for the Holy Grail. Br. J. Pharmacol., 2006, 147(Suppl. 1), S153-S162.
[http://dx.doi.org/10.1038/sj.bjp.0706435] [PMID: 16402099]
[59]
Stevens, C.W. The evolution of vertebrate opioid receptors. Front. Biosci., 2009, 14, 1247-1269.
[http://dx.doi.org/10.2741/3306] [PMID: 19273128]
[60]
Valentino, R.J.; Volkow, N.D. Untangling the complexity of opioid receptor function. Neuropsychopharmacology, 2018, 43(13), 2514-2520.
[http://dx.doi.org/10.1038/s41386-018-0225-3] [PMID: 30250308]
[61]
Lutz, P.E.; Kieffer, B.L. Opioid receptors: distinct roles in mood disorders. Trends Neurosci., 2013, 36(3), 195-206.
[http://dx.doi.org/10.1016/j.tins.2012.11.002] [PMID: 23219016]
[62]
Loh, H.H.; Liu, H.C.; Cavalli, A.; Yang, W.; Chen, Y.F.; Wei, L.N. mu Opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Brain Res. Mol. Brain Res., 1998, 54(2), 321-326.
[http://dx.doi.org/10.1016/S0169-328X(97)00353-7] [PMID: 9555078]
[63]
Matthes, H.W.; Maldonado, R.; Simonin, F.; Valverde, O.; Slowe, S.; Kitchen, I.; Befort, K.; Dierich, A.; Le Meur, M.; Dollé, P.; Tzavara, E.; Hanoune, J.; Roques, B.P.; Kieffer, B.L. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature, 1996, 383(6603), 819-823.
[http://dx.doi.org/10.1038/383819a0] [PMID: 8893006]
[64]
Ma, J.; Zhang, Y.; Kalyuzhny, A.E.; Pan, Z.Z. Emergence of functional delta-opioid receptors induced by long-term treatment with morphine. Mol. Pharmacol., 2006, 69(4), 1137-1145.
[http://dx.doi.org/10.1124/mol.105.019109] [PMID: 16399848]
[65]
Zhu, Y.; King, M.A.; Schuller, A.G.; Nitsche, J.F.; Reidl, M.; Elde, R.P.; Unterwald, E.; Pasternak, G.W.; Pintar, J.E. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron, 1999, 24(1), 243-252.
[http://dx.doi.org/10.1016/S0896-6273(00)80836-3] [PMID: 10677041]
[66]
Lambert, D.G. The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat. Rev. Drug Discov., 2008, 7(8), 694-710.
[http://dx.doi.org/10.1038/nrd2572] [PMID: 18670432]
[67]
Sundström, G.; Dreborg, S.; Larhammar, D. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One, 2010, 5(5)e10512
[http://dx.doi.org/10.1371/journal.pone.0010512] [PMID: 20463905]
[68]
Dreborg, S.; Sundström, G.; Larsson, T.A.; Larhammar, D. Evolution of vertebrate opioid receptors. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15487-15492.
[http://dx.doi.org/10.1073/pnas.0805590105] [PMID: 18832151]
[69]
Barrallo, A.; González-Sarmiento, R.; Porteros, A.; García-Isidoro, M.; Rodríguez, R.E. Cloning, molecular characterization, and distribution of a gene homologous to delta opioid receptor from zebrafish (Danio rerio). Biochem. Biophys. Res. Commun., 1998, 245(2), 544-548.
[http://dx.doi.org/10.1006/bbrc.1998.8496] [PMID: 9571192]
[70]
Pinal-Seoane, N.; Martin, I.R.; Gonzalez-Nuñez, V.; Marron Fernandez de Velasco, E.; Alvarez, F.A.; Sarmiento, R.G.; Rodriguez, R.E. Characterization of a new duplicate delta-opioid receptor from zebrafish. J. Mol. Endocrinol., 2006, 37(3), 391-403.
[http://dx.doi.org/10.1677/jme.1.02136] [PMID: 17170080]
[71]
Rivas-Boyero, A.A.; Herrero-Turrión, M.J.; Gonzalez-Nunez, V.; Sánchez-Simón, F.M.; Barreto-Valer, K.; Rodríguez, R.E. Pharmacological characterization of a nociceptin receptor from zebrafish (Danio rerio). J. Mol. Endocrinol., 2011, 46(2), 111-123.
[http://dx.doi.org/10.1530/JME-10-0130] [PMID: 21247980]
[72]
Gonzalez-Nunez, V.; Jimenez González, A.; Barreto-Valer, K.; Rodríguez, R.E. In vivo regulation of the μ opioid receptor: role of the endogenous opioid agents. Mol. Med., 2013, 19, 7-17.
[http://dx.doi.org/10.2119/molmed.2012.00318] [PMID: 23348513]
[73]
Gonzalez-Nunez, V.; Gonzalez-Sarmiento, R.; Rodríguez, R.E. Cloning and characterization of a full-length pronociceptin in zebrafish: evidence of the existence of two different nociceptin sequences in the same precursor. Biochim. Biophys. Acta, 2003, 1629(1-3), 114-118.
[http://dx.doi.org/10.1016/j.bbaexp.2003.08.001] [PMID: 14522087]
[74]
Gonzalez-Nunez, V.; Gonzalez-Sarmiento, R.; Rodríguez, R.E. Identification of two proopiomelanocortin genes in zebrafish (Danio rerio). Brain Res. Mol. Brain Res., 2003, 120(1), 1-8.
[http://dx.doi.org/10.1016/j.molbrainres.2003.09.012] [PMID: 14667571]
[75]
Wagle, M.; Mathur, P.; Guo, S. Corticotropin-releasing factor critical for zebrafish camouflage behavior is regulated by light and sensitive to ethanol. J. Neurosci., 2011, 31(1), 214-224.
[http://dx.doi.org/10.1523/JNEUROSCI.3339-10.2011] [PMID: 21209207]
[76]
Demin, K.A.; Taranov, A.S.; Ilyin, N.P.; Lakstygal, A.M.; Volgin, A.D.; de Abreu, M.S.; Strekalova, T.; Kalueff, A.V. Understanding neurobehavioral effects of acute and chronic stress in zebrafish. Stress, 2021, 24(1), 1-18.
[http://dx.doi.org/10.1080/10253890.2020.1724948] [PMID: 32036720]
[77]
Sheets, L.; Ransom, D.G.; Mellgren, E.M.; Johnson, S.L.; Schnapp, B.J. Zebrafish melanophilin facilitates melanosome dispersion by regulating dynein. Curr. Biol., 2007, 17(20), 1721-1734.
[http://dx.doi.org/10.1016/j.cub.2007.09.028] [PMID: 17919909]
[78]
Gonzalez-Nuñez, V.; Marrón Fernández de Velasco, E.; Arsequell, G.; Valencia, G.; Rodríguez, R.E. Identification of dynorphin a from zebrafish: a comparative study with mammalian dynorphin A. Neuroscience, 2007, 144(2), 675-684.
[http://dx.doi.org/10.1016/j.neuroscience.2006.09.028] [PMID: 17069980]
[79]
Bao, W.; Volgin, A.D.; Alpyshov, E.T.; Friend, A.J.; Strekalova, T.V.; de Abreu, M.S.; Collins, C.; Amstislavskaya, T.G.; Demin, K.A.; Kalueff, A.V. Opioid neurobiology, neurogenetics and neuropharmacology in zebrafish. Neuroscience, 2019, 404, 218-232.
[http://dx.doi.org/10.1016/j.neuroscience.2019.01.045] [PMID: 30710667]
[80]
Demin, K.A.; Meshalkina, D.A.; Kysil, E.V.; Antonova, K.A.; Volgin, A.D.; Yakovlev, O.A.; Alekseeva, P.A.; Firuleva, M.M.; Lakstygal, A.M.; de Abreu, M.S.; Barcellos, L.J.G.; Bao, W.; Friend, A.J.; Amstislavskaya, T.G.; Rosemberg, D.B.; Musienko, P.E.; Song, C.; Kalueff, A.V. Zebrafish models relevant to studying central opioid and endocannabinoid systems. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 86, 301-312.
[http://dx.doi.org/10.1016/j.pnpbp.2018.03.024] [PMID: 29604314]
[81]
González-Núñez, V.; Barrallo, A.; Traynor, J.R.; Rodríguez, R.E. Characterization of opioid-binding sites in zebrafish brain. J. Pharmacol. Exp. Ther., 2006, 316(2), 900-904.
[http://dx.doi.org/10.1124/jpet.105.093492] [PMID: 16207834]
[82]
Chan, H.C.S.; McCarthy, D.; Li, J.; Palczewski, K.; Yuan, S. Designing safer analgesics via μ-opioid receptor pathways. Trends Pharmacol. Sci., 2017, 38(11), 1016-1037.
[http://dx.doi.org/10.1016/j.tips.2017.08.004] [PMID: 28935293]
[83]
Sivalingam, M.; Ogawa, S.; Parhar, I.S. Mapping of morphine-induced OPRM1 gene expression pattern in the adult zebrafish brain. Front. Neuroanat., 2020, 14, 5.
[http://dx.doi.org/10.3389/fnana.2020.00005] [PMID: 32153369]
[84]
Belzung, C.; Agmo, A. Naloxone potentiates the effects of subeffective doses of anxiolytic agents in mice. Eur. J. Pharmacol., 1997, 323(2-3), 133-136.
[http://dx.doi.org/10.1016/S0014-2999(97)00142-8] [PMID: 9128831]
[85]
Kalin, N.H.; Shelton, S.E.; Barksdale, C.M. Opiate modulation of separation-induced distress in non-human primates. Brain Res., 1988, 440(2), 285-292.
[http://dx.doi.org/10.1016/0006-8993(88)90997-3] [PMID: 3359215]
[86]
Stewart, A.; Wu, N.; Cachat, J.; Hart, P.; Gaikwad, S.; Wong, K.; Utterback, E.; Gilder, T.; Kyzar, E.; Newman, A.; Carlos, D.; Chang, K.; Hook, M.; Rhymes, C.; Caffery, M.; Greenberg, M.; Zadina, J.; Kalueff, A.V. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(6), 1421-1431.
[http://dx.doi.org/10.1016/j.pnpbp.2010.11.035] [PMID: 21122812]
[87]
Deakin, A.G.; Buckley, J.; AlZu’bi, H.S.; Cossins, A.R.; Spencer, J.W.; Al’Nuaimy, W.; Young, I.S.; Thomson, J.S.; Sneddon, L.U. Automated monitoring of behaviour in zebrafish after invasive procedures. Sci. Rep., 2019, 9(1), 9042.
[http://dx.doi.org/10.1038/s41598-019-45464-w] [PMID: 31227751]
[88]
Magalhães, F.E.A.; Batista, F.L.A.; Lima, L.M.G.; Abrante, I.A.; Batista, F.L.A.; Abrante, I.A.; de Araújo, J.I.F.; Santos, S.A.A.R.; de Oliveira, B.A.; Raposo, R.D.S.; Campos, A.R. Adult zebrafish (Danio rerio) as a model for the study of corneal antinociceptive compounds. Zebrafish, 2018, 15(6), 566-574.
[http://dx.doi.org/10.1089/zeb.2018.1633] [PMID: 30153094]
[89]
Lopez-Luna, J.; Al-Jubouri, Q.; Al-Nuaimy, W.; Sneddon, L.U. Reduction in activity by noxious chemical stimulation is ameliorated by immersion in analgesic drugs in zebrafish. J. Exp. Biol., 2017, 220(Pt 8), 1451-1458.
[http://dx.doi.org/10.1242/jeb.146969] [PMID: 28424313]
[90]
Khor, B.S.; Jamil, M.F.; Adenan, M.I.; Shu-Chien, A.C. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish. PLoS One, 2011, 6(12)e28340
[http://dx.doi.org/10.1371/journal.pone.0028340] [PMID: 22205946]
[91]
Cachat, J.; Canavello, P.; Elegante, M.; Bartels, B.; Hart, P.; Bergner, C.; Egan, R.; Duncan, A.; Tien, D.; Chung, A.; Wong, K.; Goodspeed, J.; Tan, J.; Grimes, C.; Elkhayat, S.; Suciu, C.; Rosenberg, M.; Chung, K.M.; Kadri, F.; Roy, S.; Gaikwad, S.; Stewart, A.; Zapolsky, I.; Gilder, T.; Mohnot, S.; Beeson, E.; Amri, H.; Zukowska, Z.; Soignier, R.D.; Kalueff, A.V. Modeling withdrawal syndrome in zebrafish. Behav. Brain Res., 2010, 208(2), 371-376.
[http://dx.doi.org/10.1016/j.bbr.2009.12.004] [PMID: 20006651]
[92]
Shi, Y.; Zhang, Y.; Zhao, F.; Ruan, H.; Huang, H.; Luo, L.; Li, L. Acetylcholine serves as a derepressor in Loperamide-induced Opioid-Induced Bowel Dysfunction (OIBD) in zebrafish. Sci. Rep., 2014, 4, 5602.
[http://dx.doi.org/10.1038/srep05602] [PMID: 24998697]
[93]
Bretaud, S.; Li, Q.; Lockwood, B.L.; Kobayashi, K.; Lin, E.; Guo, S. A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience, 2007, 146(3), 1109-1116.
[http://dx.doi.org/10.1016/j.neuroscience.2006.12.073] [PMID: 17428610]
[94]
Bhargava, H.N.; Thorat, S.N. Effect of dizocilpine (MK-801) on analgesia and tolerance induced by U-50,488H, a kappa-opioid receptor agonist, in the mouse. Brain Res., 1994, 649(1-2), 111-116.
[http://dx.doi.org/10.1016/0006-8993(94)91053-7] [PMID: 7953621]
[95]
Yamada, H.; Shimoyama, N.; Sora, I.; Uhl, G.R.; Fukuda, Y.; Moriya, H.; Shimoyama, M. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors. Brain Res., 2006, 1083(1), 61-69.
[http://dx.doi.org/10.1016/j.brainres.2006.01.095] [PMID: 16530171]
[96]
McDonald, J.; Lambert, D. Opioid receptors. Contin. Educ. Anaesth. Crit. Care Pain, 2005, 5(1), 22-25.
[http://dx.doi.org/10.1093/bjaceaccp/mki004]
[97]
Liu-Chen, L.Y. Agonist-induced regulation and trafficking of kappa opioid receptors. Life Sci., 2004, 75(5), 511-536.
[http://dx.doi.org/10.1016/j.lfs.2003.10.041] [PMID: 15158363]
[98]
Braida, D.; Limonta, V.; Pegorini, S.; Zani, A.; Guerini-Rocco, C.; Gori, E.; Sala, M. Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology (Berl.), 2007, 190(4), 441-448.
[http://dx.doi.org/10.1007/s00213-006-0639-1] [PMID: 17219220]
[99]
Gonzalez-Nuñez, V.; Toth, G.; Rodríguez, R.E. Endogenous heptapeptide Met-enkephalin-Gly-Tyr binds differentially to duplicate delta opioid receptors from zebrafish. Peptides, 2007, 28(12), 2340-2347.
[http://dx.doi.org/10.1016/j.peptides.2007.10.002] [PMID: 18022288]
[100]
Mansour, A.; Hoversten, M.T.; Taylor, L.P.; Watson, S.J.; Akil, H. The cloned mu, delta and kappa receptors and their endogenous ligands: evidence for two opioid peptide recognition cores. Brain Res., 1995, 700(1-2), 89-98.
[http://dx.doi.org/10.1016/0006-8993(95)00928-J] [PMID: 8624732]
[101]
Kieffer, B.L.; Gavériaux-Ruff, C. Exploring the opioid system by gene knockout. Prog. Neurobiol., 2002, 66(5), 285-306.
[http://dx.doi.org/10.1016/S0301-0082(02)00008-4] [PMID: 12015197]
[102]
Gavériaux-Ruff, C.; Kieffer, B.L. Delta opioid receptor analgesia: recent contributions from pharmacology and molecular approaches. Behav. Pharmacol., 2011, 22(5-6), 405-414.
[http://dx.doi.org/10.1097/FBP.0b013e32834a1f2c] [PMID: 21836459]
[103]
Goldenberg, D.L. The interface of pain and mood disturbances in the rheumatic diseases. Semin. Arthritis Rheum., 2010, 40(1), 15-31.
[http://dx.doi.org/10.1016/j.semarthrit.2008.11.005] [PMID: 19217649]
[104]
Sharif, N.A.; Hughes, J. Discrete mapping of brain Mu and delta opioid receptors using selective peptides: quantitative autoradiography, species differences and comparison with kappa receptors. Peptides, 1989, 10(3), 499-522.
[http://dx.doi.org/10.1016/0196-9781(89)90135-6] [PMID: 2550910]
[105]
Porteros, A.; García-Isidoro, M.; Barrallo, A.; González-Sarmiento, R.; Rodríguez, R.E. Expression of ZFOR1, a delta-opioid receptor, in the central nervous system of the zebrafish (Danio rerio). J. Comp. Neurol., 1999, 412(3), 429-438.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990927)412:3<429:AID-CNE4>3.0.CO;2-L] [PMID: 10441231]
[106]
Valiquette, M.; Vu, H.K.; Yue, S.Y.; Wahlestedt, C.; Walker, P. Involvement of Trp-284, Val-296, and Val-297 of the human delta-opioid receptor in binding of delta-selective ligands. J. Biol. Chem., 1996, 271(31), 18789-18796.
[http://dx.doi.org/10.1074/jbc.271.31.18789] [PMID: 8702536]
[107]
Meng, F.; Ueda, Y.; Hoversten, M.T.; Thompson, R.C.; Taylor, L.; Watson, S.J.; Akil, H. Mapping the receptor domains critical for the binding selectivity of delta-opioid receptor ligands. Eur. J. Pharmacol., 1996, 311(2-3), 285-292.
[http://dx.doi.org/10.1016/0014-2999(96)00431-1] [PMID: 8891611]
[108]
Rodriguez, R.E.; Barrallo, A.; Garcia-Malvar, F.; McFadyen, I.J.; Gonzalez-Sarmiento, R.; Traynor, J.R. Characterization of ZFOR1, a putative delta-opioid receptor from the teleost zebrafish (Danio rerio). Neurosci. Lett., 2000, 288(3), 207-210.
[http://dx.doi.org/10.1016/S0304-3940(00)01239-8] [PMID: 10889344]
[109]
Mollereau, C.; Mouledous, L. Tissue distribution of the opioid receptor-like (ORL1) receptor. Peptides, 2000, 21(7), 907-917.
[http://dx.doi.org/10.1016/S0196-9781(00)00227-8] [PMID: 10998524]
[110]
King, M.A.; Rossi, G.C.; Chang, A.H.; Williams, L.; Pasternak, G.W. Spinal analgesic activity of orphanin FQ/nociceptin and its fragments. Neurosci. Lett., 1997, 223(2), 113-116.
[http://dx.doi.org/10.1016/S0304-3940(97)13414-0] [PMID: 9089686]
[111]
Ko, M.C.; Wei, H.; Woods, J.H.; Kennedy, R.T. Effects of intrathecally administered nociceptin/orphanin FQ in monkeys: behavioral and mass spectrometric studies. J. Pharmacol. Exp. Ther., 2006, 318(3), 1257-1264.
[http://dx.doi.org/10.1124/jpet.106.106120] [PMID: 16766718]
[112]
Zeilhofer, H.U.; Calò, G. Nociceptin/orphanin FQ and its receptor-potential targets for pain therapy? J. Pharmacol. Exp. Ther., 2003, 306(2), 423-429.
[http://dx.doi.org/10.1124/jpet.102.046979] [PMID: 12721334]
[113]
Pan, Z.; Hirakawa, N.; Fields, H.L. A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron, 2000, 26(2), 515-522.
[http://dx.doi.org/10.1016/S0896-6273(00)81183-6] [PMID: 10839369]
[114]
Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol., 2013, 29, 355-384.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155833] [PMID: 24099085]
[115]
Clapham, D.E. TRP channels as cellular sensors. Nature, 2003, 426(6966), 517-524.
[http://dx.doi.org/10.1038/nature02196] [PMID: 14654832]
[116]
Montell, C.; Birnbaumer, L.; Flockerzi, V. The TRP channels, a remarkably functional family. Cell, 2002, 108(5), 595-598.
[http://dx.doi.org/10.1016/S0092-8674(02)00670-0] [PMID: 11893331]
[117]
Tsagareli, M.G.; Nozadze, I. An overview on transient receptor potential channels superfamily. Behav. Pharmacol., 2020, 31(5), 413-434.
[http://dx.doi.org/10.1097/FBP.0000000000000524] [PMID: 31833970]
[118]
Von Niederhäusern, V.; Kastenhuber, E.; Stäuble, A.; Gesemann, M.; Neuhauss, S.C. Phylogeny and expression of canonical transient receptor potential (TRPC) genes in developing zebrafish. Dev. Dyn., 2013, 242(12), 1427-1441.
[http://dx.doi.org/10.1002/dvdy.24041] [PMID: 24038627]
[119]
Saito, S.; Shingai, R. Evolution of thermoTRP ion channel homologs in vertebrates. Physiol. Genomics, 2006, 27(3), 219-230.
[http://dx.doi.org/10.1152/physiolgenomics.00322.2005] [PMID: 16926268]
[120]
Corey, D.P.; García-Añoveros, J.; Holt, J.R.; Kwan, K.Y.; Lin, S.Y.; Vollrath, M.A.; Amalfitano, A.; Cheung, E.L.; Derfler, B.H.; Duggan, A.; Géléoc, G.S.; Gray, P.A.; Hoffman, M.P.; Rehm, H.L.; Tamasauskas, D.; Zhang, D.S. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature, 2004, 432(7018), 723-730.
[http://dx.doi.org/10.1038/nature03066] [PMID: 15483558]
[121]
Kastenhuber, E.; Gesemann, M.; Mickoleit, M.; Neuhauss, S.C. Phylogenetic analysis and expression of zebrafish transient receptor potential melastatin family genes. Dev. Dyn., 2013, 242(11), 1236-1249.
[http://dx.doi.org/10.1002/dvdy.24020] [PMID: 23908157]
[122]
Benini, A.; Bozzato, A.; Mantovanelli, S.; Calvarini, L.; Giacopuzzi, E.; Bresciani, R.; Moleri, S.; Zizioli, D.; Beltrame, M.; Borsani, G. Characterization and expression analysis of mcoln1.1 and mcoln1.2, the putative zebrafish co-orthologs of the gene responsible for human mucolipidosis type IV. Int. J. Dev. Biol., 2013, 57(1), 85-93.
[http://dx.doi.org/10.1387/ijdb.120033gb] [PMID: 23585356]
[123]
England, S.J.; Campbell, P.C.; Banerjee, S.; Swanson, A.J.; Lewis, K.E. Identification and expression analysis of the complete family of zebrafish pkd genes. Front. Cell Dev. Biol., 2017, 5, 5.
[http://dx.doi.org/10.3389/fcell.2017.00005] [PMID: 28271061]
[124]
Ko, M.J.; Ganzen, L.C.; Coskun, E.; Mukadam, A.A.; Leung, Y.F.; van Rijn, R.M. A critical evaluation of TRPA1-mediated locomotor behavior in zebrafish as a screening tool for novel anti-nociceptive drug discovery. Sci. Rep., 2019, 9(1), 2430.
[http://dx.doi.org/10.1038/s41598-019-38852-9] [PMID: 30787340]
[125]
Laursen, W.J.; Anderson, E.O.; Hoffstaetter, L.J.; Bagriantsev, S.N.; Gracheva, E.O. Species-specific temperature sensitivity of TRPA1. Temperature (Austin), 2015, 2(2), 214-226.
[http://dx.doi.org/10.1080/23328940.2014.1000702] [PMID: 27227025]
[126]
Kang, K.; Pulver, S.R.; Panzano, V.C.; Chang, E.C.; Griffith, L.C.; Theobald, D.L.; Garrity, P.A. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature, 2010, 464(7288), 597-600.
[http://dx.doi.org/10.1038/nature08848] [PMID: 20237474]
[127]
Gupta, R.; Saito, S.; Mori, Y.; Itoh, S.G.; Okumura, H.; Tominaga, M. Structural basis of TRPA1 inhibition by HC-030031 utilizing species-specific differences. Sci. Rep., 2016, 6, 37460.
[http://dx.doi.org/10.1038/srep37460] [PMID: 27874100]
[128]
Oda, M.; Kurogi, M.; Kubo, Y.; Saitoh, O. Sensitivities of two zebrafish TRPA1 paralogs to chemical and thermal stimuli analyzed in heterologous expression systems. Chem. Senses, 2016, 41(3), 261-272.
[http://dx.doi.org/10.1093/chemse/bjv091] [PMID: 26826723]
[129]
Veldhuis, N.A.; Poole, D.P.; Grace, M.; McIntyre, P.; Bunnett, N.W. The G protein-coupled receptor-transient receptor potential channel axis: molecular insights for targeting disorders of sensation and inflammation. Pharmacol. Rev., 2015, 67(1), 36-73.
[http://dx.doi.org/10.1124/pr.114.009555] [PMID: 25361914]
[130]
Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824.
[http://dx.doi.org/10.1038/39807] [PMID: 9349813]
[131]
Moriyama, T.; Higashi, T.; Togashi, K.; Iida, T.; Segi, E.; Sugimoto, Y.; Tominaga, T.; Narumiya, S.; Tominaga, M. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain, 2005, 1, 3.
[http://dx.doi.org/10.1186/1744-8069-1-3] [PMID: 15813989]
[132]
Zygmunt, P.M.; Petersson, J.; Andersson, D.A.; Chuang, H.; Sørgård, M.; Di Marzo, V.; Julius, D.; Högestätt, E.D. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature, 1999, 400(6743), 452-457.
[http://dx.doi.org/10.1038/22761] [PMID: 10440374]
[133]
Szallasi, A.; Blumberg, P.M. Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience, 1989, 30(2), 515-520.
[http://dx.doi.org/10.1016/0306-4522(89)90269-8] [PMID: 2747924]
[134]
Curtright, A.; Rosser, M.; Goh, S.; Keown, B.; Wagner, E.; Sharifi, J.; Raible, D.W.; Dhaka, A. Modeling nociception in zebrafish: a way forward for unbiased analgesic discovery. PLoS One, 2015, 10(1)e0116766
[http://dx.doi.org/10.1371/journal.pone.0116766] [PMID: 25587718]
[135]
Santos, A.L.E.; Leite, G.O.; Carneiro, R.F.; Roma, R.R.; Santos, V.F.; Santos, M.H.C.; Pereira, R.O.; Silva, R.C.; Nagano, C.S.; Sampaio, A.H.; Rocha, B.A.M.; Delatorre, P.; Campos, A.R.; Teixeira, C.S. Purification and biophysical characterization of a mannose/N-acetyl-d-glucosamine-specific lectin from Machaerium acutifolium and its effect on inhibition of orofacial pain via TRPV1 receptor. Arch. Biochem. Biophys., 2019, 664, 149-156.
[http://dx.doi.org/10.1016/j.abb.2019.02.009] [PMID: 30772259]
[136]
do Nascimento, J.E.T.; de Morais, S.M.; de Lisboa, D.S.; de Oliveira Sousa, M.; Santos, S.A.A.R.; Magalhães, F.E.A.; Campos, A.R. The orofacial antinociceptive effect of Kaempferol-3-O-rutinoside, isolated from the plant Ouratea fieldingiana, on adult zebrafish (Danio rerio). Biomed. Pharmacother., 2018, 107, 1030-1036.
[http://dx.doi.org/10.1016/j.biopha.2018.08.089] [PMID: 30257314]
[137]
Soares, I.C.R.; Santos, S.A.A.R.; Coelho, R.F.; Alves, Y.A.; Vieira-Neto, A.E.; Tavares, K.C.S.; Magalhaes, F.E.A.; Campos, A.R. Oleanolic acid promotes orofacial antinociception in adult zebrafish (Danio rerio) through TRPV1 receptors. Chem. Biol. Interact., 2019, 299, 37-43.
[http://dx.doi.org/10.1016/j.cbi.2018.11.018] [PMID: 30496739]
[138]
Batista, F.L.A.; Lima, L.M.G.; Abrante, I.A.; de Araújo, J.I.F.; Batista, F.L.A.; Abrante, I.A.; Magalhães, E.A.; de Lima, D.R.; Lima, M.D.C.L.; do Prado, B.S.; Moura, L.F.W.G.; Guedes, M.I.F.; Ferreira, M.K.A.; de Menezes, J.E.S.A.; Santos, S.A.A.R.; Mendes, F.R.S.; Moreira, R.A.; Monteiro-Moreira, A.C.O.; Campos, A.R.; Magalhães, F.E.A. Antinociceptive activity of ethanolic extract of Azadirachta indica A. Juss (Neem, Meliaceae) fruit through opioid, glutamatergic and acid-sensitive ion pathways in adult zebrafish (Danio rerio). Biomed. Pharmacother., 2018, 108, 408-416.
[http://dx.doi.org/10.1016/j.biopha.2018.08.160] [PMID: 30236850]
[139]
Ghysen, A.; Dambly-Chaudière, C. The lateral line microcosmos. Genes Dev., 2007, 21(17), 2118-2130.
[http://dx.doi.org/10.1101/gad.1568407] [PMID: 17785522]
[140]
Eckroth, J.R.; Aas-Hansen, Ø.; Sneddon, L.U.; Bichão, H.; Døving, K.B. Physiological and behavioural responses to noxious stimuli in the Atlantic cod (Gadus morhua). PLoS One, 2014, 9(6)e100150
[http://dx.doi.org/10.1371/journal.pone.0100150] [PMID: 24936652]
[141]
Basavarajappa, B.S.; Shivakumar, M.; Joshi, V.; Subbanna, S. Endocannabinoid system in neurodegenerative disorders. J. Neurochem., 2017, 142(5), 624-648.
[http://dx.doi.org/10.1111/jnc.14098] [PMID: 28608560]
[142]
Luchtenburg, F.J.; Schaaf, M.J.M.; Richardson, M.K. Functional characterization of the cannabinoid receptors 1 and 2 in zebrafish larvae using behavioral analysis. Psychopharmacology (Berl.), 2019, 236(7), 2049-2058.
[http://dx.doi.org/10.1007/s00213-019-05193-4] [PMID: 30820632]
[143]
Lauckner, J.E.; Jensen, J.B.; Chen, H.Y.; Lu, H.C.; Hille, B.; Mackie, K. GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2699-2704.
[http://dx.doi.org/10.1073/pnas.0711278105] [PMID: 18263732]
[144]
Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R.A. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol. Rev., 2010, 62(4), 588-631.
[http://dx.doi.org/10.1124/pr.110.003004] [PMID: 21079038]
[145]
Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA, 1990, 87(5), 1932-1936.
[http://dx.doi.org/10.1073/pnas.87.5.1932] [PMID: 2308954]
[146]
Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993, 365(6441), 61-65.
[http://dx.doi.org/10.1038/365061a0] [PMID: 7689702]
[147]
Van Sickle, M.D.; Duncan, M.; Kingsley, P.J.; Mouihate, A.; Urbani, P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J.S.; Marnett, L.J.; Di Marzo, V.; Pittman, Q.J.; Patel, K.D.; Sharkey, K.A. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science, 2005, 310(5746), 329-332.
[http://dx.doi.org/10.1126/science.1115740] [PMID: 16224028]
[148]
Zhang, H.Y.; Gao, M.; Shen, H.; Bi, G.H.; Yang, H.J.; Liu, Q.R.; Wu, J.; Gardner, E.L.; Bonci, A.; Xi, Z.X. Expression of functional cannabinoid CB2 receptor in VTA dopamine neurons in rats. Addict. Biol., 2017, 22(3), 752-765.
[http://dx.doi.org/10.1111/adb.12367] [PMID: 26833913]
[149]
Oleson, E.B.; Beckert, M.V.; Morra, J.T.; Lansink, C.S.; Cachope, R.; Abdullah, R.A.; Loriaux, A.L.; Schetters, D.; Pattij, T.; Roitman, M.F.; Lichtman, A.H.; Cheer, J.F. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum. Neuron, 2012, 73(2), 360-373.
[http://dx.doi.org/10.1016/j.neuron.2011.11.018] [PMID: 22284189]
[150]
Rey, A.A.; Purrio, M.; Viveros, M.P.; Lutz, B. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology, 2012, 37(12), 2624-2634.
[http://dx.doi.org/10.1038/npp.2012.123] [PMID: 22850737]
[151]
Muccioli, G.G.; Lambert, D.M. Current knowledge on the antagonists and inverse agonists of cannabinoid receptors. Curr. Med. Chem., 2005, 12(12), 1361-1394.
[http://dx.doi.org/10.2174/0929867054020891] [PMID: 15974990]
[152]
Ibrahim, M.M.; Porreca, F.; Lai, J.; Albrecht, P.J.; Rice, F.L.; Khodorova, A.; Davar, G.; Makriyannis, A.; Vanderah, T.W.; Mata, H.P.; Malan, T.P., Jr CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc. Natl. Acad. Sci. USA, 2005, 102(8), 3093-3098.
[http://dx.doi.org/10.1073/pnas.0409888102] [PMID: 15705714]
[153]
Wilson, R.I.; Nicoll, R.A. Endocannabinoid signaling in the brain. Science, 2002, 296(5568), 678-682.
[http://dx.doi.org/10.1126/science.1063545] [PMID: 11976437]
[154]
Hohmann, A.G.; Herkenham, M. Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience, 1999, 90(3), 923-931.
[http://dx.doi.org/10.1016/S0306-4522(98)00524-7] [PMID: 10218792]
[155]
Drew, G.M.; Lau, B.K.; Vaughan, C.W. Substance P drives endocannabinoid-mediated disinhibition in a midbrain descending analgesic pathway. J. Neurosci., 2009, 29(22), 7220-7229.
[http://dx.doi.org/10.1523/JNEUROSCI.4362-08.2009] [PMID: 19494144]
[156]
Starkus, J.; Jansen, C.; Shimoda, L.M.N.; Stokes, A.J.; Small-Howard, A.L.; Turner, H. Diverse TRPV1 responses to cannabinoids. Channels (Austin), 2019, 13(1), 172-191.
[http://dx.doi.org/10.1080/19336950.2019.1619436] [PMID: 31096838]
[157]
Lam, C.S.; Rastegar, S.; Strähle, U. Distribution of cannabinoid receptor 1 in the CNS of zebrafish. Neuroscience, 2006, 138(1), 83-95.
[http://dx.doi.org/10.1016/j.neuroscience.2005.10.069] [PMID: 16368195]
[158]
Rodriguez-Martin, I.; Herrero-Turrion, M.J.; Marron Fdez de Velasco, E.; Gonzalez-Sarmiento, R.; Rodriguez, R.E. Characterization of two duplicate zebrafish Cb2-like cannabinoid receptors. Gene, 2007, 389(1), 36-44.
[http://dx.doi.org/10.1016/j.gene.2006.09.016] [PMID: 17126498]
[159]
Krug, R.G., II; Clark, K.J. Elucidating cannabinoid biology in zebrafish (Danio rerio). Gene, 2015, 570(2), 168-179.
[http://dx.doi.org/10.1016/j.gene.2015.07.036] [PMID: 26192460]
[160]
Migliarini, B.; Carnevali, O. A novel role for the endocannabinoid system during zebrafish development. Mol. Cell. Endocrinol., 2009, 299(2), 172-177.
[http://dx.doi.org/10.1016/j.mce.2008.11.014] [PMID: 19071191]
[161]
Song, Z.H.; Slowey, C.A.; Hurst, D.P.; Reggio, P.H. The difference between the CB(1) and CB(2) cannabinoid receptors at position 5.46 is crucial for the selectivity of WIN55212-2 for CB(2). Mol. Pharmacol., 1999, 56(4), 834-840.
[PMID: 10496968]
[162]
Connors, K.A.; Valenti, T.W.; Lawless, K.; Sackerman, J.; Onaivi, E.S.; Brooks, B.W.; Gould, G.G. Similar anxiolytic effects of agonists targeting serotonin 5-HT1A or cannabinoid CB receptors on zebrafish behavior in novel environments. Aquat. Toxicol., 2014, 151, 105-113.
[http://dx.doi.org/10.1016/j.aquatox.2013.12.005] [PMID: 24411165]
[163]
Ellis, L.D.; Berrue, F.; Morash, M.; Achenbach, J.C.; Hill, J.; McDougall, J.J. Comparison of cannabinoids with known analgesics using a novel high throughput zebrafish larval model of nociception. Behav. Brain Res., 2018, 337, 151-159.
[http://dx.doi.org/10.1016/j.bbr.2017.09.028] [PMID: 28935439]
[164]
Walker, J.M.; Hohmann, A.G. Cannabinoid mechanisms of pain suppression. Handb. Exp. Pharmacol., 2005, (168), 509-554.
[http://dx.doi.org/10.1007/3-540-26573-2_17] [PMID: 16596786]
[165]
Crombie, K.M.; Brellenthin, A.G.; Hillard, C.J.; Koltyn, K.F. Endocannabinoid and opioid system interactions in exercise-induced hypoalgesia. Pain Med., 2018, 19(1), 118-123.
[http://dx.doi.org/10.1093/pm/pnx058] [PMID: 28387833]
[166]
Slivicki, R.A.; Iyer, V.; Mali, S.S.; Garai, S.; Thakur, G.A.; Crystal, J.D.; Hohmann, A.G. Positive Allosteric modulation of CB1 cannabinoid receptor signaling enhances morphine antinociception and attenuates morphine tolerance without enhancing morphine- induced dependence or reward. Front. Mol. Neurosci., 2020, 13, 54.
[http://dx.doi.org/10.3389/fnmol.2020.00054] [PMID: 32410959]
[167]
Smith, F.L.; Cichewicz, D.; Martin, Z.L.; Welch, S.P. The enhancement of morphine antinociception in mice by delta9-tetrahydrocannabinol. Pharmacol. Biochem. Behav., 1998, 60(2), 559-566.
[http://dx.doi.org/10.1016/S0091-3057(98)00012-4] [PMID: 9632241]
[168]
Lee, C.H.; Chen, C.C. Roles of ASICs in nociception and proprioception. Adv. Exp. Med. Biol., 2018, 1099, 37-47.
[http://dx.doi.org/10.1007/978-981-13-1756-9_4] [PMID: 30306513]
[169]
Schaefer, L.; Sakai, H.; Mattei, M.; Lazdunski, M.; Lingueglia, E. Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na(+) channel from human small intestine. FEBS Lett., 2000, 471(2-3), 205-210.
[http://dx.doi.org/10.1016/S0014-5793(00)01403-4] [PMID: 10767424]
[170]
Waldmann, R.; Champigny, G.; Bassilana, F.; Heurteaux, C.; Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature, 1997, 386(6621), 173-177.
[http://dx.doi.org/10.1038/386173a0] [PMID: 9062189]
[171]
Chen, C.C.; England, S.; Akopian, A.N.; Wood, J.N. A sensory neuron-specific, proton-gated ion channel. Proc. Natl. Acad. Sci. USA, 1998, 95(17), 10240-10245.
[http://dx.doi.org/10.1073/pnas.95.17.10240] [PMID: 9707631]
[172]
Price, M.P.; Snyder, P.M.; Welsh, M.J. Cloning and expression of a novel human brain Na+ channel. J. Biol. Chem., 1996, 271(14), 7879-7882.
[http://dx.doi.org/10.1074/jbc.271.14.7879] [PMID: 8626462]
[173]
Lingueglia, E.; de Weille, J.R.; Bassilana, F.; Heurteaux, C.; Sakai, H.; Waldmann, R.; Lazdunski, M. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem., 1997, 272(47), 29778-29783.
[http://dx.doi.org/10.1074/jbc.272.47.29778] [PMID: 9368048]
[174]
Waldmann, R.; Bassilana, F.; de Weille, J.; Champigny, G.; Heurteaux, C.; Lazdunski, M. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J. Biol. Chem., 1997, 272(34), 20975-20978.
[http://dx.doi.org/10.1074/jbc.272.34.20975] [PMID: 9261094]
[175]
Akopian, A.N.; Chen, C.C.; Ding, Y.; Cesare, P.; Wood, J.N. A new member of the acid-sensing ion channel family. Neuroreport, 2000, 11(10), 2217-2222.
[http://dx.doi.org/10.1097/00001756-200007140-00031] [PMID: 10923674]
[176]
Vukicevic, M.; Kellenberger, S. Modulatory effects of acid-sensing ion channels on action potential generation in hippocampal neurons. Am. J. Physiol. Cell Physiol., 2004, 287(3), C682-C690.
[http://dx.doi.org/10.1152/ajpcell.00127.2004] [PMID: 15115705]
[177]
Hesselager, M.; Timmermann, D.B.; Ahring, P.K. pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J. Biol. Chem., 2004, 279(12), 11006-11015.
[http://dx.doi.org/10.1074/jbc.M313507200] [PMID: 14701823]
[178]
Babinski, K.; Lê, K.T.; Séguéla, P. Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J. Neurochem., 1999, 72(1), 51-57.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720051.x] [PMID: 9886053]
[179]
Gründer, S.; Geissler, H.S.; Bässler, E.L.; Ruppersberg, J.P. A new member of acid-sensing ion channels from pituitary gland. Neuroreport, 2000, 11(8), 1607-1611.
[http://dx.doi.org/10.1097/00001756-200006050-00003] [PMID: 10852210]
[180]
Su, X.; Li, Q.; Shrestha, K.; Cormet-Boyaka, E.; Chen, L.; Smith, P.R.; Sorscher, E.J.; Benos, D.J.; Matalon, S.; Ji, H.L. Interregulation of proton-gated Na(+) channel 3 and cystic fibrosis transmembrane conductance regulator. J. Biol. Chem., 2006, 281(48), 36960-36968.
[http://dx.doi.org/10.1074/jbc.M608002200] [PMID: 17012229]
[181]
Jahr, H.; van Driel, M.; van Osch, G.J.; Weinans, H.; van Leeuwen, J.P. Identification of acid-sensing ion channels in bone. Biochem. Biophys. Res. Commun., 2005, 337(1), 349-354.
[http://dx.doi.org/10.1016/j.bbrc.2005.09.054] [PMID: 16185661]
[182]
Paukert, M.; Sidi, S.; Russell, C.; Siba, M.; Wilson, S.W.; Nicolson, T.; Gründer, S. A family of acid-sensing ion channels from the zebrafish: widespread expression in the central nervous system suggests a conserved role in neuronal communication. J. Biol. Chem., 2004, 279(18), 18783-18791.
[http://dx.doi.org/10.1074/jbc.M401477200] [PMID: 14970195]
[183]
Vierck, C.J.; Mauderli, A.P.; Wiley, R.G. Assessment of pain in laboratory animals: a comment on Mogil and Crager (2004). Pain, 2005, 114(3), 520-523.
[http://dx.doi.org/10.1016/j.pain.2005.01.021] [PMID: 15777880]
[184]
Treede, R.D. Assessment of pain as an emotion in animals and in humans. Exp. Neurol., 2006, 197(1), 1-3.
[http://dx.doi.org/10.1016/j.expneurol.2005.10.009] [PMID: 16297914]
[185]
Schroeder, P.G.S.L.U. Exploring the efficacy of immersion analgesics in zebrafish using an integrative approach. Appl. Anim. Behav. Sci., 2017, 187, 93-102.
[http://dx.doi.org/10.1016/j.applanim.2016.12.003]
[186]
Larson, A.A.; Brown, D.R.; el-Atrash, S.; Walser, M.M. Pain threshold changes in adjuvant-induced inflammation: a possible model of chronic pain in the mouse. Pharmacol. Biochem. Behav., 1986, 24(1), 49-53.
[http://dx.doi.org/10.1016/0091-3057(86)90043-2] [PMID: 3945666]
[187]
Beggs, S.; Salter, M.W. Microglia-neuronal signalling in neuropathic pain hypersensitivity 2.0. Curr. Opin. Neurobiol., 2010, 20(4), 474-480.
[http://dx.doi.org/10.1016/j.conb.2010.08.005] [PMID: 20817512]
[188]
Sheng, J.; Liu, S.; Wang, Y.; Cui, R.; Zhang, X. The link between depression and chronic pain: neural mechanisms in the brain. Neural Plast., 2017, 20179724371
[http://dx.doi.org/10.1155/2017/9724371] [PMID: 28706741]
[189]
Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol., 2001, 63(6), 637-672.
[http://dx.doi.org/10.1016/S0301-0082(00)00039-3] [PMID: 11164999]
[190]
Kaslin, J.; Panula, P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J. Comp. Neurol., 2001, 440(4), 342-377.
[http://dx.doi.org/10.1002/cne.1390] [PMID: 11745628]
[191]
Peitsaro, N.; Sundvik, M.; Anichtchik, O.V.; Kaslin, J.; Panula, P. Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochem. Pharmacol., 2007, 73(8), 1205-1214.
[http://dx.doi.org/10.1016/j.bcp.2007.01.014] [PMID: 17266939]
[192]
McNamara, C.R.; Mandel-Brehm, J.; Bautista, D.M.; Siemens, J.; Deranian, K.L.; Zhao, M.; Hayward, N.J.; Chong, J.A.; Julius, D.; Moran, M.M.; Fanger, C.M. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. USA, 2007, 104(33), 13525-13530.
[http://dx.doi.org/10.1073/pnas.0705924104] [PMID: 17686976]
[193]
Dubuisson, D.; Dennis, S.G. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain, 1977, 4(2), 161-174.
[http://dx.doi.org/10.1016/0304-3959(77)90130-0] [PMID: 564014]
[194]
Noriega, V.; Sierralta, F.; Poblete, P.; Aranda, N.; Sotomayor-Zarate, R.; Prieto, J.C.; Miranda, H.F. Receptors involved in dexketoprofen analgesia in murine visceral pain. J. Biosci., 2020, 45, 94.
[http://dx.doi.org/10.1007/s12038-020-00064-z] [PMID: 32713857]
[195]
Siegmund, E.; Cadmus, R.; Lu, G. A method for evaluating both non-narcotic and narcotic analgesics. Proc. Soc. Exp. Biol. Med., 1957, 95(4), 729-731.
[http://dx.doi.org/10.3181/00379727-95-23345] [PMID: 13465785]
[196]
Correia, A.D.; Cunha, S.R.; Scholze, M.; Stevens, E.D. A novel behavioral fish model of nociception for testing analgesics. Pharmaceuticals, 2011, 4(4), 665-680.
[http://dx.doi.org/10.3390/ph4040665]
[197]
Costa, F.V.; Canzian, J.; Stefanello, F.V.; Kalueff, A.V.; Rosemberg, D.B. Naloxone prolongs abdominal constriction writhing-like behavior in a zebrafish-based pain model. Neurosci. Lett., 2019, 708134336
[http://dx.doi.org/10.1016/j.neulet.2019.134336] [PMID: 31220523]
[198]
Murray, C.J.; Lopez, A.D. Measuring the global burden of disease. N. Engl. J. Med., 2013, 369(5), 448-457.
[http://dx.doi.org/10.1056/NEJMra1201534] [PMID: 23902484]
[199]
Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; Giamberardino, M.A.; Kaasa, S.; Korwisi, B.; Kosek, E.; Lavand’homme, P.; Nicholas, M.; Perrot, S.; Scholz, J.; Schug, S.; Smith, B.H.; Svensson, P.; Vlaeyen, J.W.S.; Wang, S.J. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain, 2019, 160(1), 19-27.
[http://dx.doi.org/10.1097/j.pain.0000000000001384] [PMID: 30586067]
[200]
Gatchel, R.J.; Peng, Y.B.; Peters, M.L.; Fuchs, P.N.; Turk, D.C. The biopsychosocial approach to chronic pain: scientific advances and future directions. Psychol. Bull., 2007, 133(4), 581-624.
[http://dx.doi.org/10.1037/0033-2909.133.4.581] [PMID: 17592957]
[201]
Li, Q.; Liu, S.; Zhu, X.; Mi, W.; Maoying, Q.; Wang, J.; Yu, J.; Wang, Y. Hippocampal PKR/NLRP1 inflammasome pathway is required for the depression-like behaviors in rats with neuropathic pain. Neuroscience, 2019, 412, 16-28.
[http://dx.doi.org/10.1016/j.neuroscience.2019.05.025] [PMID: 31125603]
[202]
Parent, A.J.; Beaudet, N.; Beaudry, H.; Bergeron, J.; Bérubé, P.; Drolet, G.; Sarret, P.; Gendron, L. Increased anxiety-like behaviors in rats experiencing chronic inflammatory pain. Behav. Brain Res., 2012, 229(1), 160-167.
[http://dx.doi.org/10.1016/j.bbr.2012.01.001] [PMID: 22245257]
[203]
Craske, M.G.; Rauch, S.L.; Ursano, R.; Prenoveau, J.; Pine, D.S.; Zinbarg, R.E. What is an anxiety disorder? Depress. Anxiety, 2009, 26(12), 1066-1085.
[http://dx.doi.org/10.1002/da.20633] [PMID: 19957279]
[204]
Malhi, G.S.; Mann, J.J. Depression. Lancet, 2018, 392(10161), 2299-2312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[205]
Guimarães, F.S.C.; Graeff, A.P. Modulation of anxiety behaviors by 5-HT-interacting drugs. In: Handbook of Behavioral Neuroscience; Robert, J.; Blanchard, D. C. B.; Griebel, G.; Nutt, D., Eds.; Elsevier , 2008; 17, pp. 241-268.
[206]
Ferjan, I.; Lipnik-Štangelj, M. Chronic pain treatment: the influence of tricyclic antidepressants on serotonin release and uptake in mast cells. Mediators Inflamm., 2013, 2013340473
[http://dx.doi.org/10.1155/2013/340473] [PMID: 23710115]
[207]
Dale, R.; Stacey, B. Multimodal treatment of chronic pain. Med. Clin. North Am., 2016, 100(1), 55-64.
[http://dx.doi.org/10.1016/j.mcna.2015.08.012] [PMID: 26614719]
[208]
Humo, M.; Lu, H.; Yalcin, I. The molecular neurobiology of chronic pain-induced depression. Cell Tissue Res., 2019, 377(1), 21-43.
[http://dx.doi.org/10.1007/s00441-019-03003-z] [PMID: 30778732]
[209]
Descalzi, G.; Mitsi, V.; Purushothaman, I.; Gaspari, S.; Avrampou, K.; Loh, Y.E.; Shen, L.; Zachariou, V. Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression. Sci. Signal., 2017, 10(471) ,eaaj1549
[http://dx.doi.org/10.1126/scisignal.aaj1549] [PMID: 28325815]
[210]
Chesselet, M.F.; Carmichael, S.T. Animal models of neurological disorders. Neurotherapeutics, 2012, 9(2), 241-244.
[http://dx.doi.org/10.1007/s13311-012-0118-9] [PMID: 22460561]
[211]
Richards, E.M.; Mathews, D.C.; Luckenbaugh, D.A.; Ionescu, D.F.; Machado-Vieira, R.; Niciu, M.J.; Duncan, W.C.; Nolan, N.M.; Franco-Chaves, J.A.; Hudzik, T.; Maciag, C.; Li, S.; Cross, A.; Smith, M.A.; Zarate, C.A. Jr A randomized, placebo-controlled pilot trial of the delta opioid receptor agonist AZD2327 in anxious depression. Psychopharmacology (Berl.), 2016, 233(6), 1119-1130.
[http://dx.doi.org/10.1007/s00213-015-4195-4] [PMID: 26728893]
[212]
Stewart, A.M.; Grossman, L.; Nguyen, M.; Maximino, C.; Rosemberg, D.B.; Echevarria, D.J.; Kalueff, A.V. Aquatic toxicology of fluoxetine: understanding the knowns and the unknowns. Aquat. Toxicol., 2014, 156, 269-273.
[http://dx.doi.org/10.1016/j.aquatox.2014.08.014] [PMID: 25245382]
[213]
Wyatt, C.; Bartoszek, E.M.; Yaksi, E. Methods for studying the zebrafish brain: past, present and future. Eur. J. Neurosci., 2015, 42(2), 1746-1763.
[http://dx.doi.org/10.1111/ejn.12932] [PMID: 25900095]
[214]
Kalueff, A.V.; Gebhardt, M.; Stewart, A.M.; Cachat, J.M.; Brimmer, M.; Chawla, J.S.; Craddock, C.; Kyzar, E.J.; Roth, A.; Landsman, S.; Gaikwad, S.; Robinson, K.; Baatrup, E.; Tierney, K.; Shamchuk, A.; Norton, W.; Miller, N.; Nicolson, T.; Braubach, O.; Gilman, C.P.; Pittman, J.; Rosemberg, D.B.; Gerlai, R.; Echevarria, D.; Lamb, E.; Neuhauss, S.C.; Weng, W.; Bally-Cuif, L.; Schneider, H. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish, 2013, 10(1), 70-86.
[http://dx.doi.org/10.1089/zeb.2012.0861] [PMID: 23590400]
[215]
Maximino, C.; Puty, B.; Benzecry, R.; Araújo, J.; Lima, M.G.; de Jesus Oliveira Batista, E.; Renata de Matos Oliveira, K.; Crespo-Lopez, M.E.; Herculano, A.M. Role of serotonin in zebrafish (Danio rerio) anxiety: relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology, 2013, 71, 83-97.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.006] [PMID: 23541719]
[216]
Singleman, C.; Holtzman, N.G. Growth and maturation in the zebrafish, Danio rerio: a staging tool for teaching and research. Zebrafish, 2014, 11(4), 396-406.
[http://dx.doi.org/10.1089/zeb.2014.0976] [PMID: 24979389]
[217]
Sneddon, L.U.; Halsey, L.G.; Bury, N.R. Considering aspects of the 3Rs principles within experimental animal biology. J. Exp. Biol., 2017, 220(Pt 17), 3007-3016.
[http://dx.doi.org/10.1242/jeb.147058] [PMID: 28855318]
[218]
Parker, M.O.; Brock, A.J.; Walton, R.T.; Brennan, C.H. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front. Neural Circuits, 2013, 7, 63.
[http://dx.doi.org/10.3389/fncir.2013.00063] [PMID: 23580329]
[219]
Lu, J.; Peatman, E.; Tang, H.; Lewis, J.; Liu, Z. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications. BMC Genomics, 2012, 13, 246.
[http://dx.doi.org/10.1186/1471-2164-13-246] [PMID: 22702965]
[220]
Lakstygal, A.M.; de Abreu, M.S.; Lifanov, D.; Wappler-Guzetta, E.A.; Serikuly, N.; Alpsychov, E.T.; Wang, D.; Wang, M.; Tang, Z.; Yan, N. Zebrafish models of diabetes-related CNS pathogenesis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 98, 48-58.
[PMID: 30476525]
[221]
Wang, D.; Hu, G.; Wang, J.; Yan, D.; Wang, M.; Yang, L.; Serikuly, N.; Alpyshov, E.; Demin, K.A.; Galstyan, D.S.; Amstislavskaya, T.G.; de Abreu, M.S.; Kalueff, A.V. Studying CNS effects of Traditional Chinese Medicine using zebrafish models. J. Ethnopharmacol., 2021, 267113383
[http://dx.doi.org/10.1016/j.jep.2020.113383] [PMID: 32918992]
[222]
de Abreu, M.S.; Giacomini, A.C.V.V.; Genario, R.; Rech, N.; Carboni, J.; Lakstygal, A.M.; Amstislavskaya, T.G.; Demin, K.A.; Leonard, B.E.; Vlok, M.; Harvey, B.H.; Piato, A.; Barcellos, L.J.G.; Kalueff, A.V. Non-pharmacological and pharmacological approaches for psychiatric disorders: Re-appraisal and insights from zebrafish models. Pharmacol. Biochem. Behav., 2020, 193172928
[http://dx.doi.org/10.1016/j.pbb.2020.172928] [PMID: 32289330]
[223]
Jordi, J.; Guggiana-Nilo, D.; Bolton, A.D.; Prabha, S.; Ballotti, K.; Herrera, K.; Rennekamp, A.J.; Peterson, R.T.; Lutz, T.A.; Engert, F. High-throughput screening for selective appetite modulators: A multibehavioral and translational drug discovery strategy Sci. Adv., 2018, 4(10) ,eaav1966
[http://dx.doi.org/10.1126/sciadv.aav1966] [PMID: 30402545]
[224]
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliot, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Ürün, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberländer, M.; Rudolph-Geiger, S.; Teucke, M.; Lanz, C.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.; Enright, A.; Geisler, R.; Plasterk, R.H.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nüsslein-Volhard, C.; Hubbard, T.J.; Roest Crollius, H.; Rogers, J.; Stemple, D.L.; Rogers, J.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496(7446), 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[225]
Cheresiz, S.V.; Volgin, A.D.; Kokorina Evsyukova, A.; Bashirzade, A.A.O.; Demin, K.A.; de Abreu, M.S.; Amstislavskaya, T.G.; Kalueff, A.V. Understanding neurobehavioral genetics of zebrafish. J. Neurogenet., 2020, 34(2), 203-215.
[http://dx.doi.org/10.1080/01677063.2019.1698565] [PMID: 31902276]
[226]
Kimmel, C.B. Genetics and early development of zebrafish. Trends Genet., 1989, 5(8), 283-288.
[http://dx.doi.org/10.1016/0168-9525(89)90103-0] [PMID: 2686119]
[227]
Ata, H.; Clark, K.J.; Ekker, S.C. The zebrafish genome editing toolkit. Methods Cell Biol., 2016, 135, 149-170.
[http://dx.doi.org/10.1016/bs.mcb.2016.04.023] [PMID: 27443924]
[228]
Varshney, G.K.; Sood, R.; Burgess, S.M. Understanding and Editing the Zebrafish Genome. Adv. Genet., 2015, 92, 1-52.
[http://dx.doi.org/10.1016/bs.adgen.2015.09.002] [PMID: 26639914]
[229]
Eijkenboom, I.; Sopacua, M.; Otten, A.B.C.; Gerrits, M.M.; Hoeijmakers, J.G.J.; Waxman, S.G.; Lombardi, R.; Lauria, G.; Merkies, I.S.J.; Smeets, H.J.M.; Faber, C.G.; Vanoevelen, J.M.; Group, P.S. Expression of pathogenic SCN9A mutations in the zebrafish: A model to study small-fiber neuropathy. Exp. Neurol., 2019, 311, 257-264.
[http://dx.doi.org/10.1016/j.expneurol.2018.10.008] [PMID: 30316835]
[230]
Labusch, M.; Mancini, L.; Morizet, D.; Bally-Cuif, L. Conserved and divergent features of adult neurogenesis in zebrafish. Front. Cell Dev. Biol., 2020, 8, 525.
[http://dx.doi.org/10.3389/fcell.2020.00525] [PMID: 32695781]
[231]
McIntosh, R.; Norris, J.; Clarke, J.D.; Alexandre, P. Spatial distribution and characterization of non-apical progenitors in the zebrafish embryo central nervous system. Open Biol., 2017, 7(2)160312
[http://dx.doi.org/10.1098/rsob.160312] [PMID: 28148823]
[232]
Than-Trong, E.; Bally-Cuif, L. Radial glia and neural progenitors in the adult zebrafish central nervous system. Glia, 2015, 63(8), 1406-1428.
[http://dx.doi.org/10.1002/glia.22856] [PMID: 25976648]
[233]
Pylatiuk, C.; Zhao, H.; Gursky, E.; Reischl, M.; Peravali, R.; Foulkes, N.; Loosli, F. DIY Automated feeding and motion recording system for the analysis of fish behavior. SLAS Technol., 2019, 24(4), 394-398.
[http://dx.doi.org/10.1177/2472630319841412] [PMID: 31013465]
[234]
Franco-Restrepo, J.E.; Forero, D.A.; Vargas, R.A. A review of freely available, open-source software for the automated analysis of the behavior of adult zebrafish. Zebrafish, 2019, 16(3), 223-232.
[http://dx.doi.org/10.1089/zeb.2018.1662] [PMID: 30625048]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy