Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of a Novel Epithelial-to-mesenchymal-related Gene Signature in Predicting Survival of Patients with Hepatocellular Carcinoma

Author(s): Simeng Xiao, Junjie Hu, Na Hu, Lei Sheng, Hui Rao and Guohua Zheng*

Volume 25, Issue 8, 2022

Published on: 12 January, 2022

Page: [1254 - 1270] Pages: 17

DOI: 10.2174/1386207324666210303093629

Price: $65

Abstract

Background: Epithelial-mesenchymal transformation (EMT) promotes cancer metastasis, including hepatocellular carcinoma. Therefore, EMT-related gene signature was explored.

Objective: The present study was designed to develop an EMT-related gene signature for predicting the prognosis of patients with hepatocellular carcinoma..

Methods: An integrated gene expression analysis based on tumor data of the patients with hepatocellular carcinoma from The Cancer Genome Atlas (TCGA), HCCDB18, and GSE14520 dataset was conducted. An EMT-related gene signature was constructed by the least absolute shrinkage and selection operator (LASSO) and COX regression analysis of univariate and multivariate survival.

Results: A 3-EMT gene signature was developed and validated based on gene expression profiles of hepatocellular carcinoma from three microarray platforms. Patients with a high-risk score had significantly worse overall survival (OS) than those with low-risk scores. The EMT-related gene signature showed a high performance in accurately predicting prognosis and examining the clinical characteristics and immune score analysis. Univariate and multivariate Cox regression analyses confirmed that the EMT-related gene signature was an independent prognostic factor for predicting survival in hepatocellular carcinoma patients. Compared with the existing models, our EMTrelated gene signature reached a higher area under the curve (AUC).

Conclusion: Our findings provide novel insight into understanding EMT and help identify hepatocellular carcinoma patients with poor prognosis.

Keywords: Hepatocellular carcinoma, epithelial-mesenchymal transformation, signature, prognosis, bioinformatics, liver cancer.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Yuen, M.F.; Hou, J.L.; Chutaputti, A. Asia Pacific Working Party on Prevention of Hepatocellular Carcinoma. Hepatocellular carcinoma in the Asia pacific region. J. Gastroenterol. Hepatol., 2009, 24(3), 346-353.
[http://dx.doi.org/10.1111/j.1440-1746.2009.05784.x] [PMID: 19220670]
[3]
Mao, K.; Wang, J. Present treatment situation of hepatocellular carcinoma with extrahepatic metastasis. Zhonghua Wai Ke Za Zhi, 2019, 57(6), 466-470.
[PMID: 31142072]
[4]
Mittal, V. Epithelial Mesenchymal transition in tumor metastasis. Annu. Rev. Pathol., 2018, 13, 395-412.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043854] [PMID: 29414248]
[5]
Yan, L.; Xu, F.; Dai, C.L. Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 203.
[http://dx.doi.org/10.1186/s13046-018-0887-z] [PMID: 30157906]
[6]
Giannelli, G.; Koudelkova, P.; Dituri, F.; Mikulits, W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J. Hepatol., 2016, 65(4), 798-808.
[http://dx.doi.org/10.1016/j.jhep.2016.05.007] [PMID: 27212245]
[7]
Ma, J.L.; Zeng, S.; Zhang, Y.; Deng, G.L.; Shen, H. Epithelial-mesenchymal transition plays a critical role in drug resistance of hepatocellular carcinoma cells to oxaliplatin. Tumour Biol., 2016, 37(5), 6177-6184.
[http://dx.doi.org/10.1007/s13277-015-4458-z] [PMID: 26614432]
[8]
Liang, R.; Lin, Y.; Ye, J.Z.; Yan, X.X.; Liu, Z.H.; Li, Y.Q.; Luo, X.L.; Ye, H.H. High expression of RBM8A predicts poor patient prognosis and promotes tumor progression in hepatocellular carcinoma. Oncol. Rep., 2017, 37(4), 2167-2176.
[http://dx.doi.org/10.3892/or.2017.5457] [PMID: 28259942]
[9]
Lin, Y.; Liang, R.; Qiu, Y.; Lv, Y.; Zhang, J.; Qin, G.; Yuan, C.; Liu, Z.; Li, Y.; Zou, D.; Mao, Y. Expression and gene regulation network of RBM8A in hepatocellular carcinoma based on data mining. Aging (Albany NY), 2019, 11(2), 423-447.
[http://dx.doi.org/10.18632/aging.101749] [PMID: 30670676]
[10]
Zhao, Y.R.; Wang, J.L.; Xu, C.; Li, Y.M.; Sun, B.; Yang, L.Y. HEG1 indicates poor prognosis and promotes hepatocellular carcinoma invasion, metastasis, and EMT by activating Wnt/-catenin signaling. Clin. Sci., 2019, 133(14), 1645-1662.
[11]
The TCGA Legacy The TCGA Legacy. Cell, 2018, 173(2), 281-282.
[http://dx.doi.org/10.1016/j.cell.2018.03.049] [PMID: 29625044]
[12]
Lian, Q.; Wang, S.; Zhang, G.; Wang, D.; Luo, G.; Tang, J.; Chen, L.; Gu, J. HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics Proteomics Bioinformatics, 2018, 16(4), 269-275.
[http://dx.doi.org/10.1016/j.gpb.2018.07.003] [PMID: 30266410]
[13]
Liu, G.M.; Zeng, H.D.; Zhang, C.Y.; Xu, J.W. Identification of a six-gene signature predicting overall survival for hepatocellular carcinoma. Cancer Cell Int., 2019, 19, 138.
[http://dx.doi.org/10.1186/s12935-019-0858-2] [PMID: 31139015]
[14]
Nadarajah, S.; Bakar, S.A.A. A new R package for actuarial survival models. Comput. Stat., 2013, 28(5), 2139-2160.
[http://dx.doi.org/10.1007/s00180-013-0400-2]
[15]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[16]
Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; de Reyniès, A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol., 2016, 17(1), 218.
[http://dx.doi.org/10.1186/s13059-016-1070-5] [PMID: 27765066]
[17]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[18]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 2013, 14, 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[19]
Zheng, Y.; Liu, Y.; Zhao, S.; Zheng, Z.; Shen, C.; An, L.; Yuan, Y. Large-scale analysis reveals a novel risk score to predict overall survival in hepatocellular carcinoma. Cancer Manag. Res., 2018, 10, 6079-6096.
[http://dx.doi.org/10.2147/CMAR.S181396] [PMID: 30538557]
[20]
Hu, B.; Yang, X.B.; Sang, X.T. Development of an immune-related prognostic index associated with hepatocellular carcinoma. Aging (Albany NY), 2020, 12(6), 5010-5030.
[http://dx.doi.org/10.18632/aging.102926] [PMID: 32191631]
[21]
Ke, K.; Chen, G.; Cai, Z.; Huang, Y.; Zhao, B.; Wang, Y.; Liao, N.; Liu, X.; Li, Z.; Liu, J. Evaluation and prediction of hepatocellular carcinoma prognosis based on molecular classification. Cancer Manag. Res., 2018, 10, 5291-5302.
[http://dx.doi.org/10.2147/CMAR.S178579] [PMID: 30464626]
[22]
Long, J.; Zhang, L.; Wan, X.; Lin, J.; Bai, Y.; Xu, W.; Xiong, J.; Zhao, H. A four-gene-based prognostic model predicts overall survival in patients with hepatocellular carcinoma. J. Cell. Mol. Med., 2018, 22(12), 5928-5938.
[http://dx.doi.org/10.1111/jcmm.13863] [PMID: 30247807]
[23]
Chen, P.F.; Li, Q.H.; Zeng, L.R.; Yang, X.Y.; Peng, P.L.; He, J.H.; Fan, B. A 4-gene prognostic signature predicting survival in hepatocellular carcinoma. J. Cell. Biochem., 2019, 120(6), 9117-9124.
[http://dx.doi.org/10.1002/jcb.28187] [PMID: 30582205]
[24]
Zou, B.; Liu, X.; Gong, Y.; Cai, C.; Li, P.; Xing, S.; Pokhrel, B.; Zhang, B.; Li, J. A novel 12-marker panel of cancer-associated fibroblasts involved in progression of hepatocellular carcinoma. Cancer Manag. Res., 2018, 10, 5303-5311.
[http://dx.doi.org/10.2147/CMAR.S176152] [PMID: 30464627]
[25]
Li, G.; Xu, W.; Zhang, L.; Liu, T.; Jin, G.; Song, J.; Wu, J.; Wang, Y.; Chen, W.; Zhang, C.; Chen, X.; Ding, Z.; Zhu, P.; Zhang, B. Development and validation of a CIMP-associated prognostic model for hepatocellular carcinoma. EBioMedicine, 2019, 47, 128-141.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.064] [PMID: 31492561]
[26]
Scheau, C.; Badarau, I.A.; Costache, R.; Caruntu, C.; Mihai, G.L.; Didilescu, A.C.; Constantin, C.; Neagu, M. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal. Cell. Pathol. (Amst.), 2019, 2019, 9423907.
[http://dx.doi.org/10.1155/2019/9423907] [PMID: 31886121]
[27]
Lai, Y.L.; Gong, C.L.; Fu, C.K.; Yueh, T.C.; Tsai, C.W.; Chang, W.S.; Hsiao, C.L.; Yen, S.T.; Li, H.T.; Jeng, L.B.; Wang, S.C.; Bau, D.T. The contribution of matrix metalloproteinase-1 genotypes to hepatocellular carcinoma susceptibility in Taiwan. Cancer Genomics Proteomics, 2017, 14(2), 119-125.
[http://dx.doi.org/10.21873/cgp.20024] [PMID: 28387651]
[28]
Shang, S.; Plymoth, A.; Ge, S.; Feng, Z.; Rosen, H.R.; Sangrajrang, S.; Hainaut, P.; Marrero, J.A.; Beretta, L. Identification of osteopontin as a novel marker for early hepatocellular carcinoma. Hepatology, 2012, 55(2), 483-490.
[http://dx.doi.org/10.1002/hep.24703] [PMID: 21953299]
[29]
Ye, Q.H.; Qin, L.X.; Forgues, M.; He, P.; Kim, J.W.; Peng, A.C.; Simon, R.; Li, Y.; Robles, A.I.; Chen, Y.; Ma, Z.C.; Wu, Z.Q.; Ye, S.L.; Liu, Y.K.; Tang, Z.Y.; Wang, X.W. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat. Med., 2003, 9(4), 416-423.
[http://dx.doi.org/10.1038/nm843] [PMID: 12640447]
[30]
Wang, J.; Hao, F.; Fei, X.; Chen, Y. SPP1 functions as an enhancer of cell growth in hepatocellular carcinoma targeted by miR-181c. Am. J. Transl. Res., 2019, 11(11), 6924-6937.
[PMID: 31814897]
[31]
Slany, A.; Meshcheryakova, A.; Beer, A.; Ankersmit, H.J.; Paulitschke, V.; Gerner, C. Plasticity of fibroblasts demonstrated by tissue-specific and function-related proteome profiling. Clin. Proteomics, 2014, 11(1), 41.
[http://dx.doi.org/10.1186/1559-0275-11-41] [PMID: 26029019]
[32]
Noda, T.; Yamamoto, H.; Takemasa, I.; Yamada, D.; Uemura, M.; Wada, H.; Kobayashi, S.; Marubashi, S.; Eguchi, H.; Tanemura, M.; Umeshita, K.; Doki, Y.; Mori, M.; Nagano, H. PLOD2 induced under hypoxia is a novel prognostic factor for hepatocellular carcinoma after curative resection. Liver Int.,
[http://dx.doi.org/10.1111/j.1478-3231.2011.02619.x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy