[1]
Global Tuberculosis Report, 2018. (Available from:. https://www.who.int/teams/global-tuberculosis-programme/tb-reports
[2]
Singh, S.; Roy, K.K.; Khan, S.R.; Kashyap, V.K.; Sharma, A.; Jaiswal, S.; Sharma, S.K.; Krishnan, M.Y.; Chaturvedi, V.; Lal, J.; Sinha, S.; Dasgupta, A.; Srivastava, R.; Saxena, A.K. Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis. Bioorg. Med. Chem., 2015, 23(4), 742-752.
[http://dx.doi.org/10.1016/j.bmc.2014.12.060] [PMID: 25614114]
[http://dx.doi.org/10.1016/j.bmc.2014.12.060] [PMID: 25614114]
[3]
Xu, Z.; Gao, C.; Ren, Q.C.; Song, X.F.; Feng, L.S.; Lv, Z.S. Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2017, 139, 429-440.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.059] [PMID: 28818767]
[http://dx.doi.org/10.1016/j.ejmech.2017.07.059] [PMID: 28818767]
[4]
Jain, P.P.; Degani, M.S.; Raju, A.; Ray, M.; Rajan, M.G.R. Rational drug design based synthesis of novel arylquinolines as anti-tuberculosis agents. Bioorg. Med. Chem. Lett., 2013, 23(22), 6097-6105.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.027] [PMID: 24095091]
[http://dx.doi.org/10.1016/j.bmcl.2013.09.027] [PMID: 24095091]
[5]
Haagsma, A.C.; Podasca, I.; Koul, A.; Andries, K.; Guillemont, J.; Lill, H.; Bald, D. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. PLoS One, 2011, 6(8)e23575
[http://dx.doi.org/10.1371/journal.pone.0023575] [PMID: 21858172]
[http://dx.doi.org/10.1371/journal.pone.0023575] [PMID: 21858172]
[6]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: a versatile heterocyclic. Saudi Pharm. J., 2013, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[7]
Rajkumar, R.; Udayakumar, D.S.; Madan, K. Molecular hybridization approach for phenothiazine incorporated 1,2,3-triazole hybrids as promising antimicrobial agents: Design, synthesis, molecular docking and in silico ADME studies. Eur. J. Med. Chem., 2019, 15, 263-282.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.010]
[http://dx.doi.org/10.1016/j.ejmech.2019.02.010]
[8]
Lu, P.; Lill, H.; Bald, D. ATP synthase in mycobacteria: special features and implications for a function as drug target. Biochim. Biophys. Acta, 2014, 1837(7), 1208-1218.
[http://dx.doi.org/10.1016/j.bbabio.2014.01.022] [PMID: 24513197]
[http://dx.doi.org/10.1016/j.bbabio.2014.01.022] [PMID: 24513197]
[9]
Svensson, E.M.; Murray, S.; Karlsson, M.O.; Dooley, K.E. Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J. Antimicrob. Chemother., 2015, 70(4), 1106-1114.
[PMID: 25535219]
[PMID: 25535219]
[10]
Field, S.K. Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther. Adv. Chronic Dis., 2015, 6(4), 170-184.
[http://dx.doi.org/10.1177/2040622315582325] [PMID: 26137207]
[http://dx.doi.org/10.1177/2040622315582325] [PMID: 26137207]
[11]
Nayak, N.; Ramprasad, J.; Dalimba, U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline–pyrazole hybrid derivatives. J. Fluor. Chem., 2016, 183, 59-68.
[http://dx.doi.org/10.1016/j.jfluchem.2016.01.011]
[http://dx.doi.org/10.1016/j.jfluchem.2016.01.011]
[12]
Muscia, G.C.; Buldain, G.Y.; Asís, S.E. Design, synthesis and evaluation of acridine and fused-quinoline derivatives as potential anti-tuberculosis agents. Eur. J. Med. Chem., 2014, 73, 243-249.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.013] [PMID: 24412719]
[http://dx.doi.org/10.1016/j.ejmech.2013.12.013] [PMID: 24412719]
[13]
Patel, S.R.; Gangwal, R.; Sangamwar, A.T.; Jain, R. Synthesis, biological evaluation and 3D-QSAR study of hydrazide, semicarbazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)quinoline as anti-tuberculosis agents. Eur. J. Med. Chem., 2014, 85, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.100] [PMID: 25089809]
[http://dx.doi.org/10.1016/j.ejmech.2014.07.100] [PMID: 25089809]
[14]
Mandewale, M.C.; Patil, U.C.; Shedge, S.V.; Dappadwad, U.R.; Yamgarm, R.S. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni-Suef Uni. J. Basic Appl. Sci., 2017, 4(6), 354-361.
[15]
Mungra, D.C.; Patel, M.P.; Rajani, D.P.; Patel, R.G. Synthesis and identification of β-aryloxyquinolines and their pyrano[3,2-c]chromene derivatives as a new class of antimicrobial and antituberculosis agents. Eur. J. Med. Chem., 2011, 46(9), 4192-4200.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.022] [PMID: 21741732]
[http://dx.doi.org/10.1016/j.ejmech.2011.06.022] [PMID: 21741732]
[16]
Keri, R.S.; Patil, S.A. Quinoline: a promising antitubercular target. Biomed. Pharmacother., 2014, 68(8), 1161-1175.
[http://dx.doi.org/10.1016/j.biopha.2014.10.007] [PMID: 25458785]
[http://dx.doi.org/10.1016/j.biopha.2014.10.007] [PMID: 25458785]
[17]
Asati, V.; Ghode, P.; Bajaj, S.; Jain, S.K.; Bharti, S.K. 3D-QSAR and molecular docking studies on oxadiazole substituted benzimidazole derivatives: validation of experimental inhibitory potencies towards COX-2. Curr. Comput. Aided Drug Des., 2019, 15(4), 277-293.
[http://dx.doi.org/10.2174/1573409914666181003153249] [PMID: 30280671]
[http://dx.doi.org/10.2174/1573409914666181003153249] [PMID: 30280671]
[18]
Mistry, M.M.; Jauhari, S. Synthesis and in vitro antimicrobial and anti-tubercular evaluation of some quinoline-based azitidinone and thiazolidinone analogues. Med. Chem. Res., 2013, 22, 635-646.
[http://dx.doi.org/10.1007/s00044-012-0060-8]
[http://dx.doi.org/10.1007/s00044-012-0060-8]
[19]
Khazi, A.M.; Mulla, J.A.; Palkar, M.B.; Maddi, V.S.; Khazi, I.A. Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J. Chem. Inf. Model., 2012, 46(1), 24-31.
[20]
Ajmani, S.; Jadhav, K.; Kulkarni, S.A. Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J. Chem. Inf. Model., 2006, 46(1), 24-31.
[http://dx.doi.org/10.1021/ci0501286] [PMID: 16426036]
[http://dx.doi.org/10.1021/ci0501286] [PMID: 16426036]
[21]
Pawar, V.; Lokwani, D.; Bhandari, S.; Mitra, D.; Sabde, S.; Bothara, K.; Madgulkar, A. Design of potential reverse transcriptase inhibitor containing isatin nucleus using molecular modeling studies. Bioorg. Med. Chem., 2010, 18(9), 3198-3211.
[http://dx.doi.org/10.1016/j.bmc.2010.03.030] [PMID: 20381364]
[http://dx.doi.org/10.1016/j.bmc.2010.03.030] [PMID: 20381364]
[22]
Ghosh, P.; Bagchi, M.C. Anti-tubercular drug designing by structure based screening of combinatorial libraries. J. Mol. Model., 2011, 17(7), 1607-1620.
[http://dx.doi.org/10.1007/s00894-010-0861-y] [PMID: 20953648]
[http://dx.doi.org/10.1007/s00894-010-0861-y] [PMID: 20953648]
[23]
Chitre, T.S.; Asgaonkar, K.D.; Patil, S.M.; Kumar, S.; Khedkar, V.M.; Garud, D.R. QSAR, docking studies of 1,3-thiazinan-3-yl isonicotinamide derivatives for antitubercular activity. Comput. Biol. Chem., 2017, 68, 211-218.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.015] [PMID: 28411471]
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.015] [PMID: 28411471]
[24]
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR Models - Strategies and Importance. Inter. J. Drug Design Dis., 2011, 2(3), 511-519.
[25]
Raparti, V.; Chitre, T.; Bothara, K.; Kumar, V.; Dangre, S.; Khachane, C.; Gore, S.; Deshmane, B. Novel 4-(morpholin-4-yl)-N′-(arylidene)benzohydrazides: synthesis, antimycobacterial activity and QSAR investigations. Eur. J. Med. Chem., 2009, 44(10), 3954-3960.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.023] [PMID: 19464085]
[http://dx.doi.org/10.1016/j.ejmech.2009.04.023] [PMID: 19464085]
[26]
Singh, U.; Akhtar, S.; Mishra, A.; Sarkar, D. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J. Microbiol. Methods, 2011, 84(2), 202-207.
[http://dx.doi.org/10.1016/j.mimet.2010.11.013] [PMID: 21129420]
[http://dx.doi.org/10.1016/j.mimet.2010.11.013] [PMID: 21129420]
[27]
Joshi, R.R.; Barchha, A.; Khedkar, V.M.; Pissurlenkar, R.R.S.; Sarkar, S.; Sarkar, D.; Joshi, R.R.; Joshi, R.A.; Shah, A.K.; Coutinho, E.C. Targeting dormant tuberculosis bacilli: results for molecules with a novel pyrimidone scaffold. Chem. Biol. Drug Des., 2015, 85(2), 201-207.
[http://dx.doi.org/10.1111/cbdd.12373] [PMID: 24917467]
[http://dx.doi.org/10.1111/cbdd.12373] [PMID: 24917467]
[28]
Shaikh, M.H.; Subhedar, D.D.; Arkile, M.; Khedkar, V.M.; Jadhav, N.; Sarkar, D.; Shingate, B.B. Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent. Bioorg. Med. Chem. Lett., 2016, 26(2), 561-569.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.071] [PMID: 26642768]
[http://dx.doi.org/10.1016/j.bmcl.2015.11.071] [PMID: 26642768]
[29]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[30]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Glide: a
new approach for rapid, accurate docking and scoring. 1. method
and assessment of docking accuracy. J. Med. Chem., 2006, 49,
6177-6196..
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]