Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis of Heterocyclic Compounds through Multicomponent Reactions Using 6-Aminouracil as Starting Reagent

Author(s): Ghodsi Mohammadi Ziarani*, Marzieh Rad, Fatemeh Mohajer, Hitesh Sehrawat and Ravi Tomar*

Volume 25, Issue 9, 2021

Published on: 03 March, 2021

Page: [1070 - 1095] Pages: 26

DOI: 10.2174/1385272825666210303112858

Price: $65

Abstract

The analogs of 6-Amino uracil are essential components due to their biological activities. The uracil is used as an important component for the synthesis of heterocyclic compounds like pyrrolo-, pyrido-, pyrimidine-pyrimido scaffolds. Herein, the application of this compound is reviewed as a precursor in the synthesis of many heterocyclic cores from 2016 to 2020.

Keywords: 6-Amino uracil, pyrimidine derivatives, fused spirooxindole, multicomponent reaction, heterocyclic compounds, biological activities.

Graphical Abstract

[1]
Patrick, G. Quantitative structure-activity relationships. In: An Introduction to Medicinal Chemistry, 2nd ed; Oxford University Press: New York, 2001, pp. 258-288.
[2]
Fathalla, M.; Lawrence, C.M.; Zhang, N.; Sessler, J.L.; Jayawickramarajah, J. Base-pairing mediated non-covalent polymers. Chem. Soc. Rev., 2009, 38(6), 1608-1620.
[http://dx.doi.org/10.1039/b806484a] [PMID: 19587956]
[3]
Garrett, R.H.; Grisham, C.M. Principles of Biochemistry: With a Human Focus; Brooks/Cole Publishing Company, 2001.
[4]
Mohammadi Ziarani, G.; Mohajer, F.; Kheilkordi, Z. Recent progress towards synthesis of the indolizidine alkaloid 195B. Curr. Org. Synth., 2020, 17(2), 82-90.
[http://dx.doi.org/10.2174/1570179417666200124104010] [PMID: 31976841]
[5]
Mohajer, F.; Mohammadi Ziarani, G.; Moradi, R. (±)-209I and (±)-209B as natural alkaloids. Curr. Org. Chem., 2020, 24(5), 516-535.
[http://dx.doi.org/10.2174/1385272824666200226113022]
[6]
Brahmachari, G.; Begam, S.; Nurjamal, K. Sulfamic acid-catalyzed one-pot synthesis of a new series of biologically relevant indole-uracil molecular hybrids in water at room temperature. ChemistrySelect, 2018, 3(12), 3400-3405.
[http://dx.doi.org/10.1002/slct.201800488]
[7]
Pałasz, A.; Cież, D. In search of uracil derivatives as bioactive agents. Uracils and fused uracils: synthesis, biological activity and applications. Eur. J. Med. Chem., 2015, 97, 582-611.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.008] [PMID: 25306174]
[8]
Evdokimov, N.M.; Van Slambrouck, S.; Heffeter, P.; Tu, L.; Le Calvé, B.; Lamoral-Theys, D.; Hooten, C.J.; Uglinskii, P.Y.; Rogelj, S.; Kiss, R.; Steelant, W.F.; Berger, W.; Yang, J.J.; Bologa, C.G.; Kornienko, A.; Magedov, I.V. Structural simplification of bioactive natural products with multicomponent synthesis. 3. Fused uracil-containing heterocycles as novel topoisomerase-targeting agents. J. Med. Chem., 2011, 54(7), 2012-2021.
[http://dx.doi.org/10.1021/jm1009428] [PMID: 21388138]
[9]
Gupta, R.; Kumar, G.; Kumar, R.S. An update on cyclic nucleotide phosphodiesterase (PDE) inhibitors: phosphodiesterases and drug selectivity. Methods Find. Exp. Clin. Pharmacol., 2005, 27(2), 101-118.
[http://dx.doi.org/10.1358/mf.2005.27.2.876285] [PMID: 15834463]
[10]
Müller, C.E.; Shi, D.; Manning, M., Jr; Daly, J.W. Synthesis of paraxanthine analogs (1,7-disubstituted xanthines) and other xanthines unsubstituted at the 3-position: structure-activity relationships at adenosine receptors. J. Med. Chem., 1993, 36(22), 3341-3349.
[http://dx.doi.org/10.1021/jm00074a015] [PMID: 8230124]
[11]
Wang, H.; Wang, C.; Bannister, T.D. Preparation of tetrasubstituted pyrimido[4,5-d]pyrimidine diones. Tetrahedron Lett., 2015, 56(15), 1949-4952.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.051] [PMID: 27087706]
[12]
Iadonato, S.P.; Bedard, K.; Imanaka, M.W.; Fowler, K.W. Antiviral compounds.Australian Patent AU2017254812B2, November 16, 2017.
[13]
Delia, T.; Baumann, M.; Bunker, A. Fused pyrimidines. V: Pyrimido [4,5-d] pyrimidine analogues of folic acid. Heterocycles, 1993, 35(2), 1397-1409.
[http://dx.doi.org/10.3987/COM-93-S(T)144]
[14]
Emmadi, N.R.; Atmakur, K.; Bingi, C.; Godumagadda, N.R.; Chityal, G.K.; Nanubolu, J.B. Regioselective synthesis of 3-benzyl substituted pyrimidino chromen-2-ones and evaluation of anti-microbial and anti-biofilm activities. Bioorg. Med. Chem. Lett., 2014, 24(2), 485-489.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.038] [PMID: 24380770]
[15]
Sirisha, K.; Achaiah, G.; Ram Rao, A.R. Design, Synthesis and evaluation of new 2, 6-Dihydroimidazo [1,2-c] Pyrimido [5, 4-e]-Pyrimidine-5 (3H)-thiones as possible antihistaminic/antiasthmatic agents. Indian J. Pharm. Sci., 2014, 76(6), 519-528.
[PMID: 25593385]
[16]
Valderrama, J.A.; Colonelli, P.; Vásquez, D.; González, M.F.; Rodríguez, J.A.; Theoduloz, C. Studies on quinones. Part 44: Novel angucyclinone N-heterocyclic analogues endowed with antitumoral activity. Bioorg. Med. Chem., 2008, 16(24), 10172-10181.
[http://dx.doi.org/10.1016/j.bmc.2008.10.064] [PMID: 19013074]
[17]
Semenov, V.E.; Voloshina, A.D.; Toroptzova, E.M.; Kulik, N.V.; Zobov, V.V.; Giniyatullin, R.K.; Mikhailov, A.S.; Nikolaev, A.E.; Akamsin, V.D.; Reznik, V.S. Antibacterial and antifungal activity of acyclic and macrocyclic uracil derivatives with quaternized nitrogen atoms in spacers. Eur. J. Med. Chem., 2006, 41(9), 1093-1101.
[http://dx.doi.org/10.1016/j.ejmech.2006.03.030] [PMID: 16762461]
[18]
Yagi, K.; Akimoto, K.; Mimori, N.; Miyake, T.; Kudo, M.; Arai, K.; Ishii, S. Synthesis and insecticidal/acaricidal activity of novel 3-(2, 4, 6-trisubstituted phenyl) uracil derivatives. Pest Manag. Sci., 2000, 56(1), 65-73.
[http://dx.doi.org/10.1002/(SICI)1526-4998(200001)56:1<65:AID-PS90>3.0.CO;2-S]
[19]
Lu, G.Q.; Li, X.Y.; Mohamed O, K.; Wang, D.; Meng, F.H. Design, synthesis and biological evaluation of novel uracil derivatives bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur. J. Med. Chem., 2019, 171, 282-296.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.047] [PMID: 30927565]
[20]
Ahmadi, T.; Mohammadi Ziarani, G.; Gholamzadeh, P.; Mollabagher, H. Recent advances in asymmetric multicomponent reactions (AMCRs). Tetrahedron Asymmetry, 2017, 28(5), 708-724.
[http://dx.doi.org/10.1016/j.tetasy.2017.04.002]
[21]
Mohammadi Ziarani, G.; Roshankar, S.; Mohajer, F.; Badiei, A. The Synthesis and Application of Functionalized Mesoporous Silica SBA-15 as Heterogeneous Catalyst in Organic Synthesis. Curr. Org. Chem., 2021, 25(3), 361-387.
[22]
Mohammadi Ziarani, G.; Hajiabbasi, P. Recent application of 4-hydroxycoumarin in multi-component reactions. Heterocycles, 2013, 87(7), 1415-1439.
[http://dx.doi.org/10.3987/REV-13-768]
[23]
Mohammadi Ziarani, G.; Hosseini Nasab, N.; Lashgari, N. Synthesis of heterocyclic scaffolds through 6-aminouracil-involved multicomponent reactions. RSC Adv, 2016, 6(45), 38827-38848.
[http://dx.doi.org/10.1039/C6RA02834A]
[24]
Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N. Asymmetric synthesis of chiral oxindoles using isatin as starting material. Tetrahedron, 2018, 74(13), 1323-1353.
[http://dx.doi.org/10.1016/j.tet.2018.01.025]
[25]
Rahimifard, M.; Mohammadi Ziarani, G.; Lashkariani, B.M. Application of guanidine and its salts in multicomponent reactions. Turk. J. Chem., 2014, 38(3), 345-371.
[http://dx.doi.org/10.3906/kim-1307-38]
[26]
Mohammadi Ziarani, G.; Lashgari, N.; Azimian, F.; Kruger, H.G.; Gholamzadeh, P. Ninhydrin in Synthesis of heterocyclic compounds. Arkivoc, 2015, (6), 1-139.
[http://dx.doi.org/10.3998/ark.5550190.p008.905]
[27]
Mohammadi Ziarani, G.; Mohajer, F.; Moradi, R.; Mofatehnia, P. The Molecular Diversity Scope of Urazole in the Synthesis of Organic Compounds. Curr. Org. Synth., 2019, 16(7), 953-967.
[http://dx.doi.org/10.24820/ark.5550190.p009.980]
[28]
Mohammadi Ziarani, G.; Moradi, R.; Ahmadi, T.; Lashgari, N. Recent advances in the application of indoles in multicomponent reactions. RSC Adv, 2018, 8(22), 12069-12103.
[http://dx.doi.org/10.1039/C7RA13321A]
[29]
Mohammadi Ziarani, G. Javadi, f., Mohajer, F. The molecular diversity scope of oxindole derivatives in organic synthesis. Curr. Org. Chem., 2021, 25(7), 779-818.
[30]
Bayat, M.; Nasri, S. Synthesis and dynamic 1H NMR study of pyrazolo substituted pyrrolo [2,3-d] pyrimidines via a regioselective heterocyclization. J. Mol. Struct., 2018, 1154, 366-372.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.056]
[31]
Ahmadi Sabegh, M.; Khalafy, J.; Etivand, N. One-pot, three-component synthesis of a series of new bis-pyrrolo [2, 3-d] pyrimidines in the presence of TPAB under reflux conditions. J. Heterocycl. Chem., 2018, 55(11), 2610-2618.
[http://dx.doi.org/10.1002/jhet.3320]
[32]
Baradarani, M.M.; Farshi, H.; Khodaie, M.; Fazlelahi, H.Z.; Rashidi, A.; Joule, J.A. Spiro [pyrido [3, 2, 1-ij] pyrimido [4, 5-b] quinoline-7, 5′-pyrrolo [2, 3-d] pyrimidines] and spiro [pyrimido [4, 5-b] quinoline-5, 1′-pyrrolo [3, 2, 1-ij] quinolines] derived from 5, 6-dihydro-4H-pyrrolo [3, 2, 1-ij] quinoline-1, 2-dione. J. Heterocycl. Chem., 2018, 55(1), 91-96.
[http://dx.doi.org/10.1002/jhet.3008]
[33]
Yadav, V.B.; Rai, P.; Sagir, H.; Kumar, A.; Siddiqui, I. A green route for the synthesis of pyrrolo [2, 3-d] pyrimidine derivatives catalyzed by β-cyclodextrin. New J. Chem., 2018, 42(1), 628-633.
[http://dx.doi.org/10.1039/C7NJ03577B]
[34]
Karamthulla, S.; Jana, A.; Choudhury, L.H. Synthesis of novel 5, 6-disubstituted pyrrolo [2,3-d] pyrimidine-2, 4-diones via one-pot three-component reactions. ACS Comb. Sci., 2017, 19(2), 108-112.
[http://dx.doi.org/10.1021/acscombsci.6b00147] [PMID: 28036166]
[35]
Javahershenas, R.; Khalafy, J. A new synthesis of pyrrolo [3, 2-d] pyrimidine derivatives by a one-pot, three-component reaction in the presence of L-proline as an organocatalyst. Heterocycl. Commun., 2018, 24(1), 37-41.
[http://dx.doi.org/10.1515/hc-2017-0187]
[36]
Javahershenas, R.; Khalafy, J. One-pot, three-component synthesis of pyrrolo [2,3-d] pyrimidine derivatives. J. Mex. Chem. Soc., 2018, 62(1), 1.
[http://dx.doi.org/10.29356/jmcs.v62i1.340 ]
[37]
Azimi, S.C.; Rad-Moghadam, K. A clean and highly efficient synthesis of oxindole substituted pyrrolo [2, 3-d] Pyrimidines under ultrasound irradiation. Iran. Chem. Commun., 2017, 5(2), 156-166.
[38]
Zare, A.; Ghobadpoor, A.; Safdari, T. Preparation, characterization and utilization of a novel dicationic molten salt as catalyst for the synthesis of bis (6-amino-1, 3-dimethyluracil-5-yl) methanes. Res. Chem. Intermed., 2020, 46(2), 1319-1327.
[http://dx.doi.org/10.1007/s11164-019-04036-3]
[39]
Brahmachari, G.; Banerjee, B. Ceric ammonium nitrate (CAN): an efficient and eco-friendly catalyst for the one-pot synthesis of alkyl/aryl/heteroaryl-substituted bis (6-aminouracil-5-yl) methanes at room temperature. RSC Adv, 2015, 5(49), 39263-39269.
[http://dx.doi.org/10.1039/C5RA04723D]
[40]
Das, S.; Thakur, A.J.; Clean, A. Highly efficient and one-pot green synthesis of aryl/alkyl/heteroaryl-substituted bis (6-amino-1, 3-dimethyluracil-5-yl) methanes in water. Eur. J. Org. Chem., 2011, 2011(12), 2301-2308.
[http://dx.doi.org/10.1002/ejoc.201001581]
[41]
Irannejad-Gheshlaghchaei, N.; Zare, A.; Sajadikhah, S.S.; Banaei, A. A novel dicationic ionic liquid as a highly effectual and dual-functional catalyst for the synthesis of 3-methyl-4-arylmethylene-isoxazole-5 (4H)-ones. Res. Chem. Intermed., 2018, 44(10), 6253-6266.
[http://dx.doi.org/10.1007/s11164-018-3488-8]
[42]
Khanivar, R.; Zare, A.J.Z.N.B. Highly effectual synthesis of 4, 6-diarylpyrimidin-2 (1H)-ones using N, N, N′, N′-tetramethylethyl-enediaminium-N, N′-disulfonic acid hydrogen sulfate as a dual-functional catalyst. Z. Naturforsch. B, 2018, 73(9), 635-640.
[http://dx.doi.org/10.1515/znb-2018-0075]
[43]
Kumari, P.; Bharti, R.; Parvin, T. Synthesis of aminouracil-tethered tri-substituted methanes in water by iodine-catalyzed multicomponent reactions. Mol. Divers., 2019, 23(1), 205-213.
[http://dx.doi.org/10.1007/s11030-018-9862-z] [PMID: 30109557]
[44]
Abdelmoniem, A.M.; Ghozlan, S.A.; Butenschön, H.; Abdelmoniem, D.M.; Elwahy, A.H.; Abdelhamid, I.A. An efficient one-pot three-component synthesis of tetrakis (uracil) and their corresponding bis-fused derivatives. Orga. Chem., 2019, 5, 163-177.
[http://dx.doi.org/10.24820/ark.5550190.p010.875 ]
[45]
Abdollahi-Basir, M.H.; Shirini, F.; Tajik, H.; Ghasemzadeh, M.A. Zn (BDC)-(MOF): introduction of a new catalyst for the synthesis pyrimido [4, 5-d] pyrimidine derivatives under ultrasound irradiation in the absence of solvent. Polycycl. Aromat. Compd., 2019, 2019, 1-10.
[http://dx.doi.org/10.1080/10406638.2019.1689404]
[46]
Ghorbani-Vaghei, R.; Sarmast, N.J.A.O.C. Green synthesis of new pyrimido [4, 5-d] pyrimidine derivatives using 7-aminonap-hthalene-1, 3-disulfonic acid-functionalized magnetic Fe3O4@ SiO2 nanoparticles as catalyst. Appl. Organomet. Chem., 2018, 32(2), e4003.
[http://dx.doi.org/10.1002/aoc.4003]
[47]
Abdollahi-Basir, M.H.; Shirini, F.; Tajik, H.; Ghasemzadeh, M.A. MIL-53 (Fe): introduction of a new catalyst for the synthesis of pyrimido [4,5-d] pyrimidine derivatives under solvent-free conditions. J. Mol. Struct., 2019, 1197, 318-325.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.065]
[48]
Borpatra, P.J.; Rastogi, G.K.; Saikia, M.B.S.; Deb, M.L.; Baruah, P.K. Multi-component reaction of 6-aminouracils, aldehydes and secondary amines: conversion of the products into pyrimido [4, 5-d] pyrimidines through C-H amination/cyclization. ChemistrySelect, 2019, 4(12), 3381-3386.
[http://dx.doi.org/10.1002/slct.201900210]
[49]
Deb, M.L.; Borpatra, P.J.; Baruah, P.K. A one-pot catalyst/external oxidant/solvent-free cascade approach to pyrimidines via a 1, 5-hydride transfer. Green Chem., 2019, 21(1), 69-74.
[http://dx.doi.org/10.1039/C8GC03507E]
[50]
Hovsepyan, T.; Karakhanyan, G.; Israelyan, S.; Panosyan, G. Three-component one-pot synthesis of new 2, 5, 6, 7-and 2, 5, 8, 10-substituted pyrimido [4, 5-b] quinoline-4, 6-diones and-2, 4, 6-triones. Russ. J. Gen. Chem., 2018, 88(6), 1114-1119.
[http://dx.doi.org/10.1134/S1070363218060117]
[51]
Mohammadi Ziarani, G.; Hosseini Nasab, N.; Rahimifard, M.; Hajiashrafi, T.; Badiei, A.; Abolhassani Soorki, A. One-pot synthesis of tetrahydropyrimido[4,5-b]quinoline derivatives using sulfonic acid functionalized Sba-15 and their antimicrobial activities. Iran. J. Catal., 2017, 7(1), 61-68.
[52]
Nandi, S.; Gupta, A.; Kumar Pal, A. A new MCR strategy generating a collection of skeletally diverse simple molecules combinatorially. Lett. Org. Chem., 2017, 14(4), 291-299.
[http://dx.doi.org/10.2174/1570178614666170221125300]
[53]
Zare, A.; Lotfifar, N.; Dianat, M.J.J.M.S. Preparation, characterization and application of nano-[Fe3O4@-SiO2@ R-NHMe2][H2PO4] as a novel magnetically recoverable catalyst for the synthesis of pyrimido [4,5-b] quinolines. J. Mol. Struct., 2020, 1211, 128030.
[http://dx.doi.org/10.1016/j.molstruc.2020.128030]
[54]
Sepehrmansouri, H.; Zarei, M.; Zolfigol, M.A.; Moosavi-Zare, A.R.; Rostamnia, S.; Moradi, S. Multilinker phosphorous acid anchored En/MIL-100 (Cr) as a novel nanoporous catalyst for the synthesis of new N-heterocyclic pyrimido [4, 5-b] quinolines. Mol. Catal., 2020, 481, 110303.
[http://dx.doi.org/10.1016/j.mcat.2019.01.023]
[55]
Jalili, F.; Zarei, M.; Zolfigol, M.A.; Rostamnia, S.; Moosavi-Zare, A.R. SBA-15/PrN (CH2PO3H2)2 as a novel and efficient mesoporous solid acid catalyst with phosphorous acid tags and its application on the synthesis of new pyrimido [4, 5-b] quinolones and pyrido [2, 3-d] pyrimidines via anomeric based oxidation. Microporous Mesoporous Mater., 2020, 294, 109865.
[http://dx.doi.org/10.1016/j.micromeso.2019.109865]
[56]
Upadhyay, A.; Sharma, L.K.; Singh, V.K.; Singh, R.K.P. An efficient one pot three component synthesis of fused pyridines via electrochemical approach. Tetrahedron Lett., 2016, 57(50), 5599-5604.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.111]
[57]
Moghaddampour, I.M.; Shirini, F.; Langarudi, M.S.N. Agar-entrapped sulfonated DABCO: Agelly acidic catalyst for the acceleration of one-pot synthesis of 1,2,4-triazoloquinazolinone and some pyrimidine derivatives. J. Mol. Struct., 2021, 1226, 129336.
[http://dx.doi.org/10.1016/j.molstruc.2020.129336] [PMID: 33012844]
[58]
Marjani, A.P.; Khalafy, J.; Arlan, F.M.; Eynia, E. A simple protocol for the green synthesis of a new series of pyrimido [4, 5-b][1, 6] naphthyridines in the presence of silver nanoparticles (AgNPs). Org. Chem., 2019, 5, 1-9.
[http://dx.doi.org/10.24820/ark.5550190.p010.705 ]
[59]
Suresh, L.; Sagar Vijay Kumar, P.; Poornachandra, Y.; Ganesh Kumar, C.; Chandramouli, G.V.P. Design, synthesis and evaluation of novel pyrazolo-pyrimido[4,5-d]pyrimidine derivatives as potent antibacterial and biofilm inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(6), 1451-1457.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.087] [PMID: 28209374]
[60]
Bakhshali-Dehkordi, R.; Ghasemzadeh, M.A.; Safaei-Ghomi, J. Green synthesis and immobilization of TiO2 NPs using ILs-based on imidazole and investigation of its catalytic activity for the efficient synthesis of pyrimido [4, 5-d] pyrimidines. J. Mol. Struct., 2020, 1206, 127698.
[http://dx.doi.org/10.1016/j.molstruc.2020.127698]
[61]
Safari, J.; Tavakoli, M.; Ghasemzadeh, M.A. A highly effective synthesis of pyrimido [4, 5-b] quinoline-tetraones using H3PW12O40/chitosan/NiCo2O4 as a novel magnetic nanocomposite. Polyhedron, 2020, 182, 114459.
[http://dx.doi.org/10.1016/j.poly.2020.114459]
[62]
Manickam, S.; Iyer, S.K. Pigments, A new approach for fluorescent tetrahydrobenzo [f] pyrimido [4, 5-b] quinolines and indeno fused pyrido [2, 3-b] pyrimidines. Dyes Pigm., 2017, 147, 300-312.
[http://dx.doi.org/10.1016/j.dyepig.2017.07.041]
[63]
Mirhosseini-Eshkevari, B.; Ghasemzadeh, M.A.; Esnaashari, M.; Ganjali, S.T. Introduction of a novel Brønsted acidic ionic liquid incorporated in UiO-66 nanocages for the efficient synthesis of pyrimido [4, 5-d] pyrimidines. ChemistrySelect, 2019, 4(44), 12920-12927.
[http://dx.doi.org/10.1002/slct.201903642]
[64]
Safaei-Ghomi, J.; Omidshafiei, Z. Co3O4/NiO@ GQD@ SO3H nanocomposite as a superior catalyst for the synthesis of chromenpyrimidines. RSC Adv, 2019, 9(64), 37344-37354.
[http://dx.doi.org/10.1039/C9RA05896F]
[65]
Brahmachari, G.; Mandal, M.; Karmakar, I.; Nurjamal, K.; Mandal, B. Engineering, ultrasound-promoted expedient and green synthesis of diversely functionalized 6-amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl) methyl) pyrimidine-2, 4 (1H, 3H)-diones via one-pot multicomponent reaction under sulfamic acid catalysis at ambient conditions. ACS. Sustain. Chem., 2019, 7(6), 6369-6380.
[66]
Safari, J.; Tavakoli, M.; Ghasemzadeh, M.A. H3PMo12O40-immobilized chitosan/Co3O4: a novel and recyclable nanocomposite for the synthesis of pyrimidinedione derivatives. Appl. Organomet. Chem., 2019, 33(5), e4748.
[http://dx.doi.org/10.1002/aoc.4748]
[67]
Bharti, R.; Kumari, P.; Parvin, T.; Choudhury, L.H. Molecular diversity from the three-component reaction of 2-hydroxy-1, 4-naphthaquinone, aldehydes and 6-aminouracils: a reaction condition dependent MCR. RSC Adv, 2017, 7(7), 3928-3933.
[http://dx.doi.org/10.1039/C6RA18828A]
[68]
Daraie, M.; Heravi, M.M. SMA/Py/ZnO as a new biocompatible polymer supported nanocatalyst for the synthesis of chromeno [2, 3-d] pyrimidine-diones through a novel and efficient pathway. Can. J. Chem., 2019, 97(11), 772-779.
[http://dx.doi.org/10.1139/cjc-2019-0127]
[69]
Dai, L.; Mao, K.; Pan, Z.; Rong, L. Green metal-free synthesis of spiro-fused 3, 4′-pyrazolo [4′, 3′: 5, 6] pyrido [2, 3-d] pyrimidine derivatives via deamination cyclization reactions in aqueous medium. Res. Chem. Intermed., 2019, 45(2), 769-788.
[http://dx.doi.org/10.1007/s11164-018-3642-3]
[70]
Kalita, S.J.; Das, B.; Deka, D.C. A quick, simple and clean synthesis of spiro (indoline-3, 4′-pyrazolo [4′, 3′: 5, 6] pyrido [2, 3-d] pyrimidines) in water through a novel one-pot multicomponent reaction. ChemistrySelect, 2017, 2, 5701-5706.
[http://dx.doi.org/10.1002/slct.201701131]
[71]
Daraie, M.; Heravi, M.M.; Mirzaei, M.; Lotfian, N. Synthesis of pyrazolo-[4́, 3́: 5, 6] pyrido [2, 3-d] pyrimidine-diones catalyzed by a nano-sized surface-grafted neodymium complex of the tungstosilicate via multicomponent reaction. Appl. Organomet. Chem., 2019, 33(9), e5058.
[http://dx.doi.org/10.1002/aoc.5058]
[72]
Daraie, M.; Heravi, M.M. Molecular diversity of four-component synthesis of pyrazole-based pyrido [2, 3-d] pyrimidine-diones in water: a green synthesis. ARKIVOC, 2016, 2016, 328-338.
[http://dx.doi.org/10.3998/ark.5550190.p009.603]
[73]
Dehghanpour, H.R.; Mosslemin, M.H.; Mohebat, R. Graphene oxide: a carbocatalyst for the one-pot multicomponent synthesis of 5-aryl-1H-indeno [2′, 1′: 5, 6] pyrido [2, 3-d] pyrimidine-2, 4, 6 (3H)-trione. J. Chem. Res., 2018, 42(1), 35-39.
[http://dx.doi.org/10.3184/174751918X15161933697835]
[74]
Roknabadi, M.H.; Mosslemin, M.H.; Mohebat, R. Efficient synthesis of a novel series of indeno-fused pyrido [2, 3-d] pyrimidines using a deep eutectic solvent system comprised of choline chloride/urea. J. Chem. Res., 2017, 41(7), 430-433.
[http://dx.doi.org/10.3184/175815517X14981249895596]
[75]
Ghashang, M.; Guhanathan, S.; Mansoor, S.S. Nano Fe2O3@ SiO2–SO3H: efficient catalyst for the multicomponent preparation of indeno [2′, 1′: 5, 6] pyrido [2, 3-d] pyrimidine-2, 4, 6 (3H)-trione derivatives. Res. Chem. Intermed., 2017, 43(12), 7257-7276.
[http://dx.doi.org/10.1007/s11164-017-3073-6]
[76]
Safari, J.; Tavakoli, M.; Ghasemzadeh, M.A. Ultrasound-promoted an efficient method for the one-pot synthesis of indeno fused pyrido [2,3-d] pyrimidines catalyzed by H3PW12O40 functionalized chitosan@ Co3O4 as a novel and green catalyst. J. Organomet. Chem., 2019, 880, 75-82.
[http://dx.doi.org/10.1016/j.jorganchem.2018.10.028]
[77]
Dongre, R.S.; Meshram, J.S.; Selokar, R.S.; Almalki, F.A.; Hadda, T.B. Antibacterial activity of synthetic pyrido[2,3-d]pyrimidines armed with nitrile groups: POM analysis and identification of pharmacophore sites of nitriles as important pro-drugs. New J. Chem., 2018, 42(19), 15610-15617.
[http://dx.doi.org/10.1039/C8NJ02081G]
[78]
Farahmand, T.; Hashemian, S.; Sheibani, A. Efficient one-pot Synthesis of pyrano[2,3-d]pyrimidinone and pyrido [2,3-d] pyrimidine derivatives by using of Mn-ZIF-8@ZnTiO3 nanocatalyst. J. Mol. Struct., 2020, 1206, 127667.
[http://dx.doi.org/10.1016/j.molstruc.2019.127667]
[79]
Ghorbani-Vaghei, R.; Sarmast, N. Hexamethylenetetramine grafted layered double hydroxides as a novel and green heterogeneous ionic liquid catalyst for the synthesis of pyrido[2,3-d]pyrimidine derivatives. Res. Chem. Intermed., 2018, 44(7), 4483-4501.
[http://dx.doi.org/10.1007/s11164-018-3399-8]
[80]
Mirhosseini-Eshkevari, B.; Esnaashari, M.; Ghasemzadeh, M.A. Novel Brönsted acidic ionic liquids confined in UiO-66 nanocages for the synthesis of dihydropyrido[2,3-d]pyrimidine derivatives under solvent-free conditions. ACS Omega, 2019, 4(6), 10548-10557.
[http://dx.doi.org/10.1021/acsomega.9b00178] [PMID: 31460153]
[81]
Patil, K.T.; Warekar, P.P.; Patil, P.T.; Undare, S.S.; Kolekar, G.B.; Anbhule, P.V. P2O5 Mediated an efficient synthesis and biological evaluation of heterocyclic-fused pyrimidine derivatives as an antitubercular agent. J. Heterocycl. Chem., 2018, 55(1), 154-160.
[http://dx.doi.org/10.1002/jhet.3018]
[82]
Saeidiroshan, H.; Moradi, L. Immobilization of Cu(II) on MWCNTs@L-His as a new high efficient reusable catalyst for the synthesis of pyrido[2,3-d:5,6-d′]dipyrimidine derivatives. J. Organomet. Chem., 2019, 893, 1-10.
[http://dx.doi.org/10.1016/j.jorganchem.2019.04.023]
[83]
Mirhosseini-Eshkevari, B.; Ghasemzadeh, M.A.; Esnaashari, M.; Ganjali, S.T. Hexamethylenetetramine-based ionic liquid/MIL-101 (Cr) metal–organic framework composite: a novel and versatile tool for the preparation of pyrido [2, 3-d: 5, 6-d′] dipyrimidines. RSC Adv, 2020, 11(1), 364-373.
[http://dx.doi.org/10.1039/D0RA09054A]
[84]
Wang, Y.; Zhou, L.; Zhu, Y.; Zhang, M.; Song, L.; Deng, H. Unexpected straightforward formation of trifluoromethylated pyrido[2,3-d]pyrimidine derivatives via one-pot, MCRs. J. Fluor. Chem., 2017, 200, 162-168.
[http://dx.doi.org/10.1016/j.jfluchem.2017.06.016]
[85]
Alimadadi, B.; Heravi, M.M.; Nazari, N.; Abdi Oskooie, H.; Bamoharram, F. An efficient one-pot three-component synthesis of pyrido[2,3-d]pyrimidine derivatives in the presence of nano silica-supported Preyssler H14[NaP5W30O110]/SiO2 as a green and reusable catalyst. Sci. Iran., 2016, 23(6), 2717-2723.
[http://dx.doi.org/10.24200/SCI.2016.3980 ]
[86]
Kumari, P.; Yadav, R.; Bharti, R.; Parvin, T. Regioselective synthesis of pyrimidine-fused tetrahydropyridines and pyridines by microwave-assisted one-pot reaction. Mol. Divers., 2020, 24(1), 107-117.
[http://dx.doi.org/10.1007/s11030-019-09929-4] [PMID: 30843127]
[87]
Fatahpour, M.; Hazeri, N.; Maghsoodlou, M.T.; Lashkari, M. One-pot condensation approach for synthesis of diverse naphthopyranopyrimidines utilizing lactic acid as efficient and eco-friendly catalyst. Polycycl. Aromat. Compd., 2019, 39(4), 311-317.
[http://dx.doi.org/10.1080/10406638.2017.1326948]
[88]
Nandi, G.C.; Samai, S.; Singh, M. First InCl3-catalyzed, three-component coupling of aldehydes, β-naphthol, and 6-amino-1, 3-dimethyluracil to functionalized naphthopyranopyrimidines. Synlett, 2010, 2010(07), 1133-1137.
[http://dx.doi.org/10.1055/s-0029-1219574]
[89]
Shiri, M.; Pourabed, R.; Zadsirjan, V.; Sodagar, E. Highly selective organocatalytic three-component reaction of 2-chloroquinoline-3-carbaldehydes, 6-aminouracils, and cyclic methylene active compounds. Tetrahedron Lett., 2016, 57(49), 5435-5438.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.057]
[90]
Kausar, N.; Masum, A.A.; Islam, M.M.; Das, A.R. A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions. Mol. Divers., 2017, 21(2), 325-337.
[http://dx.doi.org/10.1007/s11030-017-9728-9] [PMID: 28190223]
[91]
Niu, Q.; Xi, J.; Li, L.; Li, L.; Pan, C.; Lan, M.; Rong, L. Isatins 3-C annulation vs ring-opening: Two different pathways for synthesis of spiro compounds via multicomponent reactions. Tetrahedron Lett., 2019, 60(43), 151181.
[http://dx.doi.org/10.1016/j.tetlet.2019.151181]
[92]
Rashid, Z.; Moadi, T.; Ghahremanzadeh, R. Green synthesis and characterization of silver nanoparticles using Ferula latisecta leaf extract and their application as a catalyst for the safe and simple one-pot preparation of spirooxindoles in water. New J. Chem., 2016, 40(4), 3343-3349.
[http://dx.doi.org/10.1039/C5NJ02656C]
[93]
Roudsari, S.T.; Rad-Moghadam, K.; Hosseinjani-Pirdehi, H. Dual complex of amylose with iodine and magnetite nano-crystallites: enhanced superparamagnetic and catalytic performance for synthesis of spiro-oxindoles. Appl. Organomet. Chem., 2019, 33(8), e4993.
[http://dx.doi.org/10.1002/aoc.4993]
[94]
Jamaledini, A.; Mohammadizadeh, M.R.; Mousavi, S.H. Catalyst-free, efficient, and green procedure for the synthesis of 5-heterocyclic substituted 6-aminouracils. Monatsh. Chem., 2018, 149(8), 1421-1428.
[http://dx.doi.org/10.1007/s00706-018-2164-4]
[95]
Mohammadi Ziarani, G.; Aleali, F.; Lashgari, N.; Badiei, A. An efficient green approach for the synthesis of structurally diversified spirooxindoles using sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H). Iran. J. Chem. Chem. Eng., 2016, 35(1), 17-23.
[96]
Fazlelahi, H.Z.; Moghadam, P.N.; Baradarani, M.M.; Joule, J.A.J.J.H.C. Synthesis of novel spiro-fused pyrazolo [4′, 3′: 5, 6] pyrido [2, 3-d] pyrimidines. J. Heterocycl. Chem., 2020, 57(10), 3673-3684.
[http://dx.doi.org/10.1002/jhet.4087]
[97]
Tailor, Y.K.; Khandelwal, S.; Verma, K.; Gopal, R.; Kumar, M. Multicomponent synthesis of dispiroheterocycles using a magnetically separable and reusable heterogeneous catalyst. RSC Adv, 2020, 10(60), 36713-36722.
[http://dx.doi.org/10.1039/D0RA06676A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy