Abstract
Background: The highly sensitive and selective detection of Cr3+ is critical.
Objective: We report the development of poly(γ-glutamic acid) (γ-PGA)-functionalized iron oxide nanoparticles (γ-PGA-Fe3O4 NPs) as a magnetic nanosensor for magnetic resonance (MR) detection of trivalent chromium (Cr3+) in aqueous solution.
Methods: The γ-PGA-Fe3O4 NPs with a mean particle size of 7.3 nm, good colloidal stability and ultrahigh r2 relaxivity (326.8 mM−1s−1) were synthesized via a facile mild reduction approach in the presence of γ-PGA, and used for MR detection of Cr3+.
Results: Upon exposure to Cr3+, the γ-PGA-Fe3O4 NPs aggregated into nanoclusters as verified by dynamic light scattering due to the coordination of Cr3+ with γ -PGA side-chain carboxyl groups, resulting in the decrease in their transverse relaxation time. This MR signal change enables detection of Cr3+ in a concentration range of 0.4-1 nM. We also show that the γ-PGA-Fe3O4 NPs have an excellent selectivity toward Cr3+ and a high recovery percentage of 83.8% or above.
Conclusion: This study thus demonstrates that the developed γ-PGA-Fe3O4 NPs may be used as a nanoprobe for MR sensing of Cr3+ in water environment.
Keywords: Nanosensor, magnetic resonance sensing, relaxivity, iron oxide nanoparticles, Cr3+ ions, poly(γ-glutamic acid).
Graphical Abstract
[http://dx.doi.org/10.1016/j.cej.2019.04.154]
[http://dx.doi.org/10.1016/j.microc.2019.104060]
[http://dx.doi.org/10.1016/j.cej.2020.125055]
[http://dx.doi.org/10.1016/j.snb.2011.12.035]
[http://dx.doi.org/10.1016/j.electacta.2014.12.146]
[http://dx.doi.org/10.1021/ac062453d] [PMID: 17583966]
[http://dx.doi.org/10.1016/j.snb.2016.08.043]
[http://dx.doi.org/10.1191/096032701682693062] [PMID: 11776406]
[http://dx.doi.org/10.1007/s11356-016-7463-x] [PMID: 27562808]
[http://dx.doi.org/10.1016/j.snb.2019.127283]
[http://dx.doi.org/10.1016/j.apcatb.2017.12.053]
[http://dx.doi.org/10.1016/j.cej.2017.12.145]
[http://dx.doi.org/10.1016/j.apcatb.2017.10.023]
[http://dx.doi.org/10.1016/j.snb.2013.02.105]
[http://dx.doi.org/10.1016/j.aca.2008.12.009] [PMID: 19154812]
[http://dx.doi.org/10.1016/j.talanta.2007.11.059] [PMID: 18371918]
[http://dx.doi.org/10.1016/j.talanta.2005.08.064] [PMID: 18970334]
[http://dx.doi.org/10.1016/j.conbuildmat.2017.12.006]
[http://dx.doi.org/10.1016/j.bios.2017.03.031] [PMID: 28340464]
[http://dx.doi.org/10.1016/j.foodchem.2017.10.134] [PMID: 29287413]
[http://dx.doi.org/10.1007/s11051-019-4468-7]
[http://dx.doi.org/10.1007/s00396-018-4375-y]
[http://dx.doi.org/10.1016/j.msec.2020.110778] [PMID: 32279756]
[http://dx.doi.org/10.1039/C9NJ05722F]
[http://dx.doi.org/10.1039/D0NJ00275E]
[http://dx.doi.org/10.1039/C8NJ03550D]
[http://dx.doi.org/10.1007/s00604-010-0334-0]
[http://dx.doi.org/10.1016/j.snb.2015.11.123]
[http://dx.doi.org/10.1021/acs.analchem.8b05472] [PMID: 30802033]
[http://dx.doi.org/10.1039/C8AY01535J]
[http://dx.doi.org/10.1016/j.saa.2020.119050] [PMID: 33075706]
[http://dx.doi.org/10.1039/C6NR03129C] [PMID: 27346713]
[http://dx.doi.org/10.1021/acsabm.0c00536]
[http://dx.doi.org/10.1073/pnas.0706247104] [PMID: 17724345]
[http://dx.doi.org/10.1039/B914348N] [PMID: 20023836]
[http://dx.doi.org/10.1021/ja065264l] [PMID: 17165700]
[http://dx.doi.org/10.1021/ja900884j] [PMID: 19489557]
[http://dx.doi.org/10.1021/ic202322f] [PMID: 22316302]
[http://dx.doi.org/10.1016/S1074-5521(02)00216-8] [PMID: 12323377]
[http://dx.doi.org/10.1021/ic301308z] [PMID: 22880548]
[http://dx.doi.org/10.1021/ja403542g] [PMID: 23905693]
[http://dx.doi.org/10.1016/j.snb.2011.10.055]
[http://dx.doi.org/10.1039/C5TB01854D] [PMID: 32262725]
[http://dx.doi.org/10.1039/C5RA15814A]
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.057] [PMID: 28886517]
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.055] [PMID: 19232715]
[http://dx.doi.org/10.3390/polym11020227] [PMID: 30960211]
[http://dx.doi.org/10.1163/156856207779116702] [PMID: 17323853]
[http://dx.doi.org/10.1016/j.saa.2013.10.107] [PMID: 24291429]
[http://dx.doi.org/10.1039/D0AY00842G] [PMID: 32930175]
[http://dx.doi.org/10.1002/ppsc.201600113]
[http://dx.doi.org/10.1007/s11051-016-3718-1]
[http://dx.doi.org/10.1021/am4034526] [PMID: 24063810]
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.070] [PMID: 23932250]
[http://dx.doi.org/10.1021/am302883m] [PMID: 23388099]
[http://dx.doi.org/10.1039/C5TB02040A] [PMID: 32263123]
[http://dx.doi.org/10.1021/ac802717c] [PMID: 19323458]
[http://dx.doi.org/10.1021/acssensors.7b00115] [PMID: 28723165]
[http://dx.doi.org/10.1016/j.saa.2020.118903] [PMID: 32956932]
[http://dx.doi.org/10.1016/j.ica.2019.119192]
[http://dx.doi.org/10.1021/acssensors.9b00886] [PMID: 31273977]