Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Role of Phytomolecules in the Treatment of Obesity: Targets, Mechanisms and Limitations

Author(s): Shampa Ghosh, Srividya Manchala , Manchala Raghunath, Gaurav Sharma , Abhishek K. Singh* and Jitendra K. Sinha *

Volume 21, Issue 10, 2021

Published on: 05 March, 2021

Page: [863 - 877] Pages: 15

DOI: 10.2174/1568026621666210305101804

Price: $65

Abstract

Obesity has become a worldwide health problem. It triggers additional co-morbidities like cardiovascular diseases, cancer, depression, sleep disorders, gastrointestinal problems and many more. Excess accumulation of fat in obesity could be caused by many factors like sedentary lifestyle, consumption of high-fat diet, genetic predisposition, etc. Imbalanced energy metabolism i.e., greater energy consumption than utilisation, invariably underlies obesity. Considering the high prevalence and continuous, uncontrolled increase of this major public health issue, there is an urgent need to find appropriate therapeutic agents with minimal or no side effects. The high prevalence of obesity in recent years has led to a surge in the number of drugs available in the market that claim to control obesity. Although there is a long list of medicines and management strategies that are available, selecting the right therapeutic intervention and feasible management of obesity is a challenge. Several phytochemicals like hydroxycitric acid, flavonoids, tannins, anthocyanins, phytohaemagglutinin, thymoquinone and epigallocatechin gallate have been shown to possess promising anti-obesity properties. However, studies providing information on how various phytochemicals exert their anti-obesity effects are inadequate. This calls for more experimentation in this less explored area of research. Additionally, the complication of obesity arises when it is a result of multiple factors and associated with a number of co-morbidities. In order to handle such complexities, combinatorial therapeutic interventions become effective. In this review, we have described the medicinal chemistry of different highly effective phytochemicals which can be used in the effective treatment and management of obesity.

Keywords: Adipocytokine, Lipid, Green tea, Hibiscus, Inflammatory, Polyphenol, Flavonoid.

Graphical Abstract

[1]
Ghosh, S.; Sinha, J.K.; Muralikrishna, B.; Putcha, U.K.; Raghunath, M. Chronic transgenerational vitamin B12 deficiency of severe and moderate magnitudes modulates adiposity-probable underlying mechanisms. Biofactors, 2017, 43(3), 400-414.
[http://dx.doi.org/10.1002/biof.1350] [PMID: 28186655]
[2]
Ghosh, S.; Sinha, J.K.; Putcha, U.K.; Raghunath, M. Severe but not moderate vitamin b12 deficiency impairs lipid profile, induces adiposity, and leads to adverse gestational outcome in female c57bl/6 mice. Front. Nutr., 2016, 3, 1.
[http://dx.doi.org/10.3389/fnut.2016.00001] [PMID: 26835453]
[3]
Costantino, L.; Barlocco, D. New perspectives on the development of antiobesity drugs. Future Med. Chem., 2015, 7(3), 315-336.
[http://dx.doi.org/10.4155/fmc.14.167] [PMID: 25826362]
[4]
Rubio Herrera, M.A.; Fernández-García, J.M.; Corio Andújar, R.; Santos Altozano, C.; Urieta Carpi, J.J. Pharmacological treatment of obesity for Primary Care physicians. Semergen, 2019, 45(8), 559-565.
[http://dx.doi.org/10.1016/j.semerg.2019.04.005] [PMID: 31350172]
[5]
Coulter, A.A.; Rebello, C.J.; Greenway, F.L. Centrally acting agents for obesity: past, present, and future. Drugs, 2018, 78(11), 1113-1132.
[http://dx.doi.org/10.1007/s40265-018-0946-y] [PMID: 30014268]
[6]
Díaz, N.F.; Flores-Herrera, H.; García-López, G.; Molina-Hernández, A. Central histamine, the h3-receptor and obesity therapy. CNS Neurol. Disord. Drug Targets, 2019, 18(7), 516-522.
[http://dx.doi.org/10.2174/1871527318666190703094846] [PMID: 31269888]
[7]
Esbenshade, T.A.; Fox, G.B.; Cowart, M.D. Histamine H3 receptor antagonists: preclinical promise for treating obesity and cognitive disorders. Mol Interv, 2006, 6(2), 77-88.
[http://dx.doi.org/10.1124/mi.6.2.5]
[8]
Macneil, D.J. The role of melanin-concentrating hormone and its receptors in energy homeostasis. Front. Endocrinol. (Lausanne), 2013, 4, 49.
[http://dx.doi.org/10.3389/fendo.2013.00049] [PMID: 23626585]
[9]
Kühnen, P.; Krude, H.; Biebermann, H. Melanocortin-4 receptor signalling: importance for weight regulation and obesity treatment. Trends Mol. Med., 2019, 25(2), 136-148.
[http://dx.doi.org/10.1016/j.molmed.2018.12.002] [PMID: 30642682]
[10]
Levens, N.R.; Della-Zuana, O.; Neuropeptide, Y. Neuropeptide Y Y5 receptor antagonists as anti-obesity drugs. Curr. Opin. Investig. Drugs, 2003, 4(10), 1198-1204.
[PMID: 14649211]
[11]
Sharma, S.; Chattopadhyay, S.K.; Yadav, D.K.; Khan, F.; Mohanty, S.; Maurya, A.; Bawankule, D.U. QSAR, docking and in vitro studies for anti-inflammatory activity of cleomiscosin A methyl ether derivatives. Eur. J. Pharm. Sci., 2012, 47(5), 952-964.
[http://dx.doi.org/10.1016/j.ejps.2012.09.008] [PMID: 23022518]
[12]
Bray, G.A. A concise review on the therapeutics of obesity. Nutrition, 2000, 16(10), 953-960.
[http://dx.doi.org/10.1016/S0899-9007(00)00424-X] [PMID: 11054601]
[13]
Kadowaki, T.; Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev., 2005, 26(3), 439-451.
[http://dx.doi.org/10.1210/er.2005-0005] [PMID: 15897298]
[14]
Maurya, A.; Khan, F.; Bawankule, D.U.; Yadav, D.K.; Srivastava, S.K. QSAR, docking and in vivo studies for immunomodulatory activity of isolated triterpenoids from Eucalyptus tereticornis and Gentiana kurroo. Eur. J. Pharm. Sci., 2012, 47(1), 152-161.
[http://dx.doi.org/10.1016/j.ejps.2012.05.009] [PMID: 22659375]
[15]
Arch, J.R. The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from beta3-adrenoceptor agonists. Naunyn Schmiedebergs Arch. Pharmacol., 2008, 378(2), 225-240.
[http://dx.doi.org/10.1007/s00210-008-0271-1] [PMID: 18612674]
[16]
Xu, J.; Lloyd, D.J.; Hale, C.; Stanislaus, S.; Chen, M.; Sivits, G.; Vonderfecht, S.; Hecht, R.; Li, Y.S.; Lindberg, R.A.; Chen, J.L.; Jung, D.Y.; Zhang, Z.; Ko, H.J.; Kim, J.K.; Véniant, M.M. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes, 2009, 58(1), 250-259.
[http://dx.doi.org/10.2337/db08-0392] [PMID: 18840786]
[17]
Coskun, T.; Bina, H.A.; Schneider, M.A.; Dunbar, J.D.; Hu, C.C.; Chen, Y.; Moller, D.E.; Kharitonenkov, A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology, 2008, 149(12), 6018-6027.
[http://dx.doi.org/10.1210/en.2008-0816] [PMID: 18687777]
[18]
Sonoda, J.; Chen, M.Z.; Baruch, A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm. Mol. Biol. Clin. Investig., 2017, 30(2)
[http://dx.doi.org/10.1515/hmbci-2017-0002] [PMID: 28525362]
[19]
Meena, A.; Yadav, D.K.; Srivastava, A.; Khan, F.; Chanda, D.; Chattopadhyay, S.K. In silico exploration of anti-inflammatory activity of natural coumarinolignoids. Chem. Biol. Drug Des., 2011, 78(4), 567-579.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01173.x] [PMID: 21736704]
[20]
López-Ferreras, L.; Richard, J.E.; Noble, E.E.; Eerola, K.; Anderberg, R.H.; Olandersson, K.; Taing, L.; Kanoski, S.E.; Hayes, M.R.; Skibicka, K.P. Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight. Mol. Psychiatry, 2018, 23(5), 1157-1168.
[http://dx.doi.org/10.1038/mp.2017.187] [PMID: 28894301]
[21]
Vogel, H.; Wolf, S.; Rabasa, C.; Rodriguez-Pacheco, F.; Babaei, C.S.; Stober, F.; Goldschmidt, J.; DiMarchi, R.D.; Finan, B.; Tschop, M.H.; Dickson, S.L.; Schurmann, A.; Skibicka, K.P. GLP-1 and estrogen conjugate acts in the supramammillary nucleus to reduce food-reward and body weight. Neuropharmacology, 2016, 110(A), 396-406.
[22]
Neff, L.M.; Kushner, R.F. Emerging role of GLP-1 receptor agonists in the treatment of obesity. Diabetes Metab. Syndr. Obes., 2010, 3, 263-273.
[http://dx.doi.org/10.2147/DMSO.S6816] [PMID: 21437094]
[23]
Bellone, S.; Rapa, A.; Vivenza, D.; Castellino, N.; Petri, A.; Bellone, J.; Me, E.; Broglio, F.; Prodam, F.; Ghigo, E.; Bona, G. Circulating ghrelin levels as function of gender, pubertal status and adiposity in childhood. J. Endocrinol. Invest., 2002, 25(5), RC13-RC15.
[http://dx.doi.org/10.1007/BF03344026] [PMID: 12035950]
[24]
Álvarez-Castro, P.; Pena, L.; Cordido, F. Ghrelin in obesity, physiological and pharmacological considerations. Mini Rev. Med. Chem., 2013, 13(4), 541-552.
[http://dx.doi.org/10.2174/1389557511313040007] [PMID: 22931534]
[25]
Cummings, D.E. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav., 2006, 89(1), 71-84.
[http://dx.doi.org/10.1016/j.physbeh.2006.05.022] [PMID: 16859720]
[26]
Miller, L.J.; Desai, A.J. Metabolic Actions of the Type 1 Cholecystokinin receptor: its potential as a therapeutic target. Trends Endocrinol. Metab., 2016, 27(9), 609-619.
[http://dx.doi.org/10.1016/j.tem.2016.04.002] [PMID: 27156041]
[27]
Jordan, J.; Greenway, F.L.; Leiter, L.A.; Li, Z.; Jacobson, P.; Murphy, K.; Hill, J.; Kler, L.; Aftring, R.P. Stimulation of cholecystokinin-A receptors with GI181771X does not cause weight loss in overweight or obese patients. Clin. Pharmacol. Ther., 2008, 83(2), 281-287.
[http://dx.doi.org/10.1038/sj.clpt.6100272] [PMID: 17597711]
[28]
Joharapurkar, A.A.; Dhanesha, N.A.; Jain, M.R. Inhibition of the methionine aminopeptidase 2 enzyme for the treatment of obesity. Diabetes Metab. Syndr. Obes., 2014, 7, 73-84.
[http://dx.doi.org/10.2147/DMSO.S56924] [PMID: 24611021]
[29]
Mishra, P.; Mittal, A.K.; Kalonia, H.; Madan, S.; Ghosh, S.; Sinha, J.K.; Rajput, S.K. SIRT1 promotes neuronal fortification in neurodegenerative diseases through attenuation of pathological hallmarks and enhancement of cellular lifespan. Curr. Neuropharmacol., 2020, 19(7), 1019-1037.
[http://dx.doi.org/10.2174/1570159X18666200729111744] [PMID: 32727328]
[30]
Kurylowicz, A. In search of new therapeutic targets in obesity treatment: sirtuins. Int. J. Mol. Sci., 2016, 17(4), 572.
[http://dx.doi.org/10.3390/ijms17040572] [PMID: 27104517]
[31]
Villalba, J.M.; Alcaín, F.J.; Alcaín, F.J. Sirtuin activators and inhibitors. Biofactors, 2012, 38(5), 349-359.
[http://dx.doi.org/10.1002/biof.1032] [PMID: 22730114]
[32]
Stimson, R.H.; Walker, B.R. The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome. Horm. Mol. Biol. Clin. Investig., 2013, 15(2), 37-48.
[http://dx.doi.org/10.1515/hmbci-2013-0015] [PMID: 25436731]
[33]
Pereira, M.J.; Eriksson, J.W. Emerging role of sglt-2 inhibitors for the treatment of obesity. Drugs, 2019, 79(3), 219-230.
[http://dx.doi.org/10.1007/s40265-019-1057-0] [PMID: 30701480]
[34]
Hens, W.; Vissers, D.; Hansen, D.; Peeters, S.; Gielen, J.; Van Gaal, L.; Taeymans, J. The effect of diet or exercise on ectopic adiposity in children and adolescents with obesity: a systematic review and meta-analysis. Obes. Rev., 2017, 18(11), 1310-1322.
[http://dx.doi.org/10.1111/obr.12577] [PMID: 28913977]
[35]
Smethers, A.D.; Rolls, B.J. Dietary management of obesity: cornerstones of healthy eating patterns. Med. Clin. North Am., 2018, 102(1), 107-124.
[http://dx.doi.org/10.1016/j.mcna.2017.08.009] [PMID: 29156179]
[36]
Kim, B.Y.; Choi, D.H.; Jung, C.H.; Kang, S.K.; Mok, J.O.; Kim, C.H. Obesity and physical activity. J Obes Metab Syndr, 2017, 26(1), 15-22.
[http://dx.doi.org/10.7570/jomes.2017.26.1.15] [PMID: 31089489]
[37]
Wiklund, P. The role of physical activity and exercise in obesity and weight management: Time for critical appraisal. J. Sport Health Sci., 2016, 5(2), 151-154.
[http://dx.doi.org/10.1016/j.jshs.2016.04.001] [PMID: 30356545]
[38]
Arterburn, D.E.; Olsen, M.K.; Smith, V.A.; Livingston, E.H.; Van Scoyoc, L.; Yancy, W.S., Jr; Eid, G.; Weidenbacher, H.; Maciejewski, M.L. Association between bariatric surgery and long-term survival. JAMA, 2015, 313(1), 62-70.
[http://dx.doi.org/10.1001/jama.2014.16968] [PMID: 25562267]
[39]
Ghosh, S.; Durgvanshi, S.; Agarwal, S.; Raghunath, M.; Sinha, J.K. Current status of drug targets and emerging therapeutic strategies in the management of Alzheimer’s disease. Curr. Neuropharmacol., 2020, 18(9), 883-903.
[http://dx.doi.org/10.2174/1570159X18666200429011823] [PMID: 32348223]
[40]
Yoo, S.; Kim, K.; Nam, H.; Lee, D. Discovering health benefits of phytochemicals with integrated analysis of the molecular network, chemical properties and ethnopharmacological evidence. Nutrients, 2018, 10(8), E1042.
[http://dx.doi.org/10.3390/nu10081042] [PMID: 30096807]
[41]
de Freitas Junior, L.M.; de Almeida, E.B., Jr Medicinal plants for the treatment of obesity: ethnopharmacological approach and chemical and biological studies. Am. J. Transl. Res., 2017, 9(5), 2050-2064.
[PMID: 28559960]
[42]
Rioux, J.; Howerter, A. Outcomes from a whole-systems ayurvedic medicine and yoga therapy treatment for obesity pilot study. J. Altern. Complement. Med., 2019, 25(S1), S124-S137.
[http://dx.doi.org/10.1089/acm.2018.0448] [PMID: 30870013]
[43]
Li, Y.; Huang, T.H.; Yamahara, J. Salacia root, a unique Ayurvedic medicine, meets multiple targets in diabetes and obesity. Life Sci., 2008, 82(21-22), 1045-1049.
[http://dx.doi.org/10.1016/j.lfs.2008.03.005] [PMID: 18433791]
[44]
Payab, M.; Hasani-Ranjbar, S.; Shahbal, N.; Qorbani, M.; Aletaha, A.; Haghi-Aminjan, H.; Soltani, A.; Khatami, F.; Nikfar, S.; Hassani, S.; Abdollahi, M.; Larijani, B. Effect of the herbal medicines in obesity and metabolic syndrome: A systematic review and meta-analysis of clinical trials. Phytother. Res., 2020, 34(3), 526-545.
[http://dx.doi.org/10.1002/ptr.6547] [PMID: 31793087]
[45]
Sun, N.N.; Wu, T.Y.; Chau, C.F. Natural dietary and herbal products in anti-obesity treatment. Molecules, 2016, 21(10), E1351.
[http://dx.doi.org/10.3390/molecules21101351] [PMID: 27727194]
[46]
Huang, J.; Wang, Y.; Xie, Z.; Zhou, Y.; Zhang, Y.; Wan, X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur. J. Clin. Nutr., 2014, 68(10), 1075-1087.
[http://dx.doi.org/10.1038/ejcn.2014.143] [PMID: 25074392]
[47]
Ebrahimzadeh Attari, V.; Malek Mahdavi, A.; Javadivala, Z.; Mahluji, S.; Zununi Vahed, S.; Ostadrahimi, A. A systematic review of the anti-obesity and weight lowering effect of ginger (Zingiber officinale Roscoe) and its mechanisms of action. Phytother. Res., 2018, 32(4), 577-585.
[http://dx.doi.org/10.1002/ptr.5986] [PMID: 29193411]
[48]
Zhao, Y.; Chen, B.; Shen, J.; Wan, L.; Zhu, Y.; Yi, T.; Xiao, Z. The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxid. Med. Cell. Longev., 2017, 2017, 1459497.
[http://dx.doi.org/10.1155/2017/1459497] [PMID: 29138673]
[49]
Lee, S.; Keirsey, K.I.; Kirkland, R.; Grunewald, Z.I.; Fischer, J.G.; de La Serre, C.B. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. J. Nutr., 2018, 148(2), 209-219.
[http://dx.doi.org/10.1093/jn/nxx027] [PMID: 29490092]
[50]
Lee, A.; Lim, W.; Kim, S.; Khil, H.; Cheon, E.; An, S.; Hong, S.; Lee, D.H.; Kang, S.S.; Oh, H.; Keum, N.; Hsieh, C.C. Coffee intake and obesity: a meta-analysis. Nutrients, 2019, 11(6), E1274.
[http://dx.doi.org/10.3390/nu11061274] [PMID: 31195610]
[51]
Du, H.; You, J.S.; Zhao, X.; Park, J.Y.; Kim, S.H.; Chang, K.J. Antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in rats fed a high fat diet. J. Biomed. Sci., 2010, 17(Suppl. 1), S42.
[http://dx.doi.org/10.1186/1423-0127-17-S1-S42] [PMID: 20804619]
[52]
Ojulari, O.V.; Lee, S.G.; Nam, J.O. Beneficial effects of natural bioactive compounds from hibiscus sabdariffa l. on obesity. Molecules, 2019, 24(1), E210.
[http://dx.doi.org/10.3390/molecules24010210] [PMID: 30626104]
[53]
Gupte, P.; Harke, S.; Deo, V.; Bhushan Shrikhande, B.; Mahajan, M.; Bhalerao, S. A clinical study to evaluate the efficacy of Herbal Formulation for Obesity (HFO-02) in overweight individuals. J. Ayurveda Integr. Med., 2020, 11(2), 159-162.
[http://dx.doi.org/10.1016/j.jaim.2019.05.003] [PMID: 31474325]
[54]
Amin, T.; Mercer, J.G. Hunger and satiety mechanisms and their potential exploitation in the regulation of food intake. Curr. Obes. Rep., 2016, 5(1), 106-112.
[http://dx.doi.org/10.1007/s13679-015-0184-5] [PMID: 26762623]
[55]
Ghosh, S.; Sinha, J.K.; Raghunath, M. ‘Obesageing’: Linking obesity & ageing. Indian J. Med. Res., 2019, 149(5), 610-615.
[http://dx.doi.org/10.4103/ijmr.IJMR_2120_18] [PMID: 31417028]
[56]
Sinha, J.K.; Ghosh, S.; Swain, U.; Giridharan, N.V.; Raghunath, M. Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. Neuroscience, 2014, 269, 256-264.
[http://dx.doi.org/10.1016/j.neuroscience.2014.03.040] [PMID: 24709042]
[57]
Belza, A.; Frandsen, E.; Kondrup, J. Body fat loss achieved by stimulation of thermogenesis by a combination of bioactive food ingredients: a placebo-controlled, double-blind 8-week intervention in obese subjects. Int. J. Obes., 2007, 31(1), 121-130.
[http://dx.doi.org/10.1038/sj.ijo.0803351] [PMID: 16652130]
[58]
Ghosh, S.; Sinha, J.K.; Raghunath, M. Epigenomic maintenance through dietary intervention can facilitate DNA repair process to slow down the progress of premature aging. IUBMB Life, 2016, 68(9), 717-721.
[http://dx.doi.org/10.1002/iub.1532] [PMID: 27364681]
[59]
Spadafranca, A.; Rinelli, S.; Riva, A.; Morazzoni, P.; Magni, P.; Bertoli, S.; Battezzati, A. Phaseolus vulgaris extract affects glycometabolic and appetite control in healthy human subjects. Br. J. Nutr., 2013, 109(10), 1789-1795.
[http://dx.doi.org/10.1017/S0007114512003741] [PMID: 23046862]
[60]
Stenblom, E.L.; Egecioglu, E.; Landin-Olsson, M.; Erlanson-Albertsson, C. Consumption of thylakoid-rich spinach extract reduces hunger, increases satiety and reduces cravings for palatable food in overweight women. Appetite, 2015, 91, 209-219.
[http://dx.doi.org/10.1016/j.appet.2015.04.051] [PMID: 25895695]
[61]
Ibrügger, S.; Kristensen, M.; Mikkelsen, M.S.; Astrup, A. Flaxseed dietary fiber supplements for suppression of appetite and food intake. Appetite, 2012, 58(2), 490-495.
[http://dx.doi.org/10.1016/j.appet.2011.12.024] [PMID: 22245724]
[62]
Preuss, H.G.; Rao, C.V.; Garis, R.; Bramble, J.D.; Ohia, S.E.; Bagchi, M.; Bagchi, D. An overview of the safety and efficacy of a novel, natural(-)-hydroxycitric acid extract (HCA-SX) for weight management. J. Med., 2004, 35(1-6), 33-48.
[PMID: 18084863]
[63]
Roshan, H.; Nikpayam, O.; Sedaghat, M.; Sohrab, G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial. Br. J. Nutr., 2018, 119(3), 250-258.
[http://dx.doi.org/10.1017/S0007114517003439] [PMID: 29307310]
[64]
Kuriyan, R.; Raj, T.; Srinivas, S.K.; Vaz, M.; Rajendran, R.; Kurpad, A.V. Effect of Caralluma fimbriata extract on appetite, food intake and anthropometry in adult Indian men and women. Appetite, 2007, 48(3), 338-344.
[http://dx.doi.org/10.1016/j.appet.2006.09.013] [PMID: 17097761]
[65]
Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy balance and obesity. Circulation, 2012, 126(1), 126-132.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.087213] [PMID: 22753534]
[66]
Szczygielska, A.; Widomska, S.; Jaraszkiewicz, M.; Knera, P.; Muc, K. Blood lipids profile in obese or overweight patients. Ann. Univ. Mariae Curie Sklodowska Med., 2003, 58(2), 343-349.
[PMID: 15323217]
[67]
Moro, C.O.; Basile, G. Obesity and medicinal plants. Fitoterapia, 2000, 71(Suppl. 1), S73-S82.
[http://dx.doi.org/10.1016/S0367-326X(00)00177-5] [PMID: 10930716]
[68]
Saxena, S.; Katare, C. Evaluation of flaxseed formulation as a potential therapeutic agent in mitigation of dyslipidemia. Biomed. J., 2014, 37(6), 386-390.
[http://dx.doi.org/10.4103/2319-4170.126447] [PMID: 25163498]
[69]
Hsu, C.H.; Tsai, T.H.; Kao, Y.H.; Hwang, K.C.; Tseng, T.Y.; Chou, P. Effect of green tea extract on obese women: a randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr., 2008, 27(3), 363-370.
[http://dx.doi.org/10.1016/j.clnu.2008.03.007] [PMID: 18468736]
[70]
Chu, S.L.; Fu, H.; Yang, J.X.; Liu, G.X.; Dou, P.; Zhang, L.; Tu, P.F.; Wang, X.M. A randomized double-blind placebo-controlled study of Pu’er tea extract on the regulation of metabolic syndrome. Chin. J. Integr. Med., 2011, 17(7), 492-498.
[http://dx.doi.org/10.1007/s11655-011-0781-4] [PMID: 21725873]
[71]
Kuriyan, R.; Kumar, D.R.; R, R.; Kurpad, A.V. An evaluation of the hypolipidemic effect of an extract of Hibiscus Sabdariffa leaves in hyperlipidemic Indians: a double blind, placebo controlled trial. BMC Complement. Altern. Med., 2010, 10, 27.
[http://dx.doi.org/10.1186/1472-6882-10-27] [PMID: 20553629]
[72]
Ross, S.M. African mango (IGOB131): a proprietary seed extract of Irvingia gabonensis is found to be effective in reducing body weight and improving metabolic parameters in overweight humans. Holist. Nurs. Pract., 2011, 25(4), 215-217.
[http://dx.doi.org/10.1097/HNP.0b013e318222735a] [PMID: 21697664]
[73]
Ibrahim, R.M.; Hamdan, N.S.; Mahmud, R.; Imam, M.U.; Saini, S.M.; Rashid, S.N.; Abd Ghafar, S.A.; Latiff, L.A.; Ismail, M. A randomised controlled trial on hypolipidemic effects of Nigella Sativa seeds powder in menopausal women. J. Transl. Med., 2014, 12, 82.
[http://dx.doi.org/10.1186/1479-5876-12-82] [PMID: 24685020]
[74]
Baxheinrich, A.; Stratmann, B.; Lee-Barkey, Y.H.; Tschoepe, D.; Wahrburg, U. Effects of a rapeseed oil-enriched hypoenergetic diet with a high content of α-linolenic acid on body weight and cardiovascular risk profile in patients with the metabolic syndrome. Br. J. Nutr., 2012, 108(4), 682-691.
[http://dx.doi.org/10.1017/S0007114512002875] [PMID: 22894911]
[75]
Ahn, J.H.; Kim, E.S.; Lee, C.; Kim, S.; Cho, S.H.; Hwang, B.Y.; Lee, M.K. Chemical constituents from Nelumbo nucifera leaves and their anti-obesity effects. Bioorg. Med. Chem. Lett., 2013, 23(12), 3604-3608.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.013] [PMID: 23642481]
[76]
Rani, N.; Sharma, S.K.; Vasudeva, N. Assessment of antiobesity potential of achyranthes aspera linn. seed. Evidence-based complementary and alternative medicine : eCAM, 2012, 2012, 715912.
[77]
Onakpoya, I.; Hung, S.K.; Perry, R.; Wider, B.; Ernst, E. The use of garcinia extract (hydroxycitric acid) as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. J. Obes., 2011, 2011, 509038.
[http://dx.doi.org/10.1155/2011/509038] [PMID: 21197150]
[78]
Espiña, D.C.; Carvalho, F.B.; Zanini, D.; Schlemmer, J.B.; Coracini, J.D.; Rubin, M.A.; Morsch, V.M.; Schetinger, M.R.; Leal, D.B.; Baiotto, C.R.; Jaques, J.A. A more accurate profile of Achyrocline satureioides hypocholesterolemic activity. Cell Biochem. Funct., 2012, 30(4), 347-353.
[http://dx.doi.org/10.1002/cbf.2812] [PMID: 22359364]
[79]
Jung, U.J.; Baek, N.I.; Chung, H.G.; Jeong, T.S.; Lee, K.T.; Lee, M.K.; Choi, M.S. Antilipogenic and hypolipidemic effects of ethanol extracts from two variants of Artemisia princeps Pampanini in obese diabetic mice. J. Med. Food, 2009, 12(6), 1238-1244.
[http://dx.doi.org/10.1089/jmf.2009.0039] [PMID: 20041776]
[80]
Shin, H.C.; Kim, S.H.; Park, Y.; Lee, B.H.; Hwang, H.J. Effects of 12-week oral supplementation of Ecklonia cava polyphenols on anthropometric and blood lipid parameters in overweight Korean individuals: a double-blind randomized clinical trial. Phytother. Res., 2012, 26(3), 363-368.
[http://dx.doi.org/10.1002/ptr.3559] [PMID: 21717516]
[81]
Karmase, A.; Birari, R.; Bhutani, K.K. Evaluation of anti-obesity effect of Aegle marmelos leaves. Phytomedicine, 2013, 20(10), 805-812.
[http://dx.doi.org/10.1016/j.phymed.2013.03.014] [PMID: 23632084]
[82]
Balsan, G.; Pellanda, L.C.; Sausen, G.; Galarraga, T.; Zaffari, D.; Pontin, B.; Portal, V.L. Effect of yerba mate and green tea on paraoxonase and leptin levels in patients affected by overweight or obesity and dyslipidemia: a randomized clinical trial. Nutr. J., 2019, 18(1), 5.
[http://dx.doi.org/10.1186/s12937-018-0426-y] [PMID: 30660196]
[83]
Barbalho, S.M.; Soares de Souza, Mda.S.; dos Santos Bueno, P.C.; Guiguer, E.L.; Farinazzi-Machado, F.M.; Araújo, A.C.; Meneguim, C.O.; Pascoal Silveira, E.; de Souza Oliveira, N.; da Silva, B.C.; Barbosa, Sda.S.; Mendes, C.G.; Gonçalves, P.R. Annona montana fruit and leaves improve the glycemic and lipid profiles of Wistar rats. J. Med. Food, 2012, 15(10), 917-922.
[http://dx.doi.org/10.1089/jmf.2012.0088] [PMID: 22856324]
[84]
Stern, J.S.; Peerson, J.; Mishra, A.T.; Mathukumalli, V.S.; Konda, P.R. Efficacy and tolerability of an herbal formulation for weight management. J. Med. Food, 2013, 16(6), 529-537.
[http://dx.doi.org/10.1089/jmf.2012.0178] [PMID: 23767862]
[85]
Choi, H.; Eo, H.; Park, K.; Jin, M.; Park, E.J.; Kim, S.H.; Park, J.E.; Kim, S. A water-soluble extract from Cucurbita moschata shows anti-obesity effects by controlling lipid metabolism in a high fat diet-induced obesity mouse model. Biochem. Biophys. Res. Commun., 2007, 359(3), 419-425.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.107] [PMID: 17548058]
[86]
Duncan, R.E.; Ahmadian, M.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H.S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr., 2007, 27, 79-101.
[http://dx.doi.org/10.1146/annurev.nutr.27.061406.093734] [PMID: 17313320]
[87]
Klop, B.; Elte, J.W.; Cabezas, M.C. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients, 2013, 5(4), 1218-1240.
[http://dx.doi.org/10.3390/nu5041218] [PMID: 23584084]
[88]
Bordicchia, M.; Pocognoli, A.; D’Anzeo, M.; Siquini, W.; Minardi, D.; Muzzonigro, G.; Dessì-Fulgheri, P.; Sarzani, R. Nebivolol induces, via β3 adrenergic receptor, lipolysis, uncoupling protein 1, and reduction of lipid droplet size in human adipocytes. J. Hypertens., 2014, 32(2), 389-396.
[http://dx.doi.org/10.1097/HJH.0000000000000024] [PMID: 24256707]
[89]
Kola, B.; Grossman, A.B.; Korbonits, M. The role of AMP-activated protein kinase in obesity. Front. Horm. Res., 2008, 36, 198-211.
[http://dx.doi.org/10.1159/000115366] [PMID: 18230904]
[90]
Samuels, J.S.; Shashidharamurthy, R.; Rayalam, S. Novel anti-obesity effects of beer hops compound xanthohumol: role of AMPK signaling pathway. Nutr. Metab. (Lond.), 2018, 15, 42.
[http://dx.doi.org/10.1186/s12986-018-0277-8] [PMID: 29946343]
[91]
Cao, H. Adipocytokines in obesity and metabolic disease. J. Endocrinol., 2014, 220(2), T47-T59.
[http://dx.doi.org/10.1530/JOE-13-0339] [PMID: 24403378]
[92]
Castillo, F.; González, D.R.; Moore-Carrasco, R. Effects of phaseolus vulgaris extract on lipolytic activity and differentiation of 3t3-l1 preadipocytes into mature adipocytes: a strategy to prevent obesity. J. Nutr. Metab., 2019, 2019, 5093654.
[http://dx.doi.org/10.1155/2019/5093654] [PMID: 31183217]
[93]
Ngondi, J.L.; Etoundi, B.C.; Nyangono, C.B.; Mbofung, C.M.; Oben, J.E. IGOB131, a novel seed extract of the West African plant Irvingia gabonensis, significantly reduces body weight and improves metabolic parameters in overweight humans in a randomized double-blind placebo controlled investigation. Lipids Health Dis., 2009, 8, 7.
[http://dx.doi.org/10.1186/1476-511X-8-7] [PMID: 19254366]
[94]
Hackman, R.M.; Havel, P.J.; Schwartz, H.J.; Rutledge, J.C.; Watnik, M.R.; Noceti, E.M.; Stohs, S.J.; Stern, J.S.; Keen, C.L. Multinutrient supplement containing ephedra and caffeine causes weight loss and improves metabolic risk factors in obese women: a randomized controlled trial. Int. J. Obes., 2006, 30(10), 1545-1556.
[http://dx.doi.org/10.1038/sj.ijo.0803283] [PMID: 16552410]
[95]
Zhou, Q.; Chang, B.; Chen, X.Y.; Zhou, S.P.; Zhen, Z.; Zhang, L.L.; Sun, X.; Zhou, Y.; Xie, W.Q.; Liu, H.F.; Xu, Y.; Kong, Y.; Zhou, L.B.; Lian, F.M.; Tong, X.L. Chinese herbal medicine for obesity: a randomized, double-blinded, multicenter, prospective trial. Am. J. Chin. Med., 2014, 42(6), 1345-1356.
[http://dx.doi.org/10.1142/S0192415X14500840] [PMID: 25406653]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy