Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

A Magnetic Sensor Based on Poly(γ-Glutamic Acid)-Functionalized Iron Oxide Nanoparticles for Cr3+ Detection

Author(s): Zhibo Yu, Liang Jia, Jianzhi Zhu, Mingwu Shen, Jingchao Li*, Jinting Jiu, Maoquan Li and Xiangyang Shi*

Volume 18, Issue 2, 2022

Published on: 03 March, 2021

Page: [247 - 254] Pages: 8

DOI: 10.2174/1573413717666210303110620

Price: $65

Abstract

Background: The highly sensitive and selective detection of Cr3+ is critical.

Objective: We report the development of poly(γ-glutamic acid) (γ-PGA)-functionalized iron oxide nanoparticles (γ-PGA-Fe3O4 NPs) as a magnetic nanosensor for magnetic resonance (MR) detection of trivalent chromium (Cr3+) in aqueous solution.

Methods: The γ-PGA-Fe3O4 NPs with a mean particle size of 7.3 nm, good colloidal stability and ultrahigh r2 relaxivity (326.8 mM−1s−1) were synthesized via a facile mild reduction approach in the presence of γ-PGA, and used for MR detection of Cr3+.

Results: Upon exposure to Cr3+, the γ-PGA-Fe3O4 NPs aggregated into nanoclusters as verified by dynamic light scattering due to the coordination of Cr3+ with γ -PGA side-chain carboxyl groups, resulting in the decrease in their transverse relaxation time. This MR signal change enables detection of Cr3+ in a concentration range of 0.4-1 nM. We also show that the γ-PGA-Fe3O4 NPs have an excellent selectivity toward Cr3+ and a high recovery percentage of 83.8% or above.

Conclusion: This study thus demonstrates that the developed γ-PGA-Fe3O4 NPs may be used as a nanoprobe for MR sensing of Cr3+ in water environment.

Keywords: Nanosensor, magnetic resonance sensing, relaxivity, iron oxide nanoparticles, Cr3+ ions, poly(γ-glutamic acid).

Graphical Abstract

[1]
Dognani, G.; Hadi, P.; Ma, H.; Cabrera, F.C.; Job, A.E.; Agostini, D.L.; Hsiao, B.S. Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane. Chem. Eng. J., 2019, 372, 341-351.
[http://dx.doi.org/10.1016/j.cej.2019.04.154]
[2]
Jamroz, E.; Kocot, K.; Zawisza, B.; Talik, E.; Gagor, A.; Sitko, R. A green analytical method for ultratrace determination of hexavalent chromium ions based on micro-solid phase extraction using amino-silanized cellulose membranes. Microchem. J., 2019, 149, 104060.
[http://dx.doi.org/10.1016/j.microc.2019.104060]
[3]
Barbosa, R.F.; Souza, A.G.; Maltez, H.F.; Rosa, D.S. Chromium removal from contaminated wastewaters using biodegradable membranes containing cellulose nanostructures. Chem. Eng. J., 2020, 395, 125055.
[http://dx.doi.org/10.1016/j.cej.2020.125055]
[4]
Zhou, Y.; Li, Y-S.; Tian, X-L.; Zhang, Y-Y.; Yang, L.; Zhang, J-H.; Wang, X-R.; Lu, S-Y.; Ren, H-L.; Liu, Z-S. Enhanced ultrasensitive detection of Cr(III) using 5-thio-2-nitrobenzoic acid (TNBA) and horseradish peroxidase (HRP) dually modified gold nanoparticles (AuNPs). Sens. Actuators B Chem., 2012, 161(1), 1108-1113.
[http://dx.doi.org/10.1016/j.snb.2011.12.035]
[5]
Salimi, A.; Pourbahram, B.; Mansouri-Majd, S.; Hallaj, R. Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium(III) detection. Electrochim. Acta, 2015, 156, 207-215.
[http://dx.doi.org/10.1016/j.electacta.2014.12.146]
[6]
Han, Z.; Qi, L.; Shen, G.; Liu, W.; Chen, Y. Determination of chromium(VI) by surface plasmon field-enhanced resonance light scattering. Anal. Chem., 2007, 79(15), 5862-5868.
[http://dx.doi.org/10.1021/ac062453d] [PMID: 17583966]
[7]
Yu, Y.; Hong, Y.; Wang, Y.; Sun, X.; Liu, B. Mecaptosuccinic acid modified gold nanoparticles as colorimetric sensor for fast detection and simultaneous identification of Cr3+. Sens. Actuators B Chem., 2017, 239, 865-873.
[http://dx.doi.org/10.1016/j.snb.2016.08.043]
[8]
Dayan, A.D.; Paine, A.J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum. Exp. Toxicol., 2001, 20(9), 439-451.
[http://dx.doi.org/10.1191/096032701682693062] [PMID: 11776406]
[9]
Junaid, M.; Hashmi, M.Z.; Malik, R.N.; Pei, D-S. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review. Environ. Sci. Pollut. Res. Int., 2016, 23(20), 20151-20167.
[http://dx.doi.org/10.1007/s11356-016-7463-x] [PMID: 27562808]
[10]
Li, W.; Chen, Z.; Ren, J.; Yang, T.; Lin, Q.; Liu, J. A portable device enabling fluorescent-to-electric resistant transduction for selective Cr3+ detection based on its slow ligand bind kinetics. Sens. Actuators B Chem., 2020, 304, 127283.
[http://dx.doi.org/10.1016/j.snb.2019.127283]
[11]
Zhang, Y.; Xu, M.; Li, H.; Ge, H.; Bian, Z. The enhanced photoreduction of Cr(VI) to Cr(III) using carbon dots coupled TiO2 mesocrystals. Appl. Catal. B, 2018, 226, 213-219.
[http://dx.doi.org/10.1016/j.apcatb.2017.12.053]
[12]
Liang, Q.; Luo, H.; Geng, J.; Chen, J. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(VI). Chem. Eng. J., 2018, 338, 62-71.
[http://dx.doi.org/10.1016/j.cej.2017.12.145]
[13]
Li, Y.; Liu, Z.; Wu, Y.; Chen, J.; Zhao, J.; Jin, F.; Na, P. Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: favorable role of carbon dots. Appl. Catal. B, 2018, 224, 508-517.
[http://dx.doi.org/10.1016/j.apcatb.2017.10.023]
[14]
Bohrn, U.; Mucha, A.; Werner, C.F.; Trattner, B.; Bäcker, M.; Krumbe, C.; Schienle, M.; Stütz, E.; Schmitt-Landsiedel, D.; Fleischer, M.; Wagner, P.; Schöning, M.J. A critical comparison of cell-based sensor systems for the detection of Cr(VI) in aquatic environment. Sens. Actuators B Chem., 2013, 182, 58-65.
[http://dx.doi.org/10.1016/j.snb.2013.02.105]
[15]
Sánchez-Moreno, R.A.; Gismera, M.A.; Sevilla, M.A.; Procopio, J.R. Chromium(III) determination without sample treatment by batch and flow injection potentiometry. Anal. Chim. Acta, 2009, 634(1), 68-74.
[http://dx.doi.org/10.1016/j.aca.2008.12.009] [PMID: 19154812]
[16]
Zhang, N.; Suleiman, J.S.; He, M.; Hu, B. Chromium(III)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection. Talanta, 2008, 75(2), 536-543.
[http://dx.doi.org/10.1016/j.talanta.2007.11.059] [PMID: 18371918]
[17]
Sumida, T.; Ikenoue, T.; Hamada, K.; Sabarudin, A.; Oshima, M.; Motomizu, S. On-line preconcentration using dual mini-columns for the speciation of chromium(III) and chromium(VI) and its application to water samples as studied by inductively coupled plasma-atomic emission spectrometry. Talanta, 2005, 68(2), 388-393.
[http://dx.doi.org/10.1016/j.talanta.2005.08.064] [PMID: 18970334]
[18]
Wang, Y.; Han, F.; Mu, J. Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Constr. Build. Mater., 2018, 160, 818-827.
[http://dx.doi.org/10.1016/j.conbuildmat.2017.12.006]
[19]
Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron., 2017, 94, 443-455.
[http://dx.doi.org/10.1016/j.bios.2017.03.031] [PMID: 28340464]
[20]
Altunay, N.; Yıldırım, E.; Gürkan, R. Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction prior to atomic absorption spectrometric determination. Food Chem., 2018, 245, 586-594.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.134] [PMID: 29287413]
[21]
Wang, J.; Gao, G.; Yang, F.; Chen, R.; Wang, L.; Zhu, W.; Ma, Z.; Luo, Z.; Sun, T. A fluorescent nanoprobe based on HgS/ZnS core/shell quantum dots for in-situ rapid visual detection of Cr3+. J. Nanopart. Res., 2019, 21(3), 50.
[http://dx.doi.org/10.1007/s11051-019-4468-7]
[22]
Elmizadeh, H.; Soleimani, M.; Faridbod, F.; Bardajee, G.R. A sensitive nano-sensor based on synthetic ligand-coated CdTe quantum dots for rapid detection of Cr(III) ions in water and wastewater samples. Colloid Polym. Sci., 2018, 296(9), 1581-1590.
[http://dx.doi.org/10.1007/s00396-018-4375-y]
[23]
Desai, M.L.; Jha, S.; Basu, H.; Saha, S.; Singhal, R.K.; Kailasa, S.K. Simple hydrothermal approach for synthesis of fluorescent molybdenum disulfide quantum dots: Sensing of Cr3+ ion and cellular imaging. Mater. Sci. Eng. C, 2020, 111, 110778.
[http://dx.doi.org/10.1016/j.msec.2020.110778] [PMID: 32279756]
[24]
Li, B.; Shang, X.; Li, L.; Xu, Y.; Wang, H.; Yang, X.; Pei, M.; Zhang, R.; Zhang, G. A fluorescence probe based on 6-phenylimidazo [2, 1-b] thiazole and salicylaldehyde for the relay discerning of In3+ and Cr3+. New J. Chem., 2020, 44, 951-957.
[http://dx.doi.org/10.1039/C9NJ05722F]
[25]
Tang, M.; Ren, G.; Chai, F. A facile synthesis of magnetic fluorescence Fe3O4-carbon dots for the detection and removal of Hg2+. New J. Chem., 2020, 44(16), 6635-6642.
[http://dx.doi.org/10.1039/D0NJ00275E]
[26]
Yu, L.; Qu, Y.; Chai, F.; Chen, L. Facile preparation of highly sensitive and selective fluorescent paper sensor for the visual and cyclic detection of Cu2+ and Hg2+. New J. Chem., 2018, 42(21), 17478-17485.
[http://dx.doi.org/10.1039/C8NJ03550D]
[27]
Kanwal, S.; Fu, X.H.; Su, X.G. Size dependent active effect of CdTe quantum dots on pyrogallol-H2O2 chemiluminescence system for chromium(III) detection. Mikrochim. Acta, 2010, 169(1-2), 167-172.
[http://dx.doi.org/10.1007/s00604-010-0334-0]
[28]
Shellaiah, M.; Simon, T.; Sun, K.W.; Ko, F-H. Simple bare gold nanoparticles for rapid colorimetric detection of Cr3+ ions in aqueous medium with real sample applications. Sens. Actuators B Chem., 2016, 226, 44-51.
[http://dx.doi.org/10.1016/j.snb.2015.11.123]
[29]
Li, X.; Zhang, S.; Dang, Y.; Liu, Z.; Zhang, Z.; Shan, D.; Zhang, X.; Wang, T.; Lu, X. Ultratrace naked-eye colorimetric ratio assay of chromium(III) ion in aqueous solution via stimuli-responsive morphological transformation of silver Nanoflakes. Anal. Chem., 2019, 91(6), 4031-4038.
[http://dx.doi.org/10.1021/acs.analchem.8b05472] [PMID: 30802033]
[30]
Dai, Q.; Wei, T.; Lv, C.; Chai, F. Facile preparation of Ag nanoparticles using uric acid and their applications in colorimetric detection and catalysis. Anal. Methods, 2018, 10(37), 4518-4524.
[http://dx.doi.org/10.1039/C8AY01535J]
[31]
Sangsin, S.; Srivilai, P.; Tongraung, P. Colorimetric detection of Cr3+ in dietary supplements using a smartphone based on EDTA and tannic acid-modified silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 246, 119050.
[http://dx.doi.org/10.1016/j.saa.2020.119050] [PMID: 33075706]
[32]
Xu, Y.; Chen, X.; Chai, R.; Xing, C.; Li, H.; Yin, X-B. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection. Nanoscale, 2016, 8(27), 13414-13421.
[http://dx.doi.org/10.1039/C6NR03129C] [PMID: 27346713]
[33]
Li, J.; Wang, X.; Shen, M.; Shi, X. Polyethylenimine-Assisted Generation of Optical Nanoprobes for Biosensing Applications. ACS Appl. Bio Mater., 2020, 3, 3935-3955.
[http://dx.doi.org/10.1021/acsabm.0c00536]
[34]
Major, J.L.; Parigi, G.; Luchinat, C.; Meade, T.J. The synthesis and in vitro testing of a zinc-activated MRI contrast agent. Proc. Natl. Acad. Sci. USA, 2007, 104(35), 13881-13886.
[http://dx.doi.org/10.1073/pnas.0706247104] [PMID: 17724345]
[35]
Que, E.L.; Chang, C.J. Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem. Soc. Rev., 2010, 39(1), 51-60.
[http://dx.doi.org/10.1039/B914348N] [PMID: 20023836]
[36]
Que, E.L.; Chang, C.J. A smart magnetic resonance contrast agent for selective copper sensing. J. Am. Chem. Soc., 2006, 128(50), 15942-15943.
[http://dx.doi.org/10.1021/ja065264l] [PMID: 17165700]
[37]
Que, E.L.; Gianolio, E.; Baker, S.L.; Wong, A.P.; Aime, S.; Chang, C.J. Copper-responsive magnetic resonance imaging contrast agents. J. Am. Chem. Soc., 2009, 131(24), 8527-8536.
[http://dx.doi.org/10.1021/ja900884j] [PMID: 19489557]
[38]
Zhang, X.; Jing, X.; Liu, T.; Han, G.; Li, H.; Duan, C. Dual-functional gadolinium-based copper(II) probe for selective magnetic resonance imaging and fluorescence sensing. Inorg. Chem., 2012, 51(4), 2325-2331.
[http://dx.doi.org/10.1021/ic202322f] [PMID: 22316302]
[39]
Hanaoka, K.; Kikuchi, K.; Urano, Y.; Narazaki, M.; Yokawa, T.; Sakamoto, S.; Yamaguchi, K.; Nagano, T. Design and synthesis of a novel magnetic resonance imaging contrast agent for selective sensing of zinc ion. Chem. Biol., 2002, 9(9), 1027-1032.
[http://dx.doi.org/10.1016/S1074-5521(02)00216-8] [PMID: 12323377]
[40]
Luo, J.; Li, W-S.; Xu, P.; Zhang, L-Y.; Chen, Z-N. Zn2+ responsive bimodal magnetic resonance imaging and fluorescent imaging probe based on a gadolinium(III) complex. Inorg. Chem., 2012, 51(17), 9508-9516.
[http://dx.doi.org/10.1021/ic301308z] [PMID: 22880548]
[41]
Bar-Shir, A.; Gilad, A.A.; Chan, K.W.; Liu, G.; van Zijl, P.C.; Bulte, J.W.; McMahon, M.T. Metal ion sensing using ion chemical exchange saturation transfer 19F magnetic resonance imaging. J. Am. Chem. Soc., 2013, 135(33), 12164-12167.
[http://dx.doi.org/10.1021/ja403542g] [PMID: 23905693]
[42]
Yang, H.; Tian, Z.; Wang, J.; Yang, S. A magnetic resonance imaging nanosensor for Hg(II) based on thymidine-functionalized supermagnetic iron oxide nanoparticles. Sens. Actuators B Chem., 2012, 161(1), 429-433.
[http://dx.doi.org/10.1016/j.snb.2011.10.055]
[43]
Zhu, J.; Peng, C.; Sun, W.; Yu, Z.; Zhou, B.; Li, D.; Luo, Y.; Ding, L.; Shen, M.; Shi, X. Formation of iron oxide nanoparticle-loaded γ-polyglutamic acid nanogels for MR imaging of tumors. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(44), 8684-8693.
[http://dx.doi.org/10.1039/C5TB01854D] [PMID: 32262725]
[44]
Yu, Z.; Peng, C.; Luo, Y.; Zhu, J.; Chen, C.; Shen, M.; Shi, X. Poly(γ-glutamic acid)-stabilized iron oxide nanoparticles: synthesis, characterization and applications for MR imaging of tumors. RSC Advances, 2015, 5(94), 76700-76707.
[http://dx.doi.org/10.1039/C5RA15814A]
[45]
Pillarisetti, S.; Maya, S.; Sathianarayanan, S.; Jayakumar, R. Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment. Colloids Surf. B Biointerfaces, 2017, 159, 809-819.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.057] [PMID: 28886517]
[46]
Kurosaki, T.; Kitahara, T.; Fumoto, S.; Nishida, K.; Nakamura, J.; Niidome, T.; Kodama, Y.; Nakagawa, H.; To, H.; Sasaki, H. Ternary complexes of pDNA, polyethylenimine, and γ-polyglutamic acid for gene delivery systems. Biomaterials, 2009, 30(14), 2846-2853.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.055] [PMID: 19232715]
[47]
Yao, C-H.; Yang, S-P.; Chen, Y-S.; Chen, K-Y. Electrospun poly(γ-glutamic acid)/β-tricalcium phosphate composite fibrous mats for bone regeneration. Polymers (Basel), 2019, 11(2), 227.
[http://dx.doi.org/10.3390/polym11020227] [PMID: 30960211]
[48]
Yao, J.; Xu, H.; Wang, J.; Jiang, M.; Ouyang, P. Removal of Cr(III), Ni(II) and Cu(II) by poly(γ-glutamic acid) from Bacillus subtilis NX-2. J. Biomater. Sci. Polym. Ed., 2007, 18(2), 193-204.
[http://dx.doi.org/10.1163/156856207779116702] [PMID: 17323853]
[49]
Guan, H.; Liu, X.; Wang, W.; Liang, J. Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 121, 527-532.
[http://dx.doi.org/10.1016/j.saa.2013.10.107] [PMID: 24291429]
[50]
Yuan, X.; Zhou, B.; Li, M.; Shen, M.; Shi, X. Colorimetric detection of Cr3+ ions in aqueous solution using poly(γ-glutamic acid)-stabilized gold nanoparticles. Anal. Methods, 2020, 12(24), 3145-3150.
[http://dx.doi.org/10.1039/D0AY00842G] [PMID: 32930175]
[51]
Hu, Y.; Wang, R.; Li, J.; Ding, L.; Wang, X.; Shi, X.; Shen, M. Facile synthesis of lactobionic acid-targeted iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of an orthotopic model of human hepatocellular carcinoma. Part. Part. Syst. Charact., 2017, 34(1), 1600113.
[http://dx.doi.org/10.1002/ppsc.201600113]
[52]
Wang, R.; Hu, Y.; Yang, Y.; Xu, W.; Yao, M.; Gao, D.; Zhao, Y.; Zhan, S.; Shi, X.; Wang, X. Using PEGylated iron oxide nanoparticles with ultrahigh relaxivity for MR imaging of an orthotopic model of human hepatocellular carcinoma. J. Nanopart. Res., 2017, 19(2), 39.
[http://dx.doi.org/10.1007/s11051-016-3718-1]
[53]
Li, J.; Zheng, L.; Cai, H.; Sun, W.; Shen, M.; Zhang, G.; Shi, X. Facile one-pot synthesis of Fe3O4@Au composite nanoparticles for dual-mode MR/CT imaging applications. ACS Appl. Mater. Interfaces, 2013, 5(20), 10357-10366.
[http://dx.doi.org/10.1021/am4034526] [PMID: 24063810]
[54]
Li, J.; Zheng, L.; Cai, H.; Sun, W.; Shen, M.; Zhang, G.; Shi, X. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials, 2013, 34(33), 8382-8392.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.070] [PMID: 23932250]
[55]
Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces, 2013, 5(5), 1722-1731.
[http://dx.doi.org/10.1021/am302883m] [PMID: 23388099]
[56]
Hu, Y.; Yang, J.; Wei, P.; Li, J.; Ding, L.; Zhang, G.; Shi, X.; Shen, M. Facile synthesis of hyaluronic acid-modified Fe3O4/Au composite nanoparticles for targeted dual mode MR/CT imaging of tumors. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(47), 9098-9108.
[http://dx.doi.org/10.1039/C5TB02040A] [PMID: 32263123]
[57]
Koh, I.; Hong, R.; Weissleder, R.; Josephson, L. Nanoparticle-target interactions parallel antibody-protein interactions. Anal. Chem., 2009, 81(9), 3618-3622.
[http://dx.doi.org/10.1021/ac802717c] [PMID: 19323458]
[58]
Li, W.; Zhang, Z.; Zhou, W.; Liu, J. Kinetic discrimination of metal ions using DNA for highly sensitive and selective Cr3+ detection. ACS Sens., 2017, 2(5), 663-669.
[http://dx.doi.org/10.1021/acssensors.7b00115] [PMID: 28723165]
[59]
Jiang, T.; Bian, W.; Kan, J.; Sun, Y.; Ding, N.; Li, W.; Zhou, J. Sensitive and rapid detection of Cr3+ in live cells by a red turn-on fluorescent probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 245, 118903.
[http://dx.doi.org/10.1016/j.saa.2020.118903] [PMID: 32956932]
[60]
R.-M.; ZHANG, Z.; WANG, M.-X.; LIU, D.; WANG, J.-H.; YUAN, X.-L. A review on progress of heavy metal removal using biosorbents of poly-γ-glutamic acid. Mater. Sci. Environ. Eng. Proc. Int. Workshop (IWMSEE2016), 2016, pp. 398-407.
[61]
Chandra, R.; Manna, A.K.; Sahu, M.; Rout, K.; Patra, G.K. Simple salicylaldimine-functionalized dipodal bis Schiff base chromogenic and fluorogenic chemosensors for selective and sensitive detection of Al3+ and Cr3+. Inorg. Chim. Acta, 2020, 499, 119192.
[http://dx.doi.org/10.1016/j.ica.2019.119192]
[62]
Lu, H.; Xu, S.; Liu, J. One pot generation of blue and red carbon dots in one binary solvent system for dual channel detection of Cr3+ and Pb2+ based on ion imprinted fluorescence polymers. ACS Sens., 2019, 4(7), 1917-1924.
[http://dx.doi.org/10.1021/acssensors.9b00886] [PMID: 31273977]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy