Abstract
COVID-19 outbreak has hit the world worst at the start of 2020, as of December 11, 2020, more than 1.5 million people have died and more than 68.8 million people have been infected globally. SARS-CoV-2 induces mild to severe progressive respiratory pneumonia, leading to failure of different body organs and ultimately death. Hitherto, there are no specific and potential therapeutic agents available against the virus. The spike protein is a type I surface glycoprotein facilitating entry of the virus into the host cell via hACE2 receptors. The two subunits of the spike protein have a polybasic link as cleavage site (PRAR) in SARS-CoV-2, with an additional attachment of O-linked glycans. SARS-CoV and SARS-CoV-2 have 76.5% similarity in amino acid sequences. The pathogenesis and viral entry of SARS-CoV-2 are different from SARS-CoV, therefore, it is a dire need of time to develop a target-based treatment. Alternative strategies and multidisciplinary research approaches are crucial for developing new antiviral and improved therapies against COVID-19. Nanotechnology has opened new horizons for evaluating the biological properties and efficacy of different materials having a biological origin, such as Nigella sativa. It contains various active components such as thymoquinone, thymol, thymohydroquinone, and dithymoquinone with different biological potentials. Metallic nanomaterials have been reported to exhibit antiviral activities against various strains. Understanding molecular interactions and modifying the surface properties of nanomaterials with optimum activity may result in the development of novel antiviral therapies.
Keywords: SARS-CoV-2, COVID-19, spike proteins, hACE2 receptors, nanoparticles, nanotechnology, biological interactions.
Graphical Abstract