Review Article

EGFR,PDGFR,FGFR和 VEGFRMediated 信号通路的天然来源抑制剂作为潜在的抗癌剂

卷 29, 期 2, 2022

发表于: 03 March, 2021

页: [212 - 234] 页: 23

弟呕挨: 10.2174/0929867328666210303101345

价格: $65

摘要

有丝分裂细胞周期进展的分子机制涉及非常严格限制的机器类型,这些机器由正负加速器(或调节剂)之间的精细平衡高度调节。这些调节剂包括几个检查点,这些检查点具有蛋白质作为酶及其激活伙伴的作用。这些检查点不断监测外部和内部环境,如生长信号,生长的有利条件,细胞大小,细胞的DNA完整性,因此通过维持细胞稳态和促进无差错DNA复制和细胞周期分裂来维持高度有序的细胞周期进展。为了通过有丝分裂细胞周期,细胞必须成功地通过细胞周期检查点。由于一些细胞周期蛋白的异常行为,细胞倾向于连续分裂,克服了细胞周期检查点的严格调节。这种异常可能导致不必要的细胞分裂,这种细胞周期事件的放松调节被认为是肿瘤发展背后的主要原因之一,从而导致癌症进展。因此,对癌症进展中分子机制的理解对于设计几种癌症治疗策略可能是有见地的。检查点的放松管制是由于TPK的酪氨酸残基通过PDGFR,EGFR,FGFR和VEGFR介导的信号通路的变化引起的。因此,PDGFR、EGFR、FGFR 和 VEGFR 介导的信号通路的抑制剂可能是潜在的抗癌药物。现有合成抗癌化疗药物的耐药性和毒性可能会缩短患者的寿命。长期以来,天然产品由于副作用和毒性最小或没有副作用和毒性,因此一直是治疗剂的重要替代来源。本研究试图促进天然抗癌药物的开发,重点是从植物来源分离的PDGFR,EGFR,FGFR和VEGFR抑制剂的最新结构信息。本综述中使用的数据是从互联网资源(即GOOGLE Web,GOOGLE SCHOLAR和PubMed Central)收集的。首先检查每份报告的引用,然后选择这些文章作为本研究的真实参考。最初选择了大约200篇期刊文章,其中约142篇最终被选中用于展示EGFR,PDGFR,FGFR和VEGFR介导的信号通路的天然来源抑制剂的研究,这可能有助于增强潜在的癌症治疗。

关键词: 癌症靶标,PDGFR,EGFR,FGFR,VEGFR,异常信号转导,天然抑制剂。

[1]
W.H.O. Cancer. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer accessed at: September 20, 2020.
[2]
Waugh, A.; Grant, A. Ross and Wilson Anatomy and physiology in Health and Illness, 3rd ed.; Churchill Livingstone, Elsevier: London, 2006.
[3]
Hartwell, L.H.; Weinert, T.A. Checkpoints: controls that ensure the order of cell cycle events. Science, 1989, 246(4930), 629-634.
[http://dx.doi.org/10.1126/science.2683079] [PMID: 2683079]
[4]
Satyanarayana, U.; Chakrapani, U. Biochemistry, 4th ed.; Elsevier: India, 2013.
[5]
Hunter, T.; Pines, J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 1994, 79(4), 573-582.
[http://dx.doi.org/10.1016/0092-8674(94)90543-6] [PMID: 7954824]
[6]
Park, M.-T.; Lee, S.-J. Cell cycle and cancer. J. Biochem. Mol. Biol., 2003, 36(1), 60-65.
[http://dx.doi.org/10.5483/bmbrep.2003.36.1.060] [PMID: 12542976]
[7]
Kamb, A. Cell-cycle regulators and cancer. Trends Genet., 1995, 11(4), 136-140.
[http://dx.doi.org/10.1016/S0168-9525(00)89027-7] [PMID: 7732591]
[8]
Ko, L.J.; Prives, C. p53: puzzle and paradigm. Genes Dev., 1996, 10(9), 1054-1072.
[http://dx.doi.org/10.1101/gad.10.9.1054] [PMID: 8654922]
[9]
Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif., 2003, 36(3), 131-149.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[10]
Wölfel, T.; Hauer, M.; Schneider, J.; Serrano, M.; Wölfel, C.; Klehmann-Hieb, E.; De Plaen, E.; Hankeln, T.; Meyer zum Büschenfelde, K.H.; Beach, D. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science, 1995, 269(5228), 1281-1284.
[http://dx.doi.org/10.1126/science.7652577] [PMID: 7652577]
[11]
Heichman, K.A.; Roberts, J.M. Rules to replicate by. Cell, 1994, 79(4), 557-562.
[http://dx.doi.org/10.1016/0092-8674(94)90541-X] [PMID: 7954822]
[12]
Motokura, T.; Bloom, T.; Kim, H.G.; Jüppner, H.; Ruderman, J.V.; Kronenberg, H.M.; Arnold, A. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature, 1991, 350(6318), 512-515.
[http://dx.doi.org/10.1038/350512a0] [PMID: 1826542]
[13]
Li, Y.; Wei, J.; Xu, C.; Zhao, Z.; You, T. Prognostic significance of cyclin D1 expression in colorectal cancer: a meta-analysis of observational studies. PLoS One, 2014, 9(4), e94508.
[http://dx.doi.org/10.1371/journal.pone.0094508] [PMID: 24728073]
[14]
Comstock, C.E.S.; Revelo, M.P.; Buncher, C.R.; Knudsen, K.E. Impact of differential cyclin D1 expression and localisation in prostate cancer. Br. J. Cancer, 2007, 96(6), 970-979.
[http://dx.doi.org/10.1038/sj.bjc.6603615] [PMID: 17375037]
[15]
Metibemu, D.S.; Akinloye, O.A.; Akamo, A.J.; Ojo, D.A.; Okeowo, O.T.; Omotuyi, I.O. Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. Egypt. J. Med. Hum. Genet., 2019, 20(1)
[http://dx.doi.org/10.1186/s43042-019-0035-0]
[16]
Porter, A.C.; Vaillancourt, R.R. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene, 1998, 17(11 Reviews), 1343-1352.
[http://dx.doi.org/10.1038/sj.onc.1202171] [PMID: 9779982]
[17]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[18]
Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer, 2018, 17(1), 58.
[http://dx.doi.org/10.1186/s12943-018-0782-4] [PMID: 29455648]
[19]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase – Role and significance in Cancer. Int. J. Res. Med. Sci., 2004, 101-115..
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[20]
Abram, C.L.; Courtneidge, S.A. Src family tyrosine kinases and growth factor signaling. Exp. Cell Res., 2000, 254(1), 1-13.
[http://dx.doi.org/10.1006/excr.1999.4732] [PMID: 10623460]
[21]
Thomas, S.J.; Snowden, J.A.; Zeidler, M.P.; Danson, S.J. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer, 2015, 113(3), 365-371.
[http://dx.doi.org/10.1038/bjc.2015.233] [PMID: 26151455]
[22]
Butti, R.; Das, S.; Gunasekaran, V.P.; Yadav, A.S.; Kumar, D.; Kundu, G.C. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol. Cancer, 2018, 17(1), 34.
[http://dx.doi.org/10.1186/s12943-018-0797-x.] [PMID: 29455658]
[23]
Mahajan, K.; Mahajan, N.P. Cross talk of tyrosine kinases with the DNA damage signaling pathways. Nucleic Acids Res., 2015, 43(22), 10588-10601.
[http://dx.doi.org/10.1093/nar/gkv1166] [PMID: 26546517]
[24]
Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(2)(Suppl.), 21-26.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041] [PMID: 15142631]
[25]
Harris, R.C.; Chung, E.; Coffey, R.J. EGF receptor ligands. Exp. Cell Res., 2003, 284(1), 2-13.
[http://dx.doi.org/10.1016/S0014-4827(02)00105-2] [PMID: 12648462]
[26]
Woodburn, J.R. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther., 1999, 82(2-3), 241-250.
[http://dx.doi.org/10.1016/S0163-7258(98)00045-X] [PMID: 10454201]
[27]
Fry, D.W. Inhibition of the epidermal growth factor receptor family of tyrosine kinases as an approach to cancer chemotherapy: progression from reversible to irreversible inhibitors. Pharmacol. Ther., 1999, 82(2-3), 207-218.
[http://dx.doi.org/10.1016/S0163-7258(98)00050-3] [PMID: 10454198]
[28]
Thisse, B.; Thisse, C. Function and regulation of FGF signaling during embryonic development. Dev. Biol., 2005, 287(2), 390-402.
[http://dx.doi.org/10.1016/j.ydbio.2005.09.011] [PMID: 16216232]
[29]
Turner, N.; Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129.
[http://dx.doi.org/10.1038/nrc2780] [PMID: 20094046]
[30]
Dienstmann, R.; Rodon, J.; Prat, A.; Perez-Garcia, J.; Adamo, B.; Felip, E.; Cortes, J.; Iafrate, A.J.; Nuciforo, P.; Tabernero, J. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann. Oncol., 2014, 25(3), 552-563.
[http://dx.doi.org/10.1093/annonc/mdt419] [PMID: 24265351]
[31]
Touat, M.; Ileana, E.; Postel-Vinay, S.; André, F.; Soria, J.C. Targeting FGFR Signaling in Cancer. Clin. Cancer Res., 2015, 21(12), 2684-2694.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2329] [PMID: 26078430]
[32]
Ornitz, D.M.; Itoh, N. Fibroblast growth factors. Genome Biol., 2001, 2(3), S3005.
[http://dx.doi.org/10.1186/gb-2001-2-3-reviews3005] [PMID: 11276432]
[33]
Dailey, L.; Ambrosetti, D.; Mansukhani, A.; Basilico, C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev., 2005, 16(2), 233-247.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.007] [PMID: 15863038]
[34]
Beenken, A.; Mohammadi, M. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov., 2009, 8(3), 235-253.
[http://dx.doi.org/10.1038/nrd2792] [PMID: 19247306]
[35]
Dieci, M.V.; Arnedos, M.; Andre, F.; Soria, J.C. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov., 2013, 3(3), 264-279.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0362] [PMID: 23418312]
[36]
Dorey, K.; Amaya, E. FGF signalling: diverse roles during early vertebrate embryogenesis. Development, 2010, 137(22), 3731-3742.
[http://dx.doi.org/10.1242/dev.037689] [PMID: 20978071]
[37]
Ross, R.; Raines, E.W.; Bowen-Pope, D.F. The biology of platelet-derived growth factor. Cell, 1986, 46(2), 155-169.
[http://dx.doi.org/10.1016/0092-8674(86)90733-6] [PMID: 3013421]
[38]
Hannink, M.; Donoghue, D.J. Structure and function of platelet-derived growth factor (PDGF) and related proteins. Biochim. Biophys. Acta, 1989, 989(1), 1-10.
[http://dx.doi.org/10.1016/0304-419x(89)90031-0] [PMID: 2546599]
[39]
Heldin, C-H.; Westermark, B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev., 1999, 79(4), 1283-1316.
[http://dx.doi.org/10.1152/physrev.1999.79.4.1283] [PMID: 10508235]
[40]
Heldin, C-H.; Lennartsson, J. Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Cold Spring Harb. Perspect. Biol., 2013, 5(8), a009100.
[http://dx.doi.org/10.1101/cshperspect.a009100] [PMID: 23906712]
[41]
Fredriksson, L.; Li, H.; Eriksson, U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev., 2004, 15(4), 197-204.
[http://dx.doi.org/10.1016/j.cytogfr.2004.03.007] [PMID: 15207811]
[42]
Calver, A.R.; Hall, A.C.; Yu, W-P.; Walsh, F.S.; Heath, J.K.; Betsholtz, C.; Richardson, W.D. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron, 1998, 20(5), 869-882.
[http://dx.doi.org/10.1016/S0896-6273(00)80469-9] [PMID: 9620692]
[43]
Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 359-371.
[http://dx.doi.org/10.1038/nrm1911] [PMID: 16633338]
[44]
Sherbet, G.V. Vascular Endothelial Growth Factor. Growth Factors and Their Receptors in Cell Differentiation, Cancer and Cancer Therapy. Elsevier; , 2011, pp. 55-64.
[http://dx.doi.org/10.1016/B978-0-12-387819-9.00004-9]
[45]
Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med., 2012, 2(7), a006502-a006502.
[http://dx.doi.org/10.1101/cshperspect.a006502] [PMID: 22762016]
[46]
Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer, 2011, 2(12), 1097-1105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[47]
Miller, V.A.; Hirsh, V.; Cadranel, J.; Chen, Y-M.; Park, K.; Kim, S-W.; Zhou, C.; Su, W.C.; Wang, M.; Sun, Y.; Heo, D.S.; Crino, L.; Tan, E-H.; Chao, T-Y.; Shahidi, M.; Cong, X.J.; Lorence, R.M.; Yang, J.C-H. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol., 2012, 13(5), 528-538.
[http://dx.doi.org/10.1016/S1470-2045(12)70087-6] [PMID: 22452896]
[48]
Van Cutsem, E.; Lambrechts, D.; Prenen, H.; Jain, R.K.; Carmeliet, P. Lessons from the adjuvant bevacizumab trial on colon cancer: what next? J. Clin. Oncol., 2011, 29(1), 1-4.
[http://dx.doi.org/10.1200/JCO.2010.32.2701] [PMID: 21115866]
[49]
Price, T.J.; Peeters, M.; Kim, T.W.; Li, J.; Cascinu, S.; Ruff, P.; Suresh, A.S.; Thomas, A.; Tjulandin, S.; Zhang, K.; Murugappan, S.; Sidhu, R. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol., 2014, 15(6), 569-579.
[http://dx.doi.org/10.1016/S1470-2045(14)70118-4] [PMID: 24739896]
[50]
Hurwitz, H.I. Capecitabine, cetuximab, oxaliplatin, and bevacizumab in treating patients with metastatic or recurrent colorectal cancer that cannot be removed by surgery. NIH ClinicalTrials, NCT00290615, 2006 February 13; https://clinicaltrials.gov/ct2/show/NCT00290615 accessed at: September 23, 2020.
[51]
Jiang, T.; Zhou, C. Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients with EGFR inhibitor-resistant non-small cell lung cancer. Transl. Lung Cancer Res., 2014, 3(6), 370-372.
[http://dx.doi.org/10.3978/j.issn.2218-6751.2014.08.02] [PMID: 25806323]
[52]
Karlovich, C.; Goldman, J.W.; Sun, J-M.; Mann, E.; Sequist, L.V.; Konopa, K.; Wen, W.; Angenendt, P.; Horn, L.; Spigel, D.; Soria, J-C.; Solomon, B.; Camidge, D.R.; Gadgeel, S.; Paweletz, C.; Wu, L.; Chien, S.; O’Donnell, P.; Matheny, S.; Despain, D.; Rolfe, L.; Raponi, M.; Allen, A.R.; Park, K.; Wakelee, H. Assessment of EGFR Mutation Status in Matched Plasma and Tumor Tissue of NSCLC Patients from a Phase I Study of Rociletinib (CO-1686). Clin. Cancer Res., 2016, 22(10), 2386-2395.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1260] [PMID: 26747242]
[53]
Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; Chen, I.; Bycott, P.W.; Baum, C.M.; Figlin, R.A. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med., 2007, 356(2), 115-124.
[http://dx.doi.org/10.1056/NEJMoa065044] [PMID: 17215529]
[54]
Guagnano, V.; Kauffmann, A.; Wöhrle, S.; Stamm, C.; Ito, M.; Barys, L.; Pornon, A.; Yao, Y.; Li, F.; Zhang, Y.; Chen, Z.; Wilson, C.J.; Bordas, V.; Le Douget, M.; Gaither, L.A.; Borawski, J.; Monahan, J.E.; Venkatesan, K.; Brümmendorf, T.; Thomas, D.M.; Garcia-Echeverria, C.; Hofmann, F.; Sellers, W.R.; Graus-Porta, D. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov., 2012, 2(12), 1118-1133.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0210] [PMID: 23002168]
[55]
Novartis (Novartis Pharmaceuticals). FGF401 in HCC and solid tumors characterized by positive FGFR4 and KLB expression. NIH ClinicalTrials, NCT02325739, December 25;2014 https://clinicaltrials.gov/ct2/show/NCT02325739 accessed at: September 23, 2020
[56]
Nandi, S.; Bagchi, M.C. EGFr, FGFr and PDGFr: Emerging Targets for Anticancer Drug Design. J. Cancer Res., 2016, 5, 99-108.
[http://dx.doi.org/10.6000/1929-2279.2016.05.03.3]
[57]
Kamba, T.; McDonald, D.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer, 2007, 96(12), 1788-1795.
[http://dx.doi.org/10.1038/sj.bjc.6603813] [PMID: 17519900]
[58]
Matsui, J.; Funahashi, Y.; Uenaka, T.; Watanabe, T.; Tsuruoka, A.; Asada, M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res., 2008, 14(17), 5459-5465.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5270] [PMID: 18765537]
[59]
Martin, P.; Oliver, S.; Kennedy, S.J.; Partridge, E.; Hutchison, M.; Clarke, D.; Giles, P. Pharmacokinetics of vandetanib: three phase I studies in healthy subjects. Clin. Ther., 2012, 34(1), 221-237.
[http://dx.doi.org/10.1016/j.clinthera.2011.11.011] [PMID: 22206795]
[60]
Zivi, A.; Cerbone, L.; Recine, F.; Sternberg, C.N. Safety and tolerability of pazopanib in the treatment of renal cell carcinoma. Expert Opin. Drug Saf., 2012, 11(5), 851-859.
[http://dx.doi.org/10.1517/14740338.2012.712108] [PMID: 22861374]
[61]
Rini, B.; Rixe, O.; Bukowski, R.; Michaelson, M.D.; Wilding, G.; Bolte, G.H.; Steinfeldt, H.; Reich, S.D.; Motzer, R. AG-013736, a multi-target tyrosine kinase receptor inhibitor, demonstrates anti-tumor activity in a Phase 2 study of cytokine-refractory, metastatic renal cell cancer (RCC). J. Clin. Oncol., 2005, 23(16S), 4509.
[http://dx.doi.org/10.1200/jco.2005.23.16_suppl.4509]
[62]
Kurzrock, R.; Sherman, S.I.; Ball, D.W.; Forastiere, A.A.; Cohen, R.B.; Mehra, R.; Pfister, D.G.; Cohen, E.E.; Janisch, L.; Nauling, F.; Hong, D.S.; Ng, C.S.; Ye, L.; Gagel, R.F.; Frye, J.; Müller, T.; Ratain, M.J.; Salgia, R. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J. Clin. Oncol., 2011, 29(19), 2660-2666.
[http://dx.doi.org/10.1200/JCO.2010.32.4145] [PMID: 21606412]
[63]
Saxena, A.K.; Bhunia, S.S. Development of VEGFR Inhibitors as Antiangiogenic Agents.Med. Chem. Rev., 51, 299-310.
[http://dx.doi.org/10.29200/acsmedchemrev-v51.ch18]
[64]
Gupta, A.K.; Bhunia, S.S.; Balaramnavar, V.M.; Saxena, A.K. Pharmacophore modelling, molecular docking and virtual screening for EGFR (HER 1) tyrosine kinase inhibitors. SAR QSAR Environ. Res., 2011, 22(3), 239-263.
[http://dx.doi.org/10.1080/1062936X.2010.548830] [PMID: 21400356]
[65]
Nandi, S.; Bagchi, M.C. QSAR of aminopyrido[2,3-d]pyrimidin-7-yl derivatives: anticancer drug design by computed descriptors. J. Enzyme Inhib. Med. Chem., 2009, 24(4), 937-948.
[http://dx.doi.org/10.1080/14756360802519327] [PMID: 19555178]
[66]
Nandi, S.; Bagchi, M.C. 3D-QSAR and molecular docking studies of 4-anilinoquinazoline derivatives: a rational approach to anticancer drug design. Mol. Divers., 2010, 14(1), 27-38.
[http://dx.doi.org/10.1007/s11030-009-9137-9] [PMID: 19330460]
[67]
Nandi, S.; Bagchi, M.C. In silico design of potent EGFR kinase inhibitors by structure based screening of combinatorial libraries. Mol. Simul., 2011, 37, 196-209.
[http://dx.doi.org/10.1080/08927022.2010.536542]
[68]
Cambie, R.C.; Madden, R.J.; Parnell, J.C. Chemistry of the Podocarpaceae. XXVIII. Constituents of some Podocarpus and other species. Aust. J. Chem., 1971, 24, 217-221.
[http://dx.doi.org/10.1071/CH9710217]
[69]
Reddy, P.J.; Ray, S.; Sathe, G.J.; Gajbhiye, A.; Prasad, T.S.K.; Rapole, S.; Panda, D.; Srivastava, S. A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics. J. Proteomics, 2015, 114, 247-262.
[http://dx.doi.org/10.1016/j.jprot.2014.10.025] [PMID: 25464363]
[70]
Olivero-Acosta, M.; Maldonado-Rojas, W.; Olivero-Verbel, J. Natural Products as Chemopreventive Agents by Potential Inhibition of the Kinase Domain in ErbB Receptors. Molecules, 2017, 22(2), 308.
[http://dx.doi.org/10.3390/molecules22020308] [PMID: 28218686]
[71]
Paik, S.Y.; Koh, K.H.; Beak, S.M.; Paek, S.H.; Kim, J.A. The essential oils from Zanthoxylum schinifolium pericarp induce apoptosis of HepG2 human hepatoma cells through increased production of reactive oxygen species. Biol. Pharm. Bull., 2005, 28(5), 802-807.
[http://dx.doi.org/10.1248/bpb.28.802] [PMID: 15863882]
[72]
Zou, J.; Lei, T.; Guo, P.; Yu, J.; Xu, Q.; Luo, Y.; Ke, R.; Huang, D. Mechanisms shaping the role of ERK1/2 in cellular senescence (Review). Mol. Med. Rep., 2019, 19(2), 759-770.
[http://dx.doi.org/10.3892/mmr.2018.9712] [PMID: 30535440]
[73]
Gasparotto, J.; Somensi, N.; Kunzler, A.; Girardi, C.S.; de Bittencourt Pasquali, M.A.; Ramos, V.M.; Simoes-Pires, A.; Quintans-Junior, L.J.; Branco, A.; Moreira, J.C.; Gelain, D.P. Hecogenin acetate inhibits reactive oxygen species production and induces cell cycle arrest and senescence in the A549 human lung cancer cell line. Anticancer. Agents Med. Chem., 2014, 14(8), 1128-1135.
[http://dx.doi.org/10.2174/1871520614666140408151751] [PMID: 25115457]
[74]
Rouseff, R.L.; Martin, S.F.; Youtsey, C.O. Quantitative survey of narirutin, naringin, hesperidin, and neo hesperidin in citrus. J. Agric. Food Chem., 1987, 35(6), 1027-1030.
[http://dx.doi.org/10.1021/jf00078a040]
[75]
Devi, K.P.; Rajavel, T.; Nabavi, S.F.; Setzer, W.N.; Ahmadi, A.; Mansouri, K.; Nabavi, S.M. Hesperidin: A promising anticancer agent from nature. Ind. Crops Prod., 2015, 76, 582-589.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.051]
[76]
Golonko, A.; Lewandowska, H.; Świsłocka, R.; Jasińska, U.T.; Priebe, W.; Lewandowski, W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur. J. Med. Chem., 2019, 181, 111512.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.015] [PMID: 31404861]
[77]
Starok, M.; Preira, P.; Vayssade, M.; Haupt, K.; Salomé, L.; Rossi, C. EGFR Inhibition by Curcumin in Cancer Cells: A Dual Mode of Action. Biomacromolecules, 2015, 16(5), 1634-1642.
[http://dx.doi.org/10.1021/acs.biomac.5b00229] [PMID: 25893361]
[78]
Esfahani, K; Boodaghians, L; Kasymjanova, G. A phase I open prospective cohort trial of curcumin plus tyrosine kinase inhibitors for EGFR-mutant advanced non-small cell lung cancer. J. Clin. Oncol., 2019, 37(15_suppl), e20611.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.e20611]
[79]
Ma, Y-C.; Li, C.; Gao, F.; Xu, Y.; Jiang, Z-B.; Liu, J-X.; Jin, L-Y. Epigallocatechin gallate inhibits the growth of human lung cancer by directly targeting the EGFR signaling pathway. Oncol. Rep., 2014, 31(3), 1343-1349.
[http://dx.doi.org/10.3892/or.2013.2933] [PMID: 24366444]
[80]
Leone, M.; Zhai, D.; Sareth, S.; Kitada, S.; Reed, J.C.; Pellecchia, M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res., 2003, 63(23), 8118-8121.
[PMID: 14678963]
[81]
Wang, H.; Khor, T.O.; Shu, L.; Su, Z.Y.; Fuentes, F.; Lee, J-H.; Kong, A-N.T. Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem., 2012, 12(10), 1281-1305.
[http://dx.doi.org/10.2174/187152012803833026] [PMID: 22583408]
[82]
Perkin, A.G.; Newbury, F.G. LXXIX.—The colouring matters contained in dyer’s broom (Genista tinctoria) and heather (Calluna vulgaris). J. Chem. Soc. Trans., 1899, 75, 830-839.
[http://dx.doi.org/10.1039/CT8997500830]
[83]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[84]
Ronis, M.J.J. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity. Drug Metab. Rev., 2016, 48(3), 331-341.
[http://dx.doi.org/10.1080/03602532.2016.1206562] [PMID: 27440109]
[85]
Bailey, H.H. National Cancer Institute (NCI). Phase II study of isoflavone G-2535 (Genistein) in patients with bladder cancer. NIHClinicalTrials, NCT00118040, July 11, 2005. https://clinicaltrials.gov/ct2/show/NCT00118040 accessed at: September 23, 2020
[86]
Efferth, T. Natural Products as Inhibitors of Epidermal Growth Factor Receptor. For. Immunopathol. Dis. Therap., 2011, 2(4), 281-301.
[http://dx.doi.org/10.1615/ForumImmunDisTher.2012004386]
[87]
Gadgeel, S.M.; Ali, S.; Philip, P.A.; Wozniak, A.; Sarkar, F.H. Genistein enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitors and inhibits nuclear factor kappa B in nonsmall cell lung cancer cell lines. Cancer, 2009, 115(10), 2165-2176.
[http://dx.doi.org/10.1002/cncr.24250] [PMID: 19288574]
[88]
Sang, S. Tea: chemistry and processing. In: Encyclopedia of Food and Health; Caballero, B.; Finglas, P.M.; Toldrá, F, Eds.; Academic Press 2016, 268-272.
[http://dx.doi.org/10.1016/B978-0-12-384947-2.00685-1]
[89]
Mizuno, H.; Cho, Y-Y.; Zhu, F.; Ma, W-Y.; Bode, A.M.; Yang, C.S.; Ho, C-T.; Dong, Z. Theaflavin-3, 3′-digallate induces epidermal growth factor receptor downregulation. Mol. Carcinog., 2006, 45(3), 204-212.
[http://dx.doi.org/10.1002/mc.20174] [PMID: 16353237]
[90]
Quercetin (biochemistry). Encyclopædia Britannica., https://www.britannica.com/science/quercitin accessed at: September 25, 2020.
[91]
Arunakaran, J. Quercetin, a Natural Dietary Flavonoid Inhibits, Reverses, Retards Tumorigenesis in Prostate and Breast Cancer. Ann. Pharmacol. Pharm, 2017, 2(8), 1085.
[92]
Lee, L-T.; Huang, Y-T.; Hwang, J-J.; Lee, P-P.H.; Ke, F-C.; Nair, M.P.; Kanadaswam, C.; Lee, M-T. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res., 2002, 22(3), 1615-1627.
[PMID: 12168845]
[93]
Glade Bender, J.; Cooney, E.M.; Kandel, J.J.; Yamashiro, D.J. Vascular remodeling and clinical resistance to antiangiogenic cancer therapy. Drug Resist. Updat., 2004, 7(4-5), 289-300.
[http://dx.doi.org/10.1016/j.drup.2004.09.001] [PMID: 15533766]
[94]
Benjamin, L.E.; Hemo, I.; Keshet, E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 1998, 125(9), 1591-1598.
[PMID: 9521897]
[95]
Gerhardt, H.; Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res., 2003, 314(1), 15-23.
[http://dx.doi.org/10.1007/s00441-003-0745-x] [PMID: 12883993]
[96]
Hellström, M.; Kalén, M.; Lindahl, P.; Abramsson, A.; Betsholtz, C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 1999, 126(14), 3047-3055.
[PMID: 10375497]
[97]
Lamy, S.; Beaulieu, E.; Labbé, D.; Bédard, V.; Moghrabi, A.; Barrette, S.; Gingras, D.; Béliveau, R. Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signaling. Carcinogenesis, 2008, 29(5), 1033-1041.
[http://dx.doi.org/10.1093/carcin/bgn070] [PMID: 18339683]
[98]
Sivasankar, S.; Lavanya, R.; Brindha, P.; Angayarkanni, N. Aqueous and alcoholic extracts of Triphala and their active compounds chebulagic acid and chebulinic acid prevented epithelial to mesenchymal transition in retinal pigment epithelial cells, by inhibiting SMAD-3 phosphorylation. PLoS One, 2015, 10(3), e0120512.
[http://dx.doi.org/10.1371/journal.pone.0120512] [PMID: 25793924]
[99]
Yi, Z.C.; Liu, Y.Z.; Li, H.X.; Wang, Z. Chebulinic acid and tellimagrandin I inhibit DNA strand breaks by hydroquinone/Cu(II) and H(2)O(2)/Cu(II), but potentiate DNA strand breaks by H(2)O(2)/Fe(II). Toxicol. In Vitro, 2009, 23(4), 667-673.
[http://dx.doi.org/10.1016/j.tiv.2009.03.009] [PMID: 19328845]
[100]
Afshari, A.R.; Sadeghnia, H.R.; Mollazadeh, H. A Review on Potential Mechanisms of Terminalia chebula in Alzheimer’s Disease. Adv. Pharmacol. Sci., 2016, 2016, 8964849.
[http://dx.doi.org/10.1155/2016/8964849] [PMID: 26941792]
[101]
Song, I-S.; Jeong, Y.J.; Park, J.H.; Shim, S.; Jang, S-W. Chebulinic acid inhibits smooth muscle cell migration by suppressing PDGF-Rβ phosphorylation and inhibiting matrix metalloproteinase-2 expression. Sci. Rep., 2017, 7(1), 11797.
[http://dx.doi.org/10.1038/s41598-017-12221-w] [PMID: 28924208]
[102]
Seigler, D.S. Plant Secondary Metabolism Springer Science & Business Media Boston; , 1998.
[http://dx.doi.org/10.1007/978-1-4615-4913-0]
[103]
Daniel, E.M.; Kropnick, A.S.; Heur, Y.H.; Blinzler, J.A.; Nims, R.W.; Stoner, G.D. Extraction, stability, and quantitation of ellagic acid invarious fruit and nuts. J. Food Compos. Anal., 1990, 2, 338-349.
[http://dx.doi.org/10.1016/0889-1575(89)90005-7]
[104]
Labrecque, L.; Lamy, S.; Chapus, A.; Mihoubi, S.; Durocher, Y.; Cass, B.; Bojanowski, M.W.; Gingras, D.; Béliveau, R. Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary-derived phenolic compound. Carcinogenesis, 2005, 26(4), 821-826.
[http://dx.doi.org/10.1093/carcin/bgi024] [PMID: 15661805]
[105]
Mangels, A.R.; Holden, J.M.; Beecher, G.R.; Forman, M.R.; Lanza, E. Carotenoid content of fruits and vegetables: an evaluation of analytic data. J. Am. Diet. Assoc., 1993, 93(3), 284-296.
[http://dx.doi.org/10.1016/0002-8223(93)91553-3] [PMID: 8440826]
[106]
Sesso, H.D. Carotenoids and cardiovascular disease: what research gaps remain? Curr. Opin. Lipidol., 2006, 17(1), 11-16.
[http://dx.doi.org/10.1097/01.mol.0000203888.42514.27] [PMID: 16407710]
[107]
Lo, H-M.; Tsai, Y-J.; Du, W-Y.; Tsou, C-J.; Wu, W-B. A naturally occurring carotenoid, lutein, reduces PDGF and H₂O₂ signaling and compromised migration in cultured vascular smooth muscle cells. J. Biomed. Sci., 2012, 19, 18.
[http://dx.doi.org/10.1186/1423-0127-19-18] [PMID: 22313606]
[108]
Ohio State University. Compound in Mediterranean diet makes cancer cells 'mortal'. ScienceDaily. www.sciencedaily.com/releases/2013/05/130520154303.htm accessed at: September 25, 2020.
[109]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[110]
Lamy, S.; Bédard, V.; Labbé, D.; Sartelet, H.; Barthomeuf, C.; Gingras, D.; Béliveau, R. The dietary flavones apigenin and luteolin impair smooth muscle cell migration and VEGF expression through inhibition of PDGFR-β phosphorylation. Cancer Prev. Res. (Phila.), 2008, 1(6), 452-459.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0072] [PMID: 19138992]
[111]
Heldin, C.H.; Ostman, A.; Rönnstrand, L. Signal transduction via platelet-derived growth factor receptors. Biochim. Biophys. Acta, 1998, 1378(1), F79-F113.
[http://dx.doi.org/10.1016/s0304-419x(98)00015-8] [PMID: 9739761]
[112]
Huang, C.; Jacobson, K.; Schaller, M.D. MAP kinases and cell migration. J. Cell Sci., 2004, 117(Pt 20), 4619-4628.
[http://dx.doi.org/10.1242/jcs.01481] [PMID: 15371522]
[113]
Zhan, Y.; Kim, S.; Izumi, Y.; Izumiya, Y.; Nakao, T.; Miyazaki, H.; Iwao, H. Role of JNK, p38, and ERK in platelet-derived growth factor-induced vascular proliferation, migration, and gene expression. Arterioscler. Thromb. Vasc. Biol., 2003, 23(5), 795-801.
[http://dx.doi.org/10.1161/01.ATV.0000066132.32063.F2] [PMID: 12637337]
[114]
Abramsson, A.; Lindblom, P.; Betsholtz, C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest., 2003, 112(8), 1142-1151.
[http://dx.doi.org/10.1172/JCI200318549] [PMID: 14561699]
[115]
Reinmuth, N.; Liu, W.; Jung, Y.D.; Ahmad, S.A.; Shaheen, R.M.; Fan, F.; Bucana, C.D.; McMahon, G.; Gallick, G.E.; Ellis, L.M. Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J., 2001, 15(7), 1239-1241.
[http://dx.doi.org/10.1096/fj.00-0693fje] [PMID: 11344100]
[116]
Raffo, A.; Leonardi, C.; Fogliano, V.; Ambrosino, P.; Salucci, M.; Gennaro, L.; Bugianesi, R.; Giuffrida, F.; Quaglia, G. Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem., 2002, 50(22), 6550-6556.
[http://dx.doi.org/10.1021/jf020315t] [PMID: 12381148]
[117]
Wu, W-B.; Chiang, H-S.; Fang, J-Y.; Hung, C-F. Inhibitory effect of lycopene on PDGF-BB-induced signalling and migration in human dermal fibroblasts: a possible target for cancer. Biochem. Soc. Trans., 2007, 35(Pt 5), 1377-1378.
[http://dx.doi.org/10.1042/BST0351377] [PMID: 17956356]
[118]
Takahashi, H.; Nguyen, B.C.Q.; Uto, Y.; Shahinozzaman, M.; Tawata, S.; Maruta, H. 1,2,3-Triazolyl esterization of PAK1-blocking propolis ingredients, artepillin C (ARC) and caffeic acid (CA), for boosting their anti-cancer/anti-PAK1 activities along with cell-permeability. Drug Discov. Ther., 2017, 11(2), 104-109.
[http://dx.doi.org/10.5582/ddt.2017.01009] [PMID: 28442677]
[119]
Ho, H.C.; Chang, H.C.; Ting, C.T.; Kuo, C.Y.; Yang, V.C. Caffeic acid phenethyl ester inhibits proliferation and migration, and induces apoptosis in platelet-derived growth factor-BB-stimulated human coronary smooth muscle cells. J. Vasc. Res., 2012, 49(1), 24-32.
[http://dx.doi.org/10.1159/000329819] [PMID: 21986482]
[120]
Hussain, S.; Slevin, M.; Ahmed, N.; West, D.; Choudhary, M.I.; Naz, H.; Gaffney, J. Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis. BMC Cell Biol., 2009, 10, 30.
[http://dx.doi.org/10.1186/1471-2121-10-30] [PMID: 19389252]
[121]
Medjakovic, S.; Jungbauer, A. Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor. J. Steroid Biochem. Mol. Biol., 2008, 108(1-2), 171-177.
[http://dx.doi.org/10.1016/j.jsbmb.2007.10.001] [PMID: 18060767]
[122]
Wu, X.Y.; Xu, H.; Wu, Z.F.; Chen, C.; Liu, J.Y.; Wu, G.N.; Yao, X.Q.; Liu, F.K.; Li, G.; Shen, L. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models. Oncotarget, 2015, 6(42), 44563-44578.
[http://dx.doi.org/10.18632/oncotarget.6310] [PMID: 26575424]
[123]
Meyer, A.N.; McAndrew, C.W.; Donoghue, D.J. Nordihydroguaiaretic Acid Inhibits an Activated FGFR3 Mutant, and Blocks Downstream Signaling in Multiple Myeloma Cells. Cancer Res., 2008, 68(18), 7362-7370.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0575] [PMID: 18794123]
[124]
Wu, J.; Ji, J.; Weng, B.; Qiu, P.; Kanchana, K.; Wei, T.; Wang, Y.; Cai, Y.; Li, X.; Liang, G. Discovery of novel non-ATP competitive FGFR1 inhibitors and evaluation of their anti-tumor activity in non-small cell lung cancer in vitro and in vivo. Oncotarget, 2014, 5(12), 4543-4553.
[http://dx.doi.org/10.18632/oncotarget.2122] [PMID: 24980830]
[125]
Wang, Y.; Ma, W.; Zheng, W. Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention. Mol. Clin. Oncol., 2013, 1(2), 215-219.
[http://dx.doi.org/10.3892/mco.2012.36] [PMID: 24649149]
[126]
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 2003, 3(10), 721-732.
[http://dx.doi.org/10.1038/nrc1187] [PMID: 13130303]
[127]
Bai, X.; Cerimele, F.; Ushio-Fukai, M.; Waqas, M.; Campbell, P.M.; Govindarajan, B.; Der, C.J.; Battle, T.; Frank, D.A.; Ye, K.; Murad, E.; Dubiel, W.; Soff, G.; Arbiser, J.L. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J. Biol. Chem., 2003, 278(37), 35501-35507.
[http://dx.doi.org/10.1074/jbc.M302967200] [PMID: 12816951]
[128]
Babykutty, S.; Priya, P.S. Nandini, R.J.; Suresh Kumar, M.A.; Nair, M.S.; Srinivas, P.; Gopala, S. Nimbolide retards tumor cell migration, invasion, and angiogenesis by downregulating MMP-2/9 expression via inhibiting ERK1/2 and reducing DNA-binding activity of NF-kB in colon cancer cells. Mol. Carcinog., 2012, 51, 475-490.
[http://dx.doi.org/10.1002/mc.20812] [PMID: 21678498]
[129]
Gururaj, A.E.; Belakavadi, M.; Venkatesh, D.A.; Marmé, D.; Salimath, B.P. Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem. Biophys. Res. Commun., 2002, 297(4), 934-942.
[http://dx.doi.org/10.1016/S0006-291X(02)02306-9] [PMID: 12359244]
[130]
Hamsa, T.P.; Kuttan, G. Harmine inhibits tumour specific neo-vessel formation by regulating VEGF, MMP, TIMP and pro-inflammatory mediators both in vivo and in vitro. Eur. J. Pharmacol., 2010, 649(1-3), 64-73.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.010] [PMID: 20858484]
[131]
Pang, X.; Yi, Z.; Zhang, X.; Sung, B.; Qu, W.; Lian, X.; Aggarwal, B.B.; Liu, M. Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res., 2009, 69(14), 5893-5900.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0755] [PMID: 19567671]
[132]
Lu, K.; Basu, S. The natural compound chebulagic acid inhibits vascular endothelial growth factor A mediated regulation of endothelial cell functions. Sci. Rep., 2015, 5, 9642.
[http://dx.doi.org/10.1038/srep09642] [PMID: 25859636]
[133]
Lu, K.; Chakroborty, D.; Sarkar, C.; Lu, T.; Xie, Z.; Liu, Z.; Basu, S. Triphala and its active constituent chebulinic acid are natural inhibitors of vascular endothelial growth factor-a mediated angiogenesis. PLoS One, 2012, 7(8), e43934.
[http://dx.doi.org/10.1371/journal.pone.0043934] [PMID: 22937129]
[134]
Singh, D.P.; Govindarajan, R.; Rawat, A.K.S. High-performance liquid chromatography as a tool for the chemical standardisation of Triphala--an Ayurvedic formulation. Phytochem. Anal., 2008, 19(2), 164-168.
[http://dx.doi.org/10.1002/pca.1032] [PMID: 17879225]
[135]
Pawar, V.; Lahorkar, P.; Anantha Narayana, D.B. Development of a RP-HPLCmethod for analysis of Triphala Curna and its applicability to test variations in Triphala Curna preparations. Indian J. Pharm. Sci., 2009, 71(4), 382-386.
[http://dx.doi.org/10.4103/0250-474X.57286] [PMID: 20502543]
[136]
Radulović, N.; Quang, D.N.; Hashimoto, T.; Nukada, M.; Asakawa, Y. Terrestrins A-G: p-terphenyl derivatives from the inedible mushroom Thelephora terrestris. Phytochemistry, 2005, 66(9), 1052-1059.
[http://dx.doi.org/10.1016/j.phytochem.2005.03.008] [PMID: 15896375]
[137]
Xie, C.; Koshino, H.; Esumi, Y.; Takahashi, S.; Yoshikawa, K.; Abe, N. Vialinin A, a novel 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenger from an edible mushroom in China. Biosci. Biotechnol. Biochem., 2005, 69(12), 2326-2332.
[http://dx.doi.org/10.1271/bbb.69.2326] [PMID: 16377890]
[138]
Sonowal, H.; Shukla, K.; Kota, S.; Saxena, A.; Ramana, K.V. Vialinin A, an Edible Mushroom-Derived p-Terphenyl Antioxidant, Prevents VEGF-Induced Neovascularization In Vitro and In Vivo. Oxid. Med. Cell. Longev., 2018, 2018, 1052102.
[http://dx.doi.org/10.1155/2018/1052102] [PMID: 29541344]
[139]
Zhou, X.; Yue, G.G-L.; Liu, M.; Zuo, Z.; Lee, J.K.; Li, M.; Tsui, S.K.; Fung, K.P.; Sun, H.; Pu, J.; Lau, C.B. Eriocalyxin B, a natural diterpenoid, inhibited VEGF-induced angiogenesis and diminished angiogenesis-dependent breast tumor growth by suppressing VEGFR-2 signaling. Oncotarget, 2016, 7(50), 82820-82835.
[http://dx.doi.org/10.18632/oncotarget.12652] [PMID: 27756875]
[140]
Yurugi, H.; Zhuang, Y.; Siddiqui, F.A.; Liang, H.; Rosigkeit, S.; Zeng, Y.; Abou-Hamdan, H.; Bockamp, E.; Zhou, Y.; Abankwa, D.; Zhao, W.; Désaubry, L.; Rajalingam, K. A subset of flavaglines inhibits KRAS nanoclustering and activation. J. Cell Sci., 2020, 133(12), jcs244111.
[http://dx.doi.org/10.1242/jcs.244111] [PMID: 32501281]
[141]
Yang, J.; Li, B.; He, Q-Y. Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment. Cell Death Dis., 2018, 9(6), 580.
[http://dx.doi.org/10.1038/s41419-018-0661-3] [PMID: 29784973]
[142]
Yurugi, H.; Marini, F.; Weber, C.; David, K.; Zhao, Q.; Binder, H.; Désaubry, L.; Rajalingam, K. Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene, 2017, 36(42), 5914.
[http://dx.doi.org/10.1038/onc.2017.307] [PMID: 28846116]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy