Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Review Article

Alzheimer’s Disease: Pathogenesis and Therapeutic Interventions

Author(s): John O. Ogbodo, Chinazom P. Agbo*, Ugochi O. Njoku, Martins O. Ogugofor, Simeon I. Egba, Stella A. Ihim, Adaeze C. Echezona, Kenneth C. Brendan, Aman B. Upaganlawar and Chandrashekhar D. Upasani

Volume 15, Issue 1, 2022

Published on: 02 March, 2021

Page: [2 - 25] Pages: 24

DOI: 10.2174/1874609814666210302085232

Price: $65

conference banner
Abstract

Background: Alzheimer’s Disease (AD) is the most common cause of dementia. Genetics, excessive exposure to environmental pollutants, as well as unhealthy lifestyle practices are often linked to the development of AD. No therapeutic approach has achieved complete success in treating AD; however, early detection and management with appropriate drugs are key to improving prognosis.

Interventions: The pathogenesis of AD was extensively discussed in order to understand the reasons for the interventions suggested. The interventions reviewed include the use of different therapeutic agents and approaches, gene therapy, adherence to healthy dietary plans (Mediterranean diet, Okinawan diet and MIND diet), as well as the use of medicinal plants. The potential of nanotechnology as a multidisciplinary and interdisciplinary approach in the design of nano-formulations of AD drugs and the use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic tools for early detection of Alzheimer’s disease were also discussed.

Keywords: Alzheimer’s disease, dementia, environmental pollutants, diet, nanoformulations, neurotransmitters, medicinal plants.

Graphical Abstract

[1]
Nazem A, Mansoori GA. Nanotechnology for Alzheimer’s disease detection and treatment. Insciences J 2011; 1(4): 169-93.
[http://dx.doi.org/10.5640/insc.0104169]
[2]
Grossberg GT, Desai AK. Management of Alzheimer’s disease. J Gerontol A Biol Sci Med Sci 2003; 58(4): 331-53.
[http://dx.doi.org/10.1093/gerona/58.4.M331] [PMID: 12663697]
[3]
Dunkin JJ, Anderson-Hanley C. Dementia caregiver burden: A review of the literature and guidelines for assessment and intervention. Neurology 1998; 51(suppl 1): S53-60.
[http://dx.doi.org/10.1212/WNL.51.1_Suppl_1.S53]
[4]
Md S, Bhattmisra SK, Zeeshan F, et al. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 2018; 43: 295-310.
[http://dx.doi.org/10.1016/j.jddst.2017.09.022]
[5]
Wen MM, El-Salamouni NS, El-Refaie WM, et al. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J Control Release 2017; 245: 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.025] [PMID: 27889394]
[6]
Kumar A, Singh A, Ekavali . A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol Rep 2015; 67(2): 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[7]
Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2(8): a006239.
[http://dx.doi.org/10.1101/cshperspect.a006239] [PMID: 22908189]
[8]
Calcul L, Zhang B, Jinwal UK, Dickey CA, Baker BJ. Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med Chem 2012; 4(13): 1751-61.
[http://dx.doi.org/10.4155/fmc.12.124] [PMID: 22924511]
[9]
Moulton PV, Yang W. Air pollution, oxidative stress, and Alzheimer’s disease. J Environ Public Health 2012; 2012: 472751.
[http://dx.doi.org/10.1155/2012/472751] [PMID: 22523504]
[10]
Bird TD. Alzheimer’s disease overview. Gene Reviews. Seattle, Wash, USA: University of Washington 1998.
[11]
Viña J, Lloret A. Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-beta peptide. J Alzheimers Dis 2010; 20(2)(Suppl. 2): S527-33.
[http://dx.doi.org/10.3233/JAD-2010-100501] [PMID: 20442496]
[12]
Harris MH, Gold DR, Rifas-Shiman SL, et al. Prenatal and childhood traffic-related pollution exposure and childhood cognition in the project viva cohort (Massachusetts, USA). Environ Health Perspect 2015; 123(10): 1072-8.
[http://dx.doi.org/10.1289/ehp.1408803] [PMID: 25839914]
[13]
Chiu YHM, Bellinger DC, Coull BA, et al. Associations between traffic-related black carbon exposure and attention in a prospective birth cohort of urban children. Environ Health Perspect 2013; 121(7): 859-64.
[http://dx.doi.org/10.1289/ehp.1205940] [PMID: 23665743]
[14]
Zeng Y, Gu D, Purser J, Hoenig H, Christakis N. Associations of environmental factors with elderly health and mortality in China. Am J Public Health 2010; 100(2): 298-305.
[http://dx.doi.org/10.2105/AJPH.2008.154971] [PMID: 20019314]
[15]
Wellenius GA, Boyle LD, Coull BA, et al. Residential proximity to nearest major roadway and cognitive function in community-dwelling seniors: Results from the MOBILIZE Boston Study. J Am Geriatr Soc 2012; 60(11): 2075-80.
[http://dx.doi.org/10.1111/j.1532-5415.2012.04195.x] [PMID: 23126566]
[16]
Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci 2010; 31(5): 199-205.
[http://dx.doi.org/10.1016/j.tips.2010.01.003] [PMID: 20172613]
[17]
Ding Z, Jiang Y, Liu X. Nanoemulsions-Based Drug Delivery for Brain Tumors. Nanoemulsions-based drug delivery for brain tumors Nanotechnology-based targeted drug delivery systems for brain tumors. 2018; pp. 327-58.
[http://dx.doi.org/10.1016/B978-0-12-812218-1.00012-9]
[18]
Kawadkar J, Chauhan MK, Maharana M. Nanobiotechnology : Application of nanotechnology in diagnosis, drug discovery and drug development. Asian J Pharma Clinic Res 2011; 4(1): 23-8.
[19]
Safari J, Zarnegar Z. Advanced drug delivery systems : Nanotechnology of health design A review. J Saudi Chem Soc 2014; 18(2): 85-99.
[http://dx.doi.org/10.1016/j.jscs.2012.12.009]
[20]
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235: 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[21]
Fonseca-Santos B, Gremião MP, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 2015; 10: 4981-5003.
[http://dx.doi.org/10.2147/IJN.S87148] [PMID: 26345528]
[22]
Alzheimer’s disease - causes, symptoms, prevention Southern Cross Medical [updated 16th June 2017; cited 8th April 2020]. Available from: https://www.southerncross.co.nz/group/medical-library/alzheimers-disease-causes-symptoms-prevention%0D
[23]
Wollen KA. Alzheimer’s disease: The pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners. Altern Med Rev 2010; 15(3): 223-44.
[PMID: 21155625]
[24]
Kim AC, Lim S, Kim YK. Metal ion effects on Aβ and tau aggregation. Int J Mol Sci 2018; 19(1): 1-15.
[http://dx.doi.org/10.3390/ijms19010128] [PMID: 29301328]
[25]
Rajasekhar K, Govindaraju T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease. RSC Advances 2018; 8(42): 23780-804.
[http://dx.doi.org/10.1039/C8RA03620A]
[26]
Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 2015; 52: 1-18.
[http://dx.doi.org/10.1016/j.npep.2015.06.008] [PMID: 26149638]
[27]
Mendiola-Precoma J, Berumen LC, Garcia-Alocer G. Therapies for prevention and treatment of Alzheimers disease. Biomed Res Int 2016; 2589276.
[http://dx.doi.org/101155/2016/2589276.]
[28]
Moraes M, Gaudet TJ. Immunotherapeutic and pharmacological approaches for the treatment of Alzheimers disease. Bioscience Horizons: Int J Student Res 2018; 11(hzy001): 1-7.
[29]
Spuch C, Ortolano S, Navarro C. LRP-1 and LRP-2 receptors function in the membrane neuron. Trafficking mechanisms and proteolytic processing in Alzheimer’s disease. Front Physiol 2012; 3(269): 269.
[http://dx.doi.org/10.3389/fphys.2012.00269] [PMID: 22934024]
[30]
Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet Med 2016; 18(5): 421-30.
[http://dx.doi.org/10.1038/gim.2015.117] [PMID: 26312828]
[31]
Šimić G, Babić Leko M, Wray S, et al. Tau protein hyperphosphorylation and aggregation in alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 2016; 6(1): 6.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[32]
Jung CR, Lin YT, Hwang BF. Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: A population-based cohort study in Taiwan. J Alzheimers Dis 2015; 44(2): 573-84.
[http://dx.doi.org/10.3233/JAD-140855] [PMID: 25310992]
[33]
Oudin A, Forsberg B, Adolfsson AN, et al. Traffic-related air pollution and dementia incidence in Northern Sweden: A longitudinal study. Environ Health Perspect 2016; 124(3): 306-12.
[http://dx.doi.org/10.1289/ehp.1408322] [PMID: 26305859]
[34]
Poon HF, Calabrese V, Scapagnini G, Butterfield DA. Free radicals and brain aging. Clin Geriatr Med 2004; 20(2): 329-59.
[http://dx.doi.org/10.1016/j.cger.2004.02.005] [PMID: 15182885]
[35]
Migliore L, Coppedè F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res 2009; 674(1-2): 73-84.
[http://dx.doi.org/10.1016/j.mrgentox.2008.09.013] [PMID: 18952194]
[36]
United States Environmental Protection Agency National Air Quality and Emissions Trends Report [homepage on the Internet]. [updated: 8th March 2018; cited: 18th April 2019]. Available from: https://www.epa.gov/criteria-air-pollutants
[37]
Ceko MJ, Aitken JB, Harris HH. Speciation of copper in a range of food types by X-ray absorption spectroscopy. Food Chem 2014; 164: 50-4.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.018] [PMID: 24996304]
[38]
Hsu HW, Bondy SC, Kitazawa M. Environmental and dietary exposure to copper and its cellular mechanisms linking to Alzheimer’s disease. Toxicol Sci 2018; 163(2): 338-45.
[http://dx.doi.org/10.1093/toxsci/kfy025] [PMID: 29409005]
[39]
Gouras GK, Beal MF. Metal chelator decreases Alzheimer β-amyloid plaques. Neuron 2001; 30(3): 641-2.
[http://dx.doi.org/10.1016/S0896-6273(01)00330-0] [PMID: 11430794]
[40]
Huang X, Cuajungco MP, Atwood CS, et al. Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 1999; 274(52): 37111-6.
[http://dx.doi.org/10.1074/jbc.274.52.37111] [PMID: 10601271]
[41]
Salustri C, Barbati G, Ghidoni R, et al. Is cognitive function linked to serum free copper levels? A cohort study in a normal population. Clin Neurophysiol 2010; 121(4): 502-7.
[http://dx.doi.org/10.1016/j.clinph.2009.11.090] [PMID: 20097602]
[42]
Crouch PJ, Savva MS, Hung LW, et al. The Alzheimer's therapeutic PBT2 promoter amyloid- degradation and GSK3 phosphorlation via a metal chaperone activity. J Neurochem 2011; 119(1): 220-230..
[http://dx.doi.org/1111/j.1471-4159.2011.07402.x.]
[43]
Meyer-Baron M, Schäper M, Knapp G, van Thriel C. Occupational aluminum exposure: evidence in support of its neurobehavioral impact. Neurotoxicology 2007; 28(6): 1068-78.
[http://dx.doi.org/10.1016/j.neuro.2007.07.001] [PMID: 17692380]
[44]
Mirza A, King A, Troakes C, Exley C. Aluminium in brain tissue in familial Alzheimer’s disease. J Trace Elem Med Biol 2017; 40: 30-6.
[http://dx.doi.org/10.1016/j.jtemb.2016.12.001] [PMID: 28159219]
[45]
Zhang Q, Zhang F, Ni Y, et al. Effects of aluminum on amyloid-beta aggregation in the context of Alzheimer’s disease. Arab J Chem 2015; 12(8): 2897-904.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.019]
[46]
Kawahara M, Kato M, Kuroda Y. Effects of aluminum on the neurotoxicity of primary cultured neurons and on the aggregation of β-amyloid protein. Brain Res Bull 2001; 55(2): 211-7.
[http://dx.doi.org/10.1016/S0361-9230(01)00475-0] [PMID: 11470317]
[47]
Lei P, Ayton S, Bush AI, Adlard PA. GSK-3 in Neurodegenerative diseases. Int J Alzheimers Dis 2011; 2011: 189246.
[http://dx.doi.org/10.4061/2011/189246] [PMID: 21629738]
[48]
Liu F, Xue Z, Li N, et al. Effects of lead exposure on the expression of amyloid β and phosphorylated tau proteins in the C57BL/6 mouse hippocampus at different life stages. J Trace Elem Med Biol 2014; 28(2): 227-32.
[http://dx.doi.org/10.1016/j.jtemb.2014.01.002] [PMID: 24582137]
[49]
Basha MR, Wei W, Bakheet SA, et al. The fetal basis of amyloidogenesis: Exposure to lead and latent overexpression of amyloid precursor protein and β-amyloid in the aging brain. J Neurosci 2005; 25(4): 823-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4335-04.2005] [PMID: 15673661]
[50]
Bihaqi SW, Bahmani A, Adem A, Zawia NH. Infantile postnatal exposure to lead (Pb) enhances tau expression in the cerebral cortex of aged mice: Relevance to AD. Neurotoxicology 2014; 44: 114-20.
[http://dx.doi.org/10.1016/j.neuro.2014.06.008] [PMID: 24954411]
[51]
Li X, Lv Y, Yu S, Zhao H, Yao L. The effect of cadmium on Aβ levels in APP/PS1 transgenic mice. Exp Ther Med 2012; 4(1): 125-30.
[http://dx.doi.org/10.3892/etm.2012.562] [PMID: 23060935]
[52]
Del Pino J, Zeballos G, Anadón MJ, et al. Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels. Arch Toxicol 2016; 90(5): 1081-92.
[http://dx.doi.org/10.1007/s00204-015-1540-7] [PMID: 26026611]
[53]
Ben P, Zhang Z, Zhu Y, et al. l-Theanine attenuates cadmium-induced neurotoxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Neurotoxicology 2016; 57: 95-103.
[http://dx.doi.org/10.1016/j.neuro.2016.09.010] [PMID: 27649883]
[54]
Jiang L-F, Yao T-M, Zhu Z-L, Wang C, Ji LN. Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta 2007; 1774(11): 1414-21.
[http://dx.doi.org/10.1016/j.bbapap.2007.08.014] [PMID: 17920001]
[55]
Olivieri G, Brack C, Müller-Spahn F, et al. Mercury induces cell cytotoxicity and oxidative stress and increases β-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 2000; 74(1): 231-6.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0740231.x] [PMID: 10617124]
[56]
Chan MC, Bautista E, Alvarado-Cruz I, Quintanilla-Vega B, Segovia J. Inorganic mercury prevents the differentiation of SH-SY5Y cells: Amyloid precursor protein, microtubule associated proteins and ROS as potential targets. J Trace Elem Med Biol 2017; 41: 119-28.
[http://dx.doi.org/10.1016/j.jtemb.2017.02.002] [PMID: 28209268]
[57]
Zhang X, Heng X, Li T, et al. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer’s disease transgenic mouse model. J Alzheimers Dis 2011; 24(4): 739-49.
[http://dx.doi.org/10.3233/JAD-2011-101875] [PMID: 21321394]
[58]
Su Y, Ryder J, Li B, et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing. Biochemistry 2004; 43(22): 6899-908.
[http://dx.doi.org/10.1021/bi035627j] [PMID: 15170327]
[59]
Fu Z-Q, Yang Y, Song J, et al. LiCl attenuates thapsigargin-induced tau hyperphosphorylation by inhibiting GSK-3β in vivo and in vitro. J Alzheimers Dis 2010; 21(4): 1107-17.
[http://dx.doi.org/10.3233/JAD-2010-100687] [PMID: 21504119]
[60]
Zhao L, Gong N, Liu M, et al. Beneficial synergistic effects of microdose lithium with pyrroloquinoline quinone in an Alzheimer’s disease mouse model. Neurobiol Aging 2014; 35(12): 2736-45.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.06.003] [PMID: 25018109]
[61]
Carvalho KM, Winter E, de Souza Antunes AM. Analysis of technological developments in the treatment of alzheimer’s disease through patent documents. Intell Inf Manag 2015; 07(05): 268-81.
[http://dx.doi.org/10.4236/iim.2015.75022]
[62]
Piaceri I, Nacmias B, Sorbi S. Genetics of familial and sporadic Alzheimer’s disease. Front Biosci (Elite Ed) 2013; 5(2): 167-77.
[http://dx.doi.org/10.2741/E605] [PMID: 23276979]
[63]
Barber RC. The genetics of Alzheimer’s disease. Scientifica (Cairo) 2012; 2012: 246210.
[http://dx.doi.org/10.6064/2012/246210] [PMID: 24278680]
[64]
Bertram L, Tanzi RE. Genome-wide association studies in Alzheimer’s disease. Hum Mol Genet 2009; 18(R2): R137-45.
[http://dx.doi.org/10.1093/hmg/ddp406] [PMID: 19808789]
[65]
Sims R, Hill M, Williams J. The multiplex model of the genetics of Alzheimer’s disease. Nature Neuroscience 2020; 311-22. Available from: http://dx.doi.org/10.1038/s41593-020-0599-5
[66]
Bagyinszky E, Youn YC, An SS, Kim S. The genetics of Alzheimer’s disease. Clin Interv Aging 2014; 9: 535-51.
[http://dx.doi.org/10.2147/CIA.S51571] [PMID: 24729694]
[67]
Bertram L, Lange C, Mullin K, et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 2008; 83(5): 623-32.
[http://dx.doi.org/10.1016/j.ajhg.2008.10.008] [PMID: 18976728]
[68]
Alves S, Fol R, Cartier N. Gene therapy strategies for Alzheimer’s disease: An overview. Hum Gene Ther 2016; 27(2): 100-7.
[http://dx.doi.org/10.1089/hum.2016.017] [PMID: 26838997]
[69]
Giau VV, Bagyinszky E, An SS, Kim SY. Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatr Dis Treat 2015; 11: 1723-37.
[http://dx.doi.org/10.2147/NDT.S84266] [PMID: 26213471]
[70]
Lee EG, Tulloch J, Chen S, et al. Redefining transcriptional regulation of the APOE gene and its association with Alzheimer’s disease. PLoS One 2020; 15(1): e0227667.
[http://dx.doi.org/10.1371/journal.pone.0227667] [PMID: 31978088]
[71]
Calderón-Garcidueñas L, Jewells V, Galaz-Montoya C, et al. Interactive and additive influences of Gender, BMI and Apolipoprotein 4 on cognition in children chronically exposed to high concentrations of PM2.5 and ozone. APOE 4 females are at highest risk in Mexico City. Environ Res 2016; 150: 411-22.
[http://dx.doi.org/10.1016/j.envres.2016.06.026] [PMID: 27376929]
[72]
Chai YL, Yeo HK-H, Wang J, et al. Apolipoprotein ɛ4 is associated with dementia and cognitive impairment predominantly due to Alzheimer’s disease and not with vascular cognitive impairment: a Singapore-based cohort. J Alzheimers Dis 2016; 51(4): 1111-8.
[http://dx.doi.org/10.3233/JAD-150902] [PMID: 26923016]
[73]
Liu C-C, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat Rev Neurol 2013; 9(2): 106-18.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[74]
Wang R, Fratiglioni L, Laukka EJ, et al. Effects of vascular risk factors and APOE ε4 on white matter integrity and cognitive decline. Neurology 2015; 84(11): 1128-35.
[http://dx.doi.org/10.1212/WNL.0000000000001379] [PMID: 25672924]
[75]
Safieh M, Korczyn AD, Michaelson DM. ApoE4: An emerging therapeutic target for Alzheimer’s disease. BMC Med 2019; 17(1): 64.
[http://dx.doi.org/10.1186/s12916-019-1299-4] [PMID: 30890171]
[76]
Tan MS, Yu JT, Tan L. Bridging integrator 1 (BIN1): Form, function, and Alzheimer’s disease. Trends Mol Med 2013; 19(10): 594-603.
[http://dx.doi.org/10.1016/j.molmed.2013.06.004] [PMID: 23871436]
[77]
Yu Y, Niccoli T, Ren Z, et al. PICALM rescues glutamatergic neurotransmission, behavioural function and survival in a Drosophila model of Aβ42 toxicity. Hum Mol Genet 2020; 29(14): 2420-34.
[http://dx.doi.org/10.1093/hmg/ddaa125] [PMID: 32592479]
[78]
Zhao Z, Sagare AP, Ma Q, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 2015; 18(7): 978-87.
[http://dx.doi.org/10.1038/nn.4025] [PMID: 26005850]
[79]
Masri I, Salami A, El Shamieh S, et al. rs3851179G > A in PICALM is protective against Alzheimer’ s disease in five different countries surrounding the Mediterranean rs3851179G > A in PICALM is Protective Against Alzheimer’ s Disease in Five Different Countries Surrounding the Mediterranean. Curr Aging Sci 2020; 2019(12): 1-7.
[80]
Harel A, Wu F, Mattson MP, Morris CM, Yao PJ. Evidence for CALM in directing VAMP2 trafficking. Traffic 2008; 9(3): 417-29.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00694.x] [PMID: 18182011]
[81]
Gharesouran J, Rezazadeh M, Khorrami A, Ghojazadeh M, Talebi M. Genetic evidence for the involvement of variants at APOE, BIN1, CR1, and PICALM loci in risk of late-onset Alzheimer’s disease and evaluation for interactions with APOE genotypes. J Mol Neurosci 2014; 54(4): 780-6.
[http://dx.doi.org/10.1007/s12031-014-0377-5] [PMID: 25022885]
[82]
Lee CYD, Daggett A, Gu X, et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in alzheimer’s disease models. Neuron 2018; 97: 1032-48.: e1035.
[http://dx.doi.org/10.1016/j.neuron.2018.02.002]
[83]
Huang TY, Xu H. Bringing order out of chaos: Establishing an epistatic relationship between CD33 and TREM2. Neuron 2019; 103(5): 747-9.
[http://dx.doi.org/10.1016/j.neuron.2019.08.019] [PMID: 31487521]
[84]
Wingo TS, Lah JJ, Levey AI, Cutler DJ. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch Neurol 2012; 69(1): 59-64.
[http://dx.doi.org/10.1001/archneurol.2011.221] [PMID: 21911656]
[85]
Gatz M, Reynolds CA, Fratiglioni L, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 2006; 63(2): 168-74.
[http://dx.doi.org/10.1001/archpsyc.63.2.168] [PMID: 16461860]
[86]
Criswell LA, Pfeiffer KA, Lum RF, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: The PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76(4): 561-71.
[http://dx.doi.org/10.1086/429096] [PMID: 15719322]
[87]
Liu G, Yao L, Liu J, et al. Genetic and Environmental Risk for Alzheimer’s disease (GERAD1) Consortium. Cardiovascular disease contributes to Alzheimer’s disease: evidence from large-scale genome-wide association studies. Neurobiol Aging 2014; 35(4): 786-92.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.10.084] [PMID: 24231519]
[88]
Lee SH, Harold D, Nyholt DR, et al. ANZGene Consortium; International endogene consortium; Genetic and environmental risk for Alzheimer’s disease consortium. Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer’s disease, multiple sclerosis and endometriosis. Hum Mol Genet 2013; 22(4): 832-41.
[http://dx.doi.org/10.1093/hmg/dds491] [PMID: 23193196]
[89]
Escott-Price V, Sims R, Bannister C, et al. GERAD/PERADES; IGAP consortia. Common polygenic variation enhances risk prediction for Alzheimer’s disease. Brain 2015; 138(Pt 12): 3673-84.
[http://dx.doi.org/10.1093/brain/awv268] [PMID: 26490334]
[90]
Escott-Price V, Jones L. Genomic profiling and diagnostic biomarkers in Alzheimer’s disease. Lancet Neurol 2017; 16(8): 582-3.
[http://dx.doi.org/10.1016/S1474-4422(17)30202-8] [PMID: 28721917]
[91]
Escott-Price V, Shoai M, Pither R, Williams J, Hardy J. Polygenic score prediction captures nearly all common genetic risk for Alzheimer’s disease. Neurobiol Aging 2017; 49: 214.e7-214.e11.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.07.018] [PMID: 27595457]
[92]
Klaus PL, Armin H. Serotonergic transcriptional gene control regions: target for antidepressant drug development? Int J Nuerophychopharmacol 2000; 3: 67-79.
[http://dx.doi.org/10.1017/S1461145700001747]
[93]
Yun HM, Rhim H. The serotonin-6 receptor as a novel therapeutic target. Exp Neurobiol 2011; 20(4): 159-68.
[http://dx.doi.org/10.5607/en.2011.20.4.159] [PMID: 22355260]
[94]
Herrera CP, Smith K, Atkinson F, et al. High-glycaemic index and -glycaemic load meals increase the availability of tryptophan in healthy volunteers. Br J Nutr 2011; 105(11): 1601-6.
[http://dx.doi.org/10.1017/S0007114510005192] [PMID: 21349213]
[95]
Friedman M, Levin CE. Nutritional and medicinal aspects of D-amino acids. Amino Acids 2012; 42(5): 1553-82.
[http://dx.doi.org/10.1007/s00726-011-0915-1] [PMID: 21519915]
[96]
Trisha AJ, Jason CDN, Kate EP, et al. Effluence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrition 2016; 8: 56-71.
[97]
Hui L, Qing-song L. Serotonin in the frontal cortex: A potential therapeutic target for neurological disorders. Biochemistry and Pharmacological Journal 2017; 6(1): 2167-0501.
[98]
Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 2016; 321: 24-41.
[http://dx.doi.org/10.1016/j.neuroscience.2015.11.010] [PMID: 26577932]
[99]
Young SN. Acute tryptophan depletion in humans: A review of theoretical, practical and ethical aspects. J Psychiatry Neurosci 2013; 38(5): 294-305.
[http://dx.doi.org/10.1503/jpn.120209] [PMID: 23428157]
[100]
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimers disease: Targeting the cholinergic system. Curr Neuropharmacol 2016; 14(1): 101-15.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[101]
Christensen A, Pike CJ. Menopause, obesity and inflammation: Interactive risk factors for Alzheimer’s disease. Front Aging Neurosci 2015; 7(130): 130.
[http://dx.doi.org/10.3389/fnagi.2015.00130] [PMID: 26217222]
[102]
Hajipour MJ, Santoso MR, Rezaee F, Aghaverdi H, Mahmoudi M, Perry G. Advances in alzheimer’s diagnosis and therapy: The implications of nanotechnology. Trends Biotechnol 2017; 35(10): 937-53.
[http://dx.doi.org/10.1016/j.tibtech.2017.06.002] [PMID: 28666544]
[103]
Ruozi B, Belletti D, Pederzoli F, et al. Nanotechnology and Alzheimer’s disease: What has been done and what to do. Curr Med Chem 2014; 21(36): 4169-85.
[http://dx.doi.org/10.2174/0929867321666140716100056] [PMID: 25039777]
[104]
Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120: 68-87.
[http://dx.doi.org/10.1016/j.phrs.2017.03.020] [PMID: 28351757]
[105]
Fan L, Mao C, Hu X, et al. New insights into the pathogenesis of Alzheimer’s disease. Front Neurol 2020; 10: 1312.
[http://dx.doi.org/10.3389/fneur.2019.01312] [PMID: 31998208]
[106]
Glenner G, Wong C. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloidogenic derivative. Science 1984; 255: 728-30.
[107]
Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol 2010; 9(7): 702-16.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[108]
Contestabile A. The history of the cholinergic hypothesis. Behav Brain Res 2011; 221(2): 334-40.
[http://dx.doi.org/10.1016/j.bbr.2009.12.044] [PMID: 20060018]
[109]
Barnham KJ, Bush AI. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 2014; 43(19): 6727-49.https://pubs.rsc.org/ko/content/articlehtml/2014/cs/c4cs00138a%0D
[http://dx.doi.org/10.1039/C4CS00138A] [PMID: 25099276]
[110]
Dong X-X, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009; 30(4): 379-87.
[http://dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
[111]
Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2017; 35(2): 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005] [PMID: 28043897]
[112]
Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer’s disease. Am J Neurodegener Dis 2016; 5(1): 1-28.
[PMID: 27073740]
[113]
Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim Biophys Acta 2014; 1842(8): 1219-31.
[http://dx.doi.org/10.1016/j.bbadis.2013.09.010] [PMID: 24071439]
[114]
Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur J Pharm Biopharm 2012; 82(1): 1-18.
[http://dx.doi.org/10.1016/j.ejpb.2012.05.014] [PMID: 22687572]
[115]
Karlamangla AS, Miller-Martinez D, Lachman ME, Tun PA, Koretz BK, Seeman TE. Biological correlates of adult cognition: Midlife in the United States (MIDUS). Neurobiol Aging 2014; 35(2): 387-94.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.07.028] [PMID: 24011541]
[116]
Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease-is this type 3 diabetes? J Alzheimers Dis 2005; 7(1): 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[117]
Edland SD. Insulin-degrading enzyme, apolipoprotein E, and Alzheimer’s disease. J Mol Neurosci 2004; 23(3): 213-7.
[http://dx.doi.org/10.1385/JMN:23:3:213] [PMID: 15181249]
[118]
Schiöth HB, Craft S, Brooks SJ, Frey WH II, Benedict C. Brain insulin signaling and Alzheimer’s disease: Current evidence and future directions. Mol Neurobiol 2012; 46(1): 4-10.
[http://dx.doi.org/10.1007/s12035-011-8229-6] [PMID: 22205300]
[119]
Lizard G, Rouaud O, Demarquoy J, Cherkaoui-Malki M, Iuliano L. Potential roles of peroxisomes in Alzheimer’s disease and in dementia of the Alzheimer’s type. J Alzheimers Dis 2012; 29(2): 241-54.
[http://dx.doi.org/10.3233/JAD-2011-111163] [PMID: 22433776]
[120]
Schrader M, Fahimi HD. Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 2004; 122(4): 383-93.
[http://dx.doi.org/10.1007/s00418-004-0673-1] [PMID: 15241609]
[121]
Farooqui AA, Horrocks LA. Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J Mol Neurosci 2001; 16(2-3): 263-72.
[http://dx.doi.org/10.1385/JMN:16:2-3:263] [PMID: 11478381]
[122]
Han X, Holtzman DM, McKeel DWJ Jr. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 2001; 77(4): 1168-80.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00332.x] [PMID: 11359882]
[123]
Ginsberg L, Rafique S, Xuereb JH, Rapoport SI, Gershfeld NL. Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res 1995; 698(1-2): 223-6.
[http://dx.doi.org/10.1016/0006-8993(95)00931-F] [PMID: 8581486]
[124]
Maruszak A, Żekanowski C. Mitochondrial dysfunction and Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(2): 320-30.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.004] [PMID: 20624441]
[125]
Santos RX, Correia SC, Wang X, et al. Alzheimer’s disease: diverse aspects of mitochondrial malfunctioning. Int J Clin Exp Pathol 2010; 3(6): 570-81.
[PMID: 20661404]
[126]
Manczak M, Mao P, Calkins MJ, et al. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 2010; 20(Suppl. 2): S609-31.
[http://dx.doi.org/10.3233/JAD-2010-100564] [PMID: 20463406]
[127]
Oliver DMA, Reddy PH. Small molecules as therapeutic drugs for Alzheimer’s disease. Mol Cell Neurosci 2019; 96: 47-62.
[http://dx.doi.org/10.1016/j.mcn.2019.03.001] [PMID: 30877034]
[128]
Sastry PS. Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 1985; 24(2): 69-176.
[http://dx.doi.org/10.1016/0163-7827(85)90011-6] [PMID: 3916238]
[129]
Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer’s Disease. Int J Mol Sci 2020; 21(4): 1-37.
[http://dx.doi.org/10.3390/ijms21041505] [PMID: 32098382]
[130]
Chen J, Wei Y, Chen X, Jiao J, Zhang Y. Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis. Oncotarget 2017; 8(5): 7301-14.
[http://dx.doi.org/10.18632/oncotarget.14236] [PMID: 28038469]
[131]
Hosseini M, Poljak A, Braidy N, Crawford J, Sachdev P. Blood fatty acids in Alzheimer’s disease and mild cognitive impairment: A meta-analysis and systematic review. Ageing Res Rev 2020; 60101043
[http://dx.doi.org/10.1016/j.arr.2020.101043] [PMID: 32194194]
[132]
Martín V, Fabelo N, Santpere G, et al. Lipid alterations in lipid rafts from Alzheimer’s disease human brain cortex. J Alzheimers Dis 2010; 19(2): 489-502.
[http://dx.doi.org/10.3233/JAD-2010-1242] [PMID: 20110596]
[133]
Giri M, Zhang M, Lü Y. Genes associated with Alzheimer’s disease: An overview and current status. Clin Interv Aging 2016; 11: 665-81.
[http://dx.doi.org/10.2147/CIA.S105769] [PMID: 27274215]
[134]
Zarrouk A, Debbabi M, Bezine M, et al. Lipid Biomarkers in Alzheimer’ s Disease Lipid Biomarkers in Alzheimer ’ s Disease. Curr Alzheimer Res 2017; 14(May): 1-10.
[135]
Liu Q, Zhang J. Lipid metabolism in Alzheimer’s disease. Neurosci Bull 2014; 30(2): 331-45.
[http://dx.doi.org/10.1007/s12264-013-1410-3] [PMID: 24733655]
[136]
Linetti A, Fratangeli A, Taverna E, et al. Cholesterol reduction impairs exocytosis of synaptic vesicles. J Cell Sci 2010; 123(Pt 4): 595-605.
[http://dx.doi.org/10.1242/jcs.060681] [PMID: 20103534]
[137]
Astarita G, Jung KM, Berchtold NC, et al. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS One 2010; 5(9): e12538.
[http://dx.doi.org/10.1371/journal.pone.0012538] [PMID: 20838618]
[138]
Fraser T, Tayler H, Love S. Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer’s disease. Neurochem Res 2010; 35(3): 503-13.
[http://dx.doi.org/10.1007/s11064-009-0087-5] [PMID: 19904605]
[139]
Chew H, Solomon VA, Fonteh AN, et al. Involvement of Lipids in Alzheimer ’ s Disease Pathology and Potential Therapies The Importance of Cellular Lipid Membranes. Front Physiol 2020; 11(June): 1-28.
[140]
Nury T, Lizard G, Vejux A. Lipids Nutrients in Parkinson and Alzheimer ’ s Diseases : Cell Death and Cytoprotection. Int J Mol Sci 2020; 21(2501): 1-19.
[141]
Soto P. Too much tacrine. Poison control, National Capital poison centre [homepage in the Internet] [updated: 2017; cited:27 Nov. 2019]. Available from: https://www.poison.org/articles/tacrine-171%0D
[142]
Farina N, Llewellyn D, Isaac MG, et al. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev 2017; 27(1): CD002854.
[http://dx.doi.org/10.1002/14651858.CD002854.pub4]
[143]
Ener RA, Meglathery SB, Van Decker WA, Gallagher RM. Serotonin syndrome and other serotonergic disorders. Pain Med 2003; 4(1): 63-74.
[http://dx.doi.org/10.1046/j.1526-4637.2003.03005.x] [PMID: 12873279]
[144]
Shah R, Eldridge D, Palombo E, et al. Lipid Nanoparticles: Production, Characterization and Stability. USA: Springer International Publishing 2015.
[145]
Frey D, Frey G. Methods, pharmaceutical compositions and articles of manufacture for administering therapeutic cells to the animal central nervous system. US Patent 8283160 2012.
[146]
Shah B, Khunt D, Bhatt H, Misra M, Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur J Pharm Sci 2015; 78: 54-66.
[http://dx.doi.org/10.1016/j.ejps.2015.07.002] [PMID: 26143262]
[147]
Simonazzi A, Cid AG, Villegas M, et al. Nanotechnology applications in drug controlled release. Drug targeting and stimuli sensitive drug delivery systems. Elsevier Inc. 2018; pp. 81-116.https://www.sciencedirect.com/science/article/pii/B9780128136898000033
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00003-3]
[148]
Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 2008; 1200: 159-68.
[http://dx.doi.org/10.1016/j.brainres.2008.01.039] [PMID: 18291351]
[149]
Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine (Lond) 2011; 7(5): 521-40.
[http://dx.doi.org/10.1016/j.nano.2011.03.008] [PMID: 21477665]
[150]
He W, Horn SW, Hussain MD. Improved bioavailability of orally administered mifepristone from PLGA nanoparticles. Int J Pharm 2007; 334(1-2): 173-8.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.025] [PMID: 17101249]
[151]
DeBattista C, Belanoff J. C-1073 (mifepristone) in the adjunctive treatment of Alzheimer’s disease. Curr Alzheimer Res 2005; 2(2): 125-9.
[http://dx.doi.org/10.2174/1567205053585954] [PMID: 15974908]
[152]
Belanoff JK, Jurik J, Schatzberg LD, DeBattista C, Schatzberg AF. Slowing the progression of cognitive decline in Alzheimer’s disease using mifepristone. J Mol Neurosci 2002; 19(1-2): 201-6.
[http://dx.doi.org/10.1007/s12031-002-0033-3] [PMID: 12212781]
[153]
Liu Y, An S, Li J, et al. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials 2016; 80: 33-45.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.060] [PMID: 26706474]
[154]
Vllasaliu D, Exposito-Harris R, Heras A, et al. Tight junction modulation by chitosan nanoparticles: Comparison with chitosan solution. Int J Pharm 2010; 400(1-2): 183-93.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.020] [PMID: 20727955]
[155]
Fazil M, Md S, Haque S, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 2012; 47(1): 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[156]
Alam S, Khan ZI, Mustafa G, et al. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: A pharmacoscintigraphic study. Int J Nanomedicine 2012; 7: 5705-18.
[http://dx.doi.org/10.2147/IJN.S35329] [PMID: 23180965]
[157]
Md S, Bhavna S, Ali M, et al. Design, Development, optimization and characterization of donepezil loaded chitosan nanoparticles for brain targeting to treat Alzheimer’s disease. Sci Adv Mater 2014; 6: 1-16.
[158]
Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 2008; 70(3): 735-40.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.005] [PMID: 18684400]
[159]
Bondì ML, Craparo EF. Solid lipid nanoparticles for applications in gene therapy: A review of the state of the art. Expert Opin Drug Deliv 2010; 7(1): 7-18.
[http://dx.doi.org/10.1517/17425240903362410] [PMID: 20017658]
[160]
de Mendoza AEH, Lasa-Saracibar B, Campanero MA, et al. Lipid nanoparticles in biomedicine. In: Encyclopedia of nanoscience and nanotechnology. 2010; 15: pp. 455-478..
[161]
Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JE, Omidfar K. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids 2014; 181: 56-61.
[http://dx.doi.org/10.1016/j.chemphyslip.2014.03.006] [PMID: 24717692]
[162]
Gastaldi L, Battaglia L, Peira E, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur J Pharm Biopharm 2014; 87(3): 433-44.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.004] [PMID: 24833004]
[163]
Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008; 127(2): 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[164]
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine (Lond) 2010; 6(1): 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[165]
Muntimadugu E, Dhommati R, Jain A, Challa VG, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci 2016; 92: 224-34.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[166]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[167]
Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv 2008; 5(1): 25-44.
[http://dx.doi.org/10.1517/17425247.5.1.25] [PMID: 18095927]
[168]
Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther 2016; 10: 205-15.
[PMID: 26834457]
[169]
Yang Z-Z, Zhang Y-Q, Wang Z-Z, Wu K, Lou JN, Qi XR. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm 2013; 452(1-2): 344-54.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[170]
Mourtas S, Canovi M, Zona C, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials 2011; 32(6): 1635-45.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.027] [PMID: 21131044]
[171]
Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 2013; 453(1): 198-214.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.042] [PMID: 22944304]
[172]
Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012; 64(7): 686-700.
[http://dx.doi.org/10.1016/j.addr.2011.10.007] [PMID: 22100125]
[173]
Silva AC, Santos D, Ferreira D, Lopes CM. Lipid-based nanocarriers as an alternative for oral delivery of poorly water- soluble drugs: peroral and mucosal routes. Curr Med Chem 2012; 19(26): 4495-510.
[http://dx.doi.org/10.2174/092986712803251584] [PMID: 22834821]
[174]
Sood S, Jain K, Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf B Biointerfaces 2014; 113: 330-7.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.030] [PMID: 24121076]
[175]
Nasr M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv 2016; 23(4): 1444-52.
[http://dx.doi.org/10.3109/10717544.2015.1092619] [PMID: 26401600]
[176]
Busquets MA, Sabaté R, Estelrich J. Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res Lett 2014; 9(1): 538.
[http://dx.doi.org/10.1186/1556-276X-9-538] [PMID: 25288921]
[177]
Luo S, Ma C, Zhu MQ, Ju WN, Yang Y, Wang X. Application of Iron Oxide Nanoparticles in the Diagnosis and Treatment of Neurodegenerative Diseases With Emphasis on Alzheimer’s Disease. Front Cell Neurosci 2020; 14(February): 21.
[http://dx.doi.org/10.3389/fncel.2020.00021] [PMID: 32184709]
[178]
Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN, Salahuddin P. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int J Biol Macromol 2019; 130: 515-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.156] [PMID: 30826404]
[179]
Ulanova M, Poljak A, Wen W, et al. Nanoparticles as contrast agents for the diagnosis of Alzheimer’s disease: A systematic review. Nanomedicine (Lond) 2020; 15(7): 725-43.
[http://dx.doi.org/10.2217/nnm-2019-0316] [PMID: 32141799]
[180]
Georganopoulou DG, Chang L, Nam J-M, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 2005; 102(7): 2273-6.
[http://dx.doi.org/10.1073/pnas.0409336102] [PMID: 15695586]
[181]
Adams RA, Bauer J, Flick MJ, et al. The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 2007; 204(3): 571-82.
[http://dx.doi.org/10.1084/jem.20061931] [PMID: 17339406]
[182]
Stepanichev M. Gene editing and Alzheimer ’ s disease : Is there light at the end of the tunnel? Frontiers in Genome Editing 2020; 2(June): 1-10.
[183]
Tuszynski MH, Yang JH, Barba D, et al. Nerve growth factor gene therapy: Activation of neuro- nal responses in Alzheimer disease. JAMA Neurol 2015; 72(10): 1139-47.
[http://dx.doi.org/10.1001/jamaneurol.2015.1807] [PMID: 26302439]
[184]
Nagahara AH, Merrill DA, Coppola G, et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 2009; 15(3): 331-7.
[http://dx.doi.org/10.1038/nm.1912] [PMID: 19198615]
[185]
Revilla S, Ursulet S, Álvarez-López MJ, et al. Lenti-GDNF gene therapy protects against Alzheimer’s disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther 2014; 20(11): 961-72.
[http://dx.doi.org/10.1111/cns.12312] [PMID: 25119316]
[186]
Pascual-Lucas M, Viana da Silva S, Di Scala M, et al. Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol Med 2014; 6(10): 1246-62.
[http://dx.doi.org/10.15252/emmm.201404228] [PMID: 25100745]
[187]
Hudry E, Van Dam D, Kulik W, et al. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol Ther 2010; 18(1): 44-53.
[http://dx.doi.org/10.1038/mt.2009.175] [PMID: 19654569]
[188]
Burlot MA, Braudeau J, Michaelsen-Preusse K, et al. Cholesterol 24-hydroxylase defect is implicated in memory impairments associated with Alzheimer-like Tau pathology. Hum Mol Genet 2015; 24(21): 5965-76.
[http://dx.doi.org/10.1093/hmg/ddv268] [PMID: 26358780]
[189]
Burckhardt M, Herke M, Wustmann T, Watzke S, Langer G, Fink A. Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev 2016; 4CD009002.
[http://dx.doi.org/10.1002/14651858.CD009002.pub3] [PMID: 27063583]
[190]
Goris ED, Ansel KN, Schutte DL. Quantitative systematic review of the effects of non-pharmacological interventions on reducing apathy in persons with dementia. J Adv Nurs 2016; 72(11): 2612-28.
[http://dx.doi.org/10.1111/jan.13026] [PMID: 27221007]
[191]
Petersson SD, Philippou E. Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Adv Nutr 2016; 7(5): 889-904.
[http://dx.doi.org/10.3945/an.116.012138] [PMID: 27633105]
[192]
Su HM. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 2010; 21(5): 364-73.
[http://dx.doi.org/10.1016/j.jnutbio.2009.11.003] [PMID: 20233652]
[193]
Cansev M, Wurtman RJ, Sakamoto T, Ulus IH. Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses. Alzheimers Dement 2008; 4(1)(Suppl. 1): S153-68.
[http://dx.doi.org/10.1016/j.jalz.2007.10.005] [PMID: 18631994]
[194]
Karstens AJ, Tussing-Humphreys L, Zhan L, et al. Associations of the Mediterranean diet with cognitive and neuroimaging phenotypes of dementia in healthy older adults. Am J Clin Nutr 2019; 109(2): 361-8.
[http://dx.doi.org/10.1093/ajcn/nqy275] [PMID: 30698630]
[195]
Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Effectiveness of the Mediterranean diet: Can it help delay or prevent Alzheimer’s disease? J Alzheimers Dis 2010; 20(3): 795-801.
[http://dx.doi.org/10.3233/JAD-2010-1418] [PMID: 20182044]
[196]
Vassallo N, Scerri C. Mediterranean diet and dementia of the Alzheimer type. Curr Aging Sci 2013; 6(2): 150-62.
[http://dx.doi.org/10.2174/1874609811306020003] [PMID: 23030130]
[197]
Scarmeas N, Luchsinger JA, Mayeux R, Stern Y. Mediterranean diet and Alzheimer disease mortality. Neurology 2007; 69(11): 1084-93.
[http://dx.doi.org/10.1212/01.wnl.0000277320.50685.7c] [PMID: 17846408]
[198]
Kepka A, Ochocinska A, Borzym-Kluczyk M, et al. Preventive role of L-carnitine and balanced diet in Alzheimer’s disease. Nutrients 2020; 12(7): 1-21.
[http://dx.doi.org/10.3390/nu12071987] [PMID: 32635400]
[199]
Cox PA, Metcalf JS. Traditional food items in Ogimi, Okinawa: l-Serine content and the potential for neuroprotection. Curr Nutr Rep 2017; 6(1): 24-31.
[http://dx.doi.org/10.1007/s13668-017-0191-0] [PMID: 28331770]
[200]
Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: A focus on the Okinawan Diet. Physiol Behav 2017; 176(12): 139-48.
[201]
Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr 2009; 28(Suppl.): 500S-16S.
[http://dx.doi.org/10.1080/07315724.2009.10718117] [PMID: 20234038]
[202]
Ding Y, Qiao A, Wang Z, et al. Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model. J Neurosci 2008; 28(45): 11622-34.
[http://dx.doi.org/10.1523/JNEUROSCI.3153-08.2008] [PMID: 18987198]
[203]
Kivipelto M, Rovio S, Ngandu T, et al. Apolipoprotein E epsilon4 magnifies lifestyle risks for dementia: A population-based study. J Cell Mol Med 2008; 12(6B): 2762-71.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00296.x] [PMID: 18318693]
[204]
Zarrouk A, Martine L, Grégoire S, et al. Profile of fatty acids, tocopherols, phytosterols and polyphenols in Mediterranean Oils (argan oils, olive oils, milk thistle seed oils and nigella seed oil) and evaluation of their antioxidant and cytoprotective activities. Curr Pharm Des 2019; 25(15): 1791-805.
[http://dx.doi.org/10.2174/1381612825666190705192902] [PMID: 31298157]
[205]
Badreddine A, Zarrouk A, Karym EM, et al. Argan oil-mediated attenuation of organelle dysfunction, oxidative stress and cell death induced by 7-Ketocholesterol in murine oligodendrocytes 158N. Int J Mol Sci 2017; 18(10): 2220.
[http://dx.doi.org/10.3390/ijms18102220] [PMID: 29065513]
[206]
Ruankham W, Suwanjang W, Wongchitrat P, Prachayasittikul V, Prachayasittikul S, Phopin K. Sesamin and sesamol attenuate H2O2 -induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutr Neurosci 2019; 24(2): 1-12.
[http://dx.doi.org/10.1080/1028415X.2019.1596613] [PMID: 30929586]
[207]
Bhatia HS, Agrawal R, Sharma S, Huo YX, Ying Z, Gomez-Pinilla F. Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood. PLoS One 2011; 6(12)e28451
[http://dx.doi.org/10.1371/journal.pone.0028451] [PMID: 22163304]
[208]
Ahmad SS, Waheed T, Rozeen S, Mahmood S, Kamal MA. Therapeutic study of phytochemicals against cancer and alzheimer’s disease management. Curr Drug Metab 2019; 20(13): 1006-13.
[http://dx.doi.org/10.2174/1389200221666200103092719] [PMID: 31902351]
[209]
Singhal AK, Naithani V, Bangar OP. Medicinal plants with a potential to treat Alzheimer and associated symptoms. International Journal of Nutrition, Pharmacology. Neurological Diseases 2012; 2: 84-91.
[http://dx.doi.org/10.4103/2231-0738.95927]
[210]
Roy A. Role of medicinal plants against Alzheimer’s disease. Int J Complement Alt Med 2018; 11(4): 205-8.
[http://dx.doi.org/10.15406/ijcam.2018.11.00398]
[211]
Pratap GK, Ashwini S, Manjula S. Alzheimer’s disease: A challenge in managing with certain medicinal plants - a review. International Journal of Pharmaceutical Science 4: 4960-72.
[212]
Joy PP, Thomas J, Mathew S, et al. Medicinal Plants. Tropical Horticulture 2001; 2: 449-632.
[213]
Ciccotti M, Raguzzini A, Sciarra T, et al. Nutraceutical-based integrative medicine: Adopting a mediterranean diet pyramid for attaining healthy ageing in veterans with disabilities. Curr Pharm Des 2018; 24(35): 4186-96.
[http://dx.doi.org/10.2174/1381612824666181003113444] [PMID: 30280661]
[214]
Farzaei MH, Shahpiri Z, Mehri MR, et al. Medicinal plants in neurodegenerative diseases: Perspective of traditional persian medicine. Curr Drug Metab 2018; 19(5): 429-42.
[http://dx.doi.org/10.2174/1389200219666180305150256] [PMID: 29512453]
[215]
Shirbeigi L, Dalfardi B, Abolhassanzadeh , et al. Dementia etiologies and remedies in traditional persian medicine; A review of medicinal plants and phytochemistry. Curr Drug Metab 2018; 19: 414-23.
[216]
Kazdal F, Bahadori F, Celik B, Ertas A, Topcu G. Inhibition of amyloid β aggregation using optimized nano-encapsulated formulations of plant extracts with high metal chelator activities. Curr Pharm Biotechnol 2020; 21(8): 681-701.
[http://dx.doi.org/10.2174/1389201021666191210125851] [PMID: 31820684]
[217]
Akram M, Nawaz A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen Res 2017; 12(4): 660-70.
[http://dx.doi.org/10.4103/1673-5374.205108] [PMID: 28553349]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy