Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Oncolytic Adenovirus H101 Synergizes with Radiation in Cervical Cancer Cells

Author(s): Yixin Duan, Haixia Bai, Xiang Li , Depu Wang , Ying Wang, Meng Cao, Nana Zhang, Hongwei Chen * and Yili Wang*

Volume 21, Issue 7, 2021

Published on: 08 March, 2021

Page: [619 - 630] Pages: 12

DOI: 10.2174/1568009621666210308103541

Price: $65

Abstract

Background: A major challenge in cervical cancer radiotherapy is tailoring the radiation doses efficiently to eliminate malignant cells and reduce the side effects in normal tissues. Oncolytic adenovirus drug H101 was recently tested and approved as a topical adjuvant treatment for several malignancies.

Objective: This study aimed to evaluate the potential neoadjuvant radiotherapy benefits of H101 by testing the inhibitory function of H101 in combination with radiation in different cervical cancer cells.

Methods: Human cervical cancer cell lines C33a, SiHa, CaSki, and HeLa were treated with varying concentrations of H101 alone or in combination with radiation (2 Gy or 4 Gy). Cell viability and apoptosis were measured at the indicated time intervals. HPV16 E6 and cellular p53 mRNA expression alteration was measured by qRT-PCR. In situ RNA scope was used to determine HPV E6 status. P53 protein alterations were detected by Western blot.

Results: Cell viability and apoptosis assays revealed that the combination of a high dose of H101 (MOI=1000, 10000) with radiation yielded a synergistic anticancer effect in all tested cervical cancer cell lines (P<0.05), with the greatest effect achieved in HPV-negative C33a cells (P<0.05). Low-HPV16-viral-load SiHa cells were more sensitive to the combination therapy than high-HPV16- viral-load CaSki cells (P<0.05). The combined treatment reduced HPV16 E6 expression and increased cellular P53 levels compared to those observed with radiation alone in SiHa and CaSki cells (P<0.05).

Conclusion: Oncolytic adenovirus H101 effectively enhances the antitumor efficacy of radiation in cervical cancer cells and may serve as a novel combination therapy for cervical cancer.

Keywords: COVID-19, Renin–angiotensin system, ACE2, Angiotensin, SARS-like coronavirus, cervical cancer.

« Previous
Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Koh, W-J.; Abu-Rustum, N.R.; Bean, S.; Bradley, K.; Campos, S.M.; Cho, K.R.; Chon, H.S.; Chu, C.; Clark, R.; Cohn, D.; Crispens, M.A.; Damast, S.; Dorigo, O.; Eifel, P.J.; Fisher, C.M.; Frederick, P.; Gaffney, D.K.; Han, E.; Huh, W.K.; Lurain, J.R.; Mariani, A.; Mutch, D.; Nagel, C.; Nekhlyudov, L.; Fader, A.N.; Remmenga, S.W.; Reynolds, R.K.; Tillmanns, T.; Ueda, S.; Wyse, E.; Yashar, C.M.; McMillian, N.R.; Scavone, J.L. Cervical cancer, version 3.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2019, 17(1), 64-84.
[http://dx.doi.org/10.6004/jnccn.2019.0001] [PMID: 30659131]
[3]
Green, J.A.; Kirwan, J.M.; Tierney, J.F.; Symonds, P.; Fresco, L.; Collingwood, M.; Williams, C.J. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet, 2001, 358(9284), 781-786.
[http://dx.doi.org/10.1016/S0140-6736(01)05965-7] [PMID: 11564482]
[4]
Small, W., Jr; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; Gaffney, D.K. Cervical cancer: A global health crisis. Cancer, 2017, 123(13), 2404-2412.
[http://dx.doi.org/10.1002/cncr.30667] [PMID: 28464289]
[5]
Wang, Y.; Master, W. H.; Che, S.; Master, Y. Z.; Meng, D.; Master, F. S.; Master, J. S.; Master, Y. Y.; Ma, H.; Liu, R. Outcomes for hyperthermia combined with concurrent radiochemotherapy for patients with cervical cancer. Int. J. Radiation Oncol. Biol. Phys., 2020.
[6]
Raja, J.; Ludwig, J.M.; Gettinger, S.N.; Schalper, K.A.; Kim, H.S. Oncolytic virus immunotherapy: future prospects for oncology. J. Immunother. Cancer, 2018, 6(1), 140.
[http://dx.doi.org/10.1186/s40425-018-0458-z] [PMID: 30514385]
[7]
Yu, W.; Fang, H. Clinical trials with oncolytic adenovirus in China. Curr. Cancer Drug Targets, 2007, 7(2), 141-148.
[http://dx.doi.org/10.2174/156800907780058817] [PMID: 17346105]
[8]
Dix, B.R.; Edwards, S.J.; Braithwaite, A.W. Does the antitumor adenovirus ONYX-015/dl1520 selectively target cells defective in the p53 pathway? J. Virol., 2001, 75(12), 5443-5447.
[http://dx.doi.org/10.1128/JVI.75.12.5443-5447.2001] [PMID: 11356950]
[9]
Dobner, T.; Horikoshi, N.; Rubenwolf, S.; Shenk, T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science, 1996, 272(5267), 1470-1473.
[http://dx.doi.org/10.1126/science.272.5267.1470] [PMID: 8633237]
[10]
Bischoff James, R.; Kirn.; David, H., An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science, 1996.
[11]
Werness, B.A.; Levine, A.J.; Howley, P.M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science, 1990, 248(4951), 76-79.
[http://dx.doi.org/10.1126/science.2157286] [PMID: 2157286]
[12]
Leung, T.H.; Tang, H.W.; Siu, M.K.; Chan, D.W.; Chan, K.K.; Cheung, A.N.; Ngan, H.Y. Human papillomavirus E6 protein enriches the CD55(+) population in cervical cancer cells, promoting radioresistance and cancer aggressiveness. J. Pathol., 2018, 244(2), 151-163.
[http://dx.doi.org/10.1002/path.4991] [PMID: 28944962]
[13]
Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human papillomavirus and cervical cancer. Lancet, 2013, 382(9895), 889-899.
[http://dx.doi.org/10.1016/S0140-6736(13)60022-7] [PMID: 23618600]
[14]
Del Río-Ospina, L.; Soto-De León, S.C.; Camargo, M.; Moreno-Pérez, D.A.; Sánchez, R.; Pérez-Prados, A.; Patarroyo, M.E.; Patarroyo, M.A. The DNA load of six high-risk human papillomavirus types and its association with cervical lesions. BMC Cancer, 2015, 15, 100.
[http://dx.doi.org/10.1186/s12885-015-1126-z] [PMID: 25885207]
[15]
Wiethoff, C.M.; Nemerow, G.R. Adenovirus membrane penetration: Tickling the tail of a sleeping dragon. Virology, 2015, 479(480), 591-599.
[http://dx.doi.org/10.1016/j.virol.2015.03.006] [PMID: 25798531]
[16]
Adcock, R.; Cuzick, J.; Hunt, W.C.; McDonald, R.M.; Wheeler, C.M. Role of HPV genotype, multiple infections, and viral load on the risk of high-grade cervical neoplasia. Cancer Epidemiol. Biomarkers Prev., 2019, 28(11), 1816-1824.
[http://dx.doi.org/10.1158/1055-9965.EPI-19-0239] [PMID: 31488417]
[17]
Moberg, M.; Gustavsson, I.; Wilander, E.; Gyllensten, U. High viral loads of human papillomavirus predict risk of invasive cervical carcinoma. Br. J. Cancer, 2005, 92(5), 891-894.
[http://dx.doi.org/10.1038/sj.bjc.6602436] [PMID: 15756259]
[18]
Santin, A.D.; Hermonat, P.L.; Ravaggi, A.; Chiriva-Internati, M.; Pecorelli, S.; Parham, G.P. Radiation-enhanced expression of E6/E7 transforming oncogenes of human papillomavirus-16 in human cervical carcinoma. Cancer, 1998, 83(11), 2346-2352.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19981201)83:11<2346::AID-CNCR14>3.0.CO;2-G] [PMID: 9840534]
[19]
Hampson, L.; El Hady, E.S.; Moore, J.V.; Kitchener, H.; Hampson, I.N. The HPV16 E6 and E7 proteins and the radiation resistance of cervical carcinoma. FASEB J., 2001, 15(8), 1445-1447.
[http://dx.doi.org/10.1096/fj.00-0728fje] [PMID: 11387252]
[20]
Hanna, T.P.; Shafiq, J.; Delaney, G.P.; Barton, M.B. The population benefit of radiotherapy for cervical cancer: local control and survival estimates for optimally utilized radiotherapy and chemoradiation. Radiother. Oncol., 2015, 114(3), 389-394.
[http://dx.doi.org/10.1016/j.radonc.2015.02.005] [PMID: 25733007]
[21]
Milrot, E.; Jackman, A.; Flescher, E.; Gonen, P.; Kelson, I.; Keisari, Y.; Sherman, L. Enhanced killing of cervical cancer cells by combinations of methyl jasmonate with cisplatin, X or alpha radiation. Invest. New Drugs, 2013, 31(2), 333-344.
[http://dx.doi.org/10.1007/s10637-012-9870-2] [PMID: 22956285]
[22]
Fei, P.; El-Deiry, W.S. P53 and radiation responses. Oncogene, 2003, 22(37), 5774-5783.
[http://dx.doi.org/10.1038/sj.onc.1206677] [PMID: 12947385]
[23]
Scheffner, M.; Münger, K.; Byrne, J.C.; Howley, P.M. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5523-5527.
[http://dx.doi.org/10.1073/pnas.88.13.5523] [PMID: 1648218]
[24]
Cheng, P-H.; Wechman, S.L.; McMasters, K.M.; Zhou, H.S. Oncolytic replication of e1b-deleted adenoviruses. Viruses, 2015, 7(11), 5767-5779.
[http://dx.doi.org/10.3390/v7112905] [PMID: 26561828]
[25]
Garber, K. China approves world’s first oncolytic virus therapy for cancer treatment. J. Natl. Cancer Inst., 2006, 98(5), 298-300.
[http://dx.doi.org/10.1093/jnci/djj111] [PMID: 16507823]
[26]
Liang, M. Oncorine, the World first oncolytic virus medicine and its update in China. Curr. Cancer Drug Targets, 2018, 18(2), 171-176.
[http://dx.doi.org/10.2174/1568009618666171129221503] [PMID: 29189159]
[27]
He, Q.; Liu, Y.; Zou, Q.; Guan, Y-S. Transarterial injection of H101 in combination with chemoembolization overcomes recurrent hepatocellular carcinoma. World J. Gastroenterol., 2011, 17(18), 2353-2355.
[http://dx.doi.org/10.3748/wjg.v17.i18.2353] [PMID: 21633603]
[28]
Okegawa, T.; Li, Y.; Pong, R.C.; Bergelson, J.M.; Zhou, J.; Hsieh, J.T. The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res., 2000, 60(18), 5031-5036.
[PMID: 11016624]
[29]
Bauerschmitz, G.J.; Kanerva, A.; Wang, M.; Herrmann, I.; Shaw, D.R.; Strong, T.V.; Desmond, R.; Rein, D.T.; Dall, P.; Curiel, D.T.; Hemminki, A. Evaluation of a selectively oncolytic adenovirus for local and systemic treatment of cervical cancer. Int. J. Cancer, 2004, 111(2), 303-309.
[http://dx.doi.org/10.1002/ijc.20217] [PMID: 15197787]
[30]
Kuroda, S.; Fujiwara, T.; Shirakawa, Y.; Yamasaki, Y.; Yano, S.; Uno, F.; Tazawa, H.; Hashimoto, Y.; Watanabe, Y.; Noma, K.; Urata, Y.; Kagawa, S.; Fujiwara, T. Telomerase-dependent oncolytic adenovirus sensitizes human cancer cells to ionizing radiation via inhibition of DNA repair machinery. Cancer Res., 2010, 70(22), 9339-9348.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2333] [PMID: 21045143]
[31]
Querido, E.; Marcellus, R.C.; Lai, A.; Charbonneau, R.; Teodoro, J.G.; Ketner, G.; Branton, P.E. Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J. Virol., 1997, 71(5), 3788-3798.
[http://dx.doi.org/10.1128/JVI.71.5.3788-3798.1997] [PMID: 9094654]
[32]
Li, X.; Yuan, L.; Zhao, J.; Yang, H.; Yang, Y.; Zhang, Y.; Cun, B. Adenovirus-based strategies enhance antitumor capability through p53-mediated downregulation of MGMT in uveal melanoma. Cancer Biol. Ther., 2017, 18(3), 194-199.
[http://dx.doi.org/10.1080/15384047.2017.1294287] [PMID: 28278076]
[33]
Cao, M.; Wang, Y.; Wang, D.; Duan, Y.; Hong, W.; Zhang, N.; Shah, W.; Wang, Y.; Chen, H. Increased high-risk human papillomavirus viral load Is associated With immunosuppressed microenvironment and predicts a worse long-term survival in cervical cancer patients. Am. J. Clin. Pathol., 2020, 153(4), 502-512.
[PMID: 31819948]
[34]
Qian, G.; Wang, D.; Magliocca, K.R.; Hu, Z.; Nannapaneni, S.; Kim, S.; Chen, Z.; Sun, S-Y.; Shin, D.M.; Saba, N.F.; Chen, Z.G. Human papillomavirus oncoprotein E6 upregulates c-Met through p53 downregulation. Eur. J. Cancer, 2016, 65, 21-32.
[http://dx.doi.org/10.1016/j.ejca.2016.06.006] [PMID: 27451021]
[35]
Haupt, S.; Berger, M.; Goldberg, Z.; Haupt, Y. Apoptosis - the p53 network. J. Cell Sci., 2003, 116(Pt 20), 4077-4085.
[http://dx.doi.org/10.1242/jcs.00739] [PMID: 12972501]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy