Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis of Some Novel Benzimidazole Derivatives as Anticancer Agent and Evaluation for CDK2 Inhibition Activity

Author(s): Rania Helmy Abd El-Hameed, Samar Said Fatahala* and Amira Ibrahim Sayed

Volume 18, Issue 2, 2022

Published on: 04 March, 2021

Page: [238 - 248] Pages: 11

DOI: 10.2174/1573406417666210304100830

Price: $65

Abstract

Background: Thiobezimidazoles reveal various pharmacological activities due to similarities with many natural and synthetic molecules; they can easily interact with biomolecules of living systems.

Objective: A series of substituted 2-thiobezimidazoles have been synthesized. Twelve final compounds were screened for in vitro anti-cancer activities against sixty different cell lines.

Methods: The spectral data of the synthesized compounds were characterized. A docking study for active anticancer compounds and CDK2/CyclinA2 Kinase assay against standard reference; Imatinib, were performed.

Results: Two compounds (3c&3l) from the examined series revealed effective antitumor activity in vitro against two-cancer cell lines (Colon Cancer (HCT-116) and Renal Cancer (TK-10). The docking study of synthesized molecules discovered a requisite binding pose in the CDK-ATP binding pocket .3c &3l were promoted in the CDK2/CyclinA2 Kinase assay against standard reference Imatinib.

Conclusion: Against all tested compounds; two compounds 3c &3l were found active against two types of cell-lines.

Keywords: Anti-cancer, Synthesis, 2-thiobenzimidazoles, spectroscopic analysis, docking, CDK2 assay.

Graphical Abstract

[1]
Azad, I.; Nasibullah, M.; Khan, T.; Hassan, F.; Akhter, Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J. Mol. Graph. Model., 2018, 81, 211-228.
[http://dx.doi.org/10.1016/j.jmgm.2018.02.013] [PMID: 29609141]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
Singla, P.; Luxami, V.; Paul, K. Benzimidazole-biologically attractive scaffold for protein kinase inhibitors. RSC Advances, 2014, 4, 12422-12440.
[http://dx.doi.org/10.1039/c3ra46304d]
[4]
Liang, J.W.; Wang, M.Y.; Wang, S.; Li, S.L.; Li, W.Q.; Meng, F.H. Identification of novel CDK2 inhibitors by a multistage virtual screening method based on SVM, pharmacophore and docking model. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 235-244.
[http://dx.doi.org/10.1080/14756366.2019.1693702] [PMID: 31760818]
[5]
Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122.
[http://dx.doi.org/10.1186/gb4184] [PMID: 25180339]
[6]
Tanaka, S.; Tak, Y-S.; Araki, H. The role of CDK in the initiation step of DNA replication in eukaryotes. Cell Div., 2007, 2(16), 16.
[http://dx.doi.org/10.1186/1747-1028-2-16] [PMID: 17547773]
[7]
Arisan, E.D.; Obakan, P.; Coker-Gürkan, A.; Calcabrini, A.; Agostinelli, E.; Unsal, N.P. CDK inhibitors induce mitochondria-mediated apoptosis through the activation of polyamine catabolic pathway in LNCaP, DU145 and PC3 prostate cancer cells. Curr. Pharm. Des., 2014, 20(2), 180-188.
[http://dx.doi.org/10.2174/13816128113199990029] [PMID: 23701543]
[8]
Singh, M.; Kaur, M.; Silakari, O. Flavones: an important scaffold for medicinal chemistry. Eur. J. Med. Chem., 2014, 84, 206-239.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.013] [PMID: 25019478]
[9]
Kim, Y-J.; Kwon, S.H.; Bae, I.H.; Kim, B.M. Selectivity between N-1 and N-7 nucleosides: regioselective synthesis of BMK-Y101, a potent cdk7 and 9 inhibitor. Tetrahedron Lett., 2013, 54(40), 5484-5488.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.132]
[10]
Whittaker, S.R.; Mallinger, A.; Workman, P.; Clarke, P.A. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol. Ther., 2017, 173, 83-105.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.008] [PMID: 28174091]
[11]
Lane, M.E.; Yu, B.; Rice, A.; Lipson, K.E.; Liang, C.; Sun, L.; Tang, C.; McMahon, G.; Pestell, R.G.; Wadler, S. A novel cdk2-selective inhibitor, SU9516, induces apoptosis in colon carcinoma cells. Cancer Res., 2001, 61(16), 6170-6177.
[PMID: 11507069]
[12]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[13]
Tutone, M.; Almerico, A.M. Recent advances on CDK inhibitors: An insight by means of in silico methods. Eur. J. Med. Chem., 2017, 142, 300-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.067] [PMID: 28802482]
[14]
Hsieh, C-Y.; Ko, P-W.; Chang, Y-J.; Kapoor, M.; Liang, Y-C.; Lin, H.H.; Horng, J.C.; Hsu, M.H.; Ming-Hu, H. Design and Synthesis of Benzimidazole-Chalcone Derivatives as Potential Anticancer Agents. Molecules, 2019, 24(18), 3259-3275.
[http://dx.doi.org/10.3390/molecules24183259] [PMID: 31500191]
[15]
Nguyen Tien, C.; Tran Thi Cam, D.; Bui Manh, H.; Nguyen Dang, D. Synthesis and Antibacterial Activity of Some Derivatives of 2-Methylbenzimidazole Containing 1,3,4-Oxadiazole or 1,2,4-Triazole Heterocycle. J. Chem., 2016, 2016, 6.
[16]
Arkenau, H.T.; Plummer, R.; Molife, L.R.; Olmos, D.; Yap, T.A.; Squires, M.; Lewis, S.; Lock, V.; Yule, M.; Lyons, J.; Calvert, H.; Judson, I. A phase I dose escalation study of AT9283, a small molecule inhibitor of aurora kinases, in patients with advanced solid malignancies. Ann. Oncol., 2012, 23(5), 1307-1313.
[http://dx.doi.org/10.1093/annonc/mdr451] [PMID: 22015452]
[17]
Zhong, W.; Lalovic, B.; Zhan, J. AG-024322, a novel cyclin-dependent kinase (CDK) inhibitor. Health (Irvine Calif.), 2009, 1(4), 249-262.
[http://dx.doi.org/10.4236/health.2009.14041]
[18]
Sonawane, Y.A.; Taylor, M.A.; Napoleon, J.V.; Rana, S.; Contreras, J.I.; Natarajan, A. Cyclin dependent kinase 9 inhibitors for cancer therapy. J. Med. Chem., 2016, 59(19), 8667-8684.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00150] [PMID: 27171036]
[19]
Naraboli, B.S.; Biradar, J.S. Design and synthesis of benzodiazepines bearing benzimidazole/benzothiazole and indole moieties as a potent antimicrobial and antioxidant agents. Asian J. Pharm. Clin. Res., 2018, 11(1), 70-77.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.21947]
[20]
Heralagi, R.V.; Jayaveera, K.N.; Shivkumar, B.; June, A. Synthesis of some novel bis type 2-mercapto benzimidazole derivatives. Res. J. Pharm. Biol. Chem. Sci. RJPBCS, 2012, 3(2), 407-414.
[21]
Zainab, A.K. Synthesis of Some New 1, 2, 4-Triazoles. Um-salama Sci. J.,, 2009, 6(1), 200-208.
[22]
Baell, J.; Walters, M.A. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513(7519), 481-483.
[http://dx.doi.org/10.1038/513481a] [PMID: 25254460]
[23]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124]
[24]
NCI website. Available from: . http://www.dtp.nci.nih.gov
[26]
Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol., 2010, 14(3), 347-361.
[http://dx.doi.org/10.1016/j.cbpa.2010.02.018] [PMID: 20303320]
[27]
Hübbers, A.; Hennings, J.; Lambertz, D.; Haas, U.; Trautwein, C.; Nevzorova, Y.A.; Sonntag, R.; Liedtke, C. Pharmacological Inhibition of Cyclin-Dependent Kinases Triggers Anti-Fibrotic Effects in Hepatic Stellate Cells In Vitro. Int. J. Mol. Sci., 2020, 21(9), 3267-3288.
[http://dx.doi.org/10.3390/ijms21093267] [PMID: 32380742]
[28]
Sausville, E.A.; Johnson, J.I. Molecules for the millennium: How will they look? New drug discovery year 2000. Br. J. Cancer, 2000, 83(11), 1401-1404.
[http://dx.doi.org/10.1054/bjoc.2000.1473] [PMID: 11076644]
[29]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823.
[http://dx.doi.org/10.1038/nrc1951] [PMID: 16990858]
[30]
Zegzouti, H.; Vidugiriene, J.; Goueli, S.A. CDK2/CyclinA2 Kinase Assay; Promega Corporation, 2014.
[31]
Molecular Operating Environment (MOE),. 2014.
[32]
Felisaz, F.; Rodriguez-puente, S.; Mariaule, V.; Murphy, P.; Ma, A. Automated harvesting and processing of protein crystals through laser photoablation research papers. Acta Crystallogr., 2016, D72, 454-466.
[33]
Katke, S.A.; Amrutkar, S.V.; Bhor, R.J.; Khairnar, M.V. Synthesis of biologically active 2-chloro-N-alkyl/aryl acetamide derivatives. Int. J. Pharm. Sci. Res., 2011, 2(7), 148-156.
[34]
Mohamed, K.O.; Nissan, Y.M.; El-Malah, A.A.; Ahmed, W.A.; Ibrahim, D.M.; Sakr, T.M.; Motaleb, M.A. Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptosis inducers. Eur. J. Med. Chem., 2017, 135, 424-433.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.069] [PMID: 28463785]
[35]
Li, Y.; Gao, W.; Li, F.; Wang, J.; Zhang, J.; Yang, Y.; Zhang, S.; Yang, L. An in silico exploration of the interaction mechanism of pyrazolo[1,5-a]pyrimidine type CDK2 inhibitors. Mol. Biosyst., 2013, 9(9), 2266-2281.
[http://dx.doi.org/10.1039/c3mb70186g] [PMID: 23864105]
[36]
Ibrahim, D.A.; El-Metwally, A.M. Design, synthesis, and biological evaluation of novel pyrimidine derivatives as CDK2 inhibitors. Eur. J. Med. Chem., 2010, 45(3), 1158-1166.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.026] [PMID: 20045222]
[37]
Iram, H.; Iram, F.; Husain, A. A Review on Imatinib : A wonder drug in Oncology. Adv. Biomed. Pharma., 2016, 3(4), 227-244.
[http://dx.doi.org/10.19046/abp.v03i04.07]
[38]
Kang, Y.; Hodges, A.; Ong, E.; Roberts, W.; Piermarocchi, C.; Paternostro, G. Identification of drug combinations containing imatinib for treatment of BCR-ABL+ leukemias. PLoS One, 2014, 9(7)e102221
[http://dx.doi.org/10.1371/journal.pone.0102221] [PMID: 25029499]
[39]
Lupino, E.; Ramondetti, C.; Buccinnà, B.; Piccinini, M. Exposure of neuroblastoma cell lines to imatinib results in the upregulation of the CDK inhibitor p27(KIP1) as a consequence of c-Abl inhibition. Biochem. Pharmacol., 2014, 92(2), 235-250.
[http://dx.doi.org/10.1016/j.bcp.2014.09.016] [PMID: 25264277]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy