Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Polyhedra, Tiles and Graphene Defects: The Case of Tetraoctite

Author(s): José Elguero and Ibon Alkorta*

Volume 19, Issue 2, 2022

Published on: 25 February, 2021

Page: [138 - 145] Pages: 8

DOI: 10.2174/1570193X18666210225121327

Price: $65

Abstract

This mini review concerns hydrocarbons, (CH)n, and carbon allotropes, Cn, and their relationships with regular solids and regular surfaces, respectively. Platonic and Archimedean solids and surfaces related to carbon allotropes are described as an introduction. An overview is then provided on how Stone-Wales defects lead to a series of structures: pentaheptite, Haeckelite, net C, net W, planar C4, biphenylene, graphyne, graphdiyne, and tetraoctite. This last compound is discussed in detail together with its relation to the Mills-Nixon effect on cyclooctatetraene (COT).

Keywords: Mills-Nixon, Stone-Wales, tetraoctite, cyclooctatetraene, pentaheptite, Haeckelite.

Graphical Abstract

[1]
Lewars, E.G. Modeling Marvels: Computational Anticipation of Novel Molecules (Chapter 6, Tetrahedrane); Springer Science+Business Media: Dordrecht., , 2008; pp. 81-104.
[2]
Hargittai, I.; Hargittai, M. In Our Own Image. Personal Symmetry in Discovery; Springer: Heidelberg, 2000.
[http://dx.doi.org/10.1007/978-1-4615-4179-0]
[3]
Pop, R.; Medeleanu, M.; Diudea, M.V.; Szefler, B.; Cioslowski, J. Fullerenes patched by flowers. Cent. Eur. J. Chem., 2013, 11, 527-534.
[4]
Szefler, B.; Diudea, M.V. Quantum-mechanical calculations on molecular substructures involved in nanosystems. Molecules, 2014, 19(10), 15468-15506.
[http://dx.doi.org/10.3390/molecules191015468] [PMID: 25264833]
[5]
Diudea, M.V.; Bende, A.; Nagy, C.L. Carbon multi-shell cages. Phys. Chem. Chem. Phys., 2014, 16(11), 5260-5269.
[http://dx.doi.org/10.1039/c3cp55309d] [PMID: 24492624]
[6]
Diudea, M.V.; Nagy, C.L., Eds.; Diamond and Related Nanostructures; Springer Science+Business Media: Dordrecht, , 2013.
[http://dx.doi.org/10.1007/978-94-007-6371-5]
[7]
Putz, M.V.; Ori, O., Eds.; Exotic Properties of Carbon Nanomatter, Chapter 8: Exotic Allotropes of Carbon; Springer Science+Business Media: Dordrecht , 2015.
[8]
Alkorta, I.; Elguero, J. A theoretical study of the stationary structures of the methane surface with special emphasis on NMR properties. Chem. Phys. Lett., 2010, 489, 35-38.
[http://dx.doi.org/10.1016/j.cplett.2010.02.051]
[9]
The Mathematics and Topology of Fullerenes Cataldo, F.; Graovac, A.; Ori, O., Eds.; Carbon Materials: Chemistry and Physics; Springer Science + Business Media: Dordrecht, , 2011; Vol. 4, .
[10]
Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev., 2015, 115(11), 4744-4822.
[http://dx.doi.org/10.1021/cr500304f] [PMID: 26012488]
[11]
Fullerenes and Other Carbon-Rich NanostructuresNierengarten, J.- F., Ed.; Structure and Bonding; Springer Science + Business Media , 2014; Vol. 159., .
[12]
King, R.B. Riemann surfaces as descriptors for symmetrical negative curvature carbon and boron nitride structures. Croat. Chem. Acta, 2002, 75, 447-473.
[13]
Ng, C-F.; Chow, H-F.; Mak, T.C.W. Organic molecular tessellations and intertwined double helices assembled by halogen bonding. CrystEngComm, 2019, 21, 1130-1136.
[http://dx.doi.org/10.1039/C8CE02133C]
[14]
Ahn, S.J.; Moon, P.; Kim, T-H.; Kim, H-W.; Shin, H-C.; Kim, E.H.; Cha, H.W.; Kahng, S.J.; Kim, P.; Koshino, M.; Son, Y-W.; Yang, C-W.; Ahn, J.R. Dirac electrons in a dodecagonal graphene quasicrystal. Science, 2018, 361(6404), 782-786.
[http://dx.doi.org/10.1126/science.aar8412] [PMID: 29954987]
[15]
Barber, E.M. Aperiodic Structures in Condensed Matter - Fundamentals and Applications; CRC Press, Taylor & Francis: Boca Raton, Florida, 2009.
[16]
Euclidean tiling by convex regular polygons - Wikipedia., 2018. Availble from: https://en.wikipedia.org/wiki/ Euclidean_tilings_by_convex_ regular_polygons
[17]
Grünbaum, B.; Shephard, G.C. Tiling by regular polygons. Math. Mag., 1977, 50, 227-247.
[http://dx.doi.org/10.1080/0025570X.1977.11976655]
[18]
Crasto de Lima, F.; Ferreira, G.J.; Miwa, R.H. Topological flat band, Dirac fermions and quantum spin Hall phase in 2D Archimedean lattices. Phys. Chem. Chem. Phys., 2019, 21(40), 22344-22350.
[http://dx.doi.org/10.1039/C9CP04760C] [PMID: 31576867]
[19]
Grunbaum, B.; Shephard, G.C. Tilings and Patterns, 2nd ed; Dover Books on Mathematics: UK, 2016.
[20]
Barnes, J. Gems of Geometry. Second Edition; Springer Science+Business Media: Dordrecht, ; , 2012.
[http://dx.doi.org/10.1007/978-3-642-30964-9]
[21]
King, R.B.; Diudea, M.V. From the cube to the Dyck and Klein tessellations: Implications for the structures of zeolite-like carbon and boron nitride allotropes. J. Math. Chem., 2005, 38, 425-435.
[http://dx.doi.org/10.1007/s10910-004-6894-7]
[22]
Szefler, B.; Ponta, O.; Diudea, M.V. Energetics of polybenzene multi-tori. J. Mol. Struct., 2012, 1022, 89-93.
[http://dx.doi.org/10.1016/j.molstruc.2012.04.083]
[23]
Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural defects in graphene. ACS Nano, 2011, 5(1), 26-41.
[http://dx.doi.org/10.1021/nn102598m] [PMID: 21090760]
[24]
Stone, A.J.; Wales, D.J. Theoretical studies of icosahedral C60 and some related structures. Chem. Phys. Lett., 1986, 128, 501-503.
[http://dx.doi.org/10.1016/0009-2614(86)80661-3]
[25]
Thrower, P.A. The study of defects in graphite by transmission electron microscopy. Chem. Phys. Carbon, 1969, 5, 217-320.
[26]
Juneja, A.; Rajasekaran, G. Anomalous strength characteristics of Stone-Thrower-Wales defects in graphene sheets - a molecular dynamics study. Phys. Chem. Chem. Phys., 2018, 20(22), 15203-15215.
[http://dx.doi.org/10.1039/C8CP00499D] [PMID: 29789830]
[27]
Heggie, M.I.; Haffenden, G.L.; Latham, C.D.; Trevethan, T. The Stone-Wales transformation: From fullerenes to graphite, from radiation damage to heat capacity. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2016, 374(2076)20150317
[http://dx.doi.org/10.1098/rsta.2015.0317] [PMID: 27501968]
[28]
Lusk, M.T.; Carr, L.D. Nanoengineering defect structures on graphene. Phys. Rev. Lett., 2008, 100(17)175503
[http://dx.doi.org/10.1103/PhysRevLett.100.175503] [PMID: 18518307]
[29]
Dinadayalane, T.C.; Leszczynski, J. Remarkable diversity of carbon-carbon bonds: Structures and properties of fullerenes, carbon nanotubes, and graphene. Struct. Chem., 2010, 21, 1155-1169.
[http://dx.doi.org/10.1007/s11224-010-9670-2]
[30]
Balaban, A.T. Bond-switch defects in carbon allotropes: Stone-Wales and connected exchange. Chem. Phys. Lett., 2013, 566, 50-53.
[http://dx.doi.org/10.1016/j.cplett.2013.02.060]
[31]
Gong, Z.; Shim, X.; Li, J.; Li, S.; He, C.; Ouyang, T.; Zhang, C.; Tang, C.; Zhong, J. Theoretical prediction of a low-energy Stone-Wales graphene with intrinsic type-III Dirac- cone. Phys. Rev. B, 2020.101155427
[http://dx.doi.org/10.1103/PhysRevB.101.155427]
[32]
The name Haeckelites is chosen for their architectures, because they resemble (locally) the radiolaria drawings of Ernst Haeckel, in Report on the Scientific Results of the Voyage of the H.M.S. Challenger during the Years 1873-1876. Zoology; Her Majesty’s Stationery Office: London, 1887, Vol. 18, pp. 1-2.Haeckel, E. Art Forms in Nature; Her Majesty’s Stationery Office: London, Phys. Rev. B, 1998, Vol. 18
[33]
Terrones, H.; Terrones, M.; Hernández, E.; Grobert, N.; Charlier, J-C.; Ajayan, P.M. New metallic allotropes of planar and tubular carbon. Phys. Rev. Lett., 2000, 84(8), 1716-1719.
[http://dx.doi.org/10.1103/PhysRevLett.84.1716] [PMID: 11017608]
[34]
Deza, M.; Fowler, P.W.; Shtogrin, M.; Vietze, K. Pentaheptite modifications of the graphite sheet. J. Chem. Inf. Comput. Sci., 2000, 40(6), 1325-1332.
[http://dx.doi.org/10.1021/ci000010j] [PMID: 11128090]
[35]
Pinto, H.P.; Leszczynski, J. Fundamental Properties of graphene, Chapter 1. Handbook of carbon nano materials; D'Souza, F.; Kadish, K.M., Eds.; World Scientific Publishing Co: New Jersey, , 2011; Volume 5, pp. 1-38.
[36]
Vera de la Garza, C.G.; López García, G.; Martínez Olmedo, G.; Ramos Peña, E.; Fomine, S. Electronic structure of isomeric graphene nanoflakes. Comput. Theor. Chem., 2018, 1140, 125-133.
[http://dx.doi.org/10.1016/j.comptc.2018.08.007]
[37]
Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I.I.; Batzill, M. An extended defect in graphene as a metallic wire. Nat. Nanotechnol., 2010, 5(5), 326-329.
[http://dx.doi.org/10.1038/nnano.2010.53] [PMID: 20348912]
[38]
Huang, P.Y.; Ruiz-Vargas, C.S.; van der Zande, A.M.; Whitney, W.S.; Levendorf, M.P.; Kevek, J.W.; Garg, S.; Alden, J.S.; Hustedt, C.J.; Zhu, Y.; Park, J.; McEuen, P.L.; Muller, D.A. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011, 469(7330), 389-392.
[http://dx.doi.org/10.1038/nature09718] [PMID: 21209615]
[39]
Song, Q.; Wang, B.; Deng, K.; Feng, X.; Wagner, M.; Gale, J.D.; Müllen, K.; Zhi, L. Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1, 38-41.
[http://dx.doi.org/10.1039/C2TC00006G]
[40]
Lathiotakis, N.N. Computational implementations in electronic structure theory", Workshop: “Scientific computing: simulation methods, and multi-scale modeling approaches” ACMAC, Heraklion, GreeceJanuary 14-18, 2013.
[41]
Kalosakas, G.; Lathiotakis, N.N.; Galiotis, C.; Papagelis, K. In-plane force fields and elastic properties of graphene. J. Appl. Phys., 2013.113134307
[http://dx.doi.org/10.1063/1.4798384]
[42]
Fthenakis, Z.G.; Lathiotakis, N.N. Graphene allotropes under extreme uniaxial strain: an ab initio theoretical study. Phys. Chem. Chem. Phys., 2015, 17(25), 16418-16427.
[http://dx.doi.org/10.1039/C5CP02412A] [PMID: 26051043]
[43]
Fthenakis, Z.G.; Kalosakas, G.; Chatzidakis, G.D.; Galiotis, C.; Papagelis, K.; Lathiotakis, N.N. Atomistic potential for graphene and other sp2 carbon systems. Phys. Chem. Chem. Phys., 2017, 19(45), 30925-30932.
[http://dx.doi.org/10.1039/C7CP06362H] [PMID: 29136070]
[44]
Balaban, A.T.; Rentia, C.C.; Ciupitu, E. Chemical graphs. VI. Estimation of the relative stability of several planar and tridimensional lattices for elementary carbon. Rev. Roum. Chim., 1968, 13, 231-247.
[45]
Zhu, H.; Balaban, A.T.; Klein, D.J.; Zivkovi, T.P. Conjugated-circuit computations on two-dimensional carbon networks. J. Chem. Phys., 1994, 101, 5281-5292.
[http://dx.doi.org/10.1063/1.467382]
[46]
Balaban, A.T. Theoretical investigation of carbon nets and molecules. In:Theoretical and Computational Chemistry; Párkányi, C., Ed.; Elsevier Science B. V., 1998, Vol. 5, pp. 381-404.
[47]
Paquette, L.A. The renaissance in cyclooctatetraene chemistry. Tetrahedron, 1975, 31, 2855-2883.
[http://dx.doi.org/10.1016/0040-4020(75)80303-6]
[48]
Wu, J.I.; Fernández, I.; Mo, Y.; Schleyer, Pv. Why cyclooctatetraene is highly stabilized: The importance of “two-way” (double) hyperconjugation. J. Chem. Theory Comput., 2012, 8(4), 1280-1287.
[http://dx.doi.org/10.1021/ct3000553] [PMID: 26596744]
[49]
Sánchez-Sanz, G.; Trujillo, C.; Rozas, I.; Elguero, J. A theoretical study on the aromaticity of benzene and related derivatives incorporating a C-C≡C-C fragment. Tetrahedron, 2013, 69, 7333-7344.
[http://dx.doi.org/10.1016/j.tet.2013.06.072]
[50]
Sánchez-Sanz, G.; Trujillo, C.; Rozas, I.; Alkorta, I. Influence of fluoro and cyano substituents in the aromatic and antiaromatic characteristics of cyclooctatetraene. Phys. Chem. Chem. Phys., 2015, 17(22), 14961-14971.
[http://dx.doi.org/10.1039/C5CP00876J] [PMID: 25981340]
[51]
Karadakov, P.B.; Hearnshaw, P.; Horner, K.E. Magnetic shielding, aromaticity, antiaromaticity, and bonding in the low-lying electronic states of benzene and cyclobutadiene. J. Org. Chem., 2016, 81(22), 11346-11352.
[http://dx.doi.org/10.1021/acs.joc.6b02460] [PMID: 27788323]
[52]
Hudspeth, M.A.; Whitman, B.W.; Barone, V.; Peralta, J.E. Electronic properties of the biphenylene sheet and its one-dimensional derivatives. ACS Nano, 2010, 4(8), 4565-4570.
[http://dx.doi.org/10.1021/nn100758h] [PMID: 20669980]
[53]
Enyashin, A.N.; Ivanovskii, A.L. Graphene allotropes. Phys. Status Solidi, B Basic Res., 2011, 248, 1879-1883.
[http://dx.doi.org/10.1002/pssb.201046583]
[54]
Enyashin, A.N.; Ivanovskii, A.L. Fluorinated derivatives of sp2 graphene allotropes: Structure, stability, and electronic properties. Chem. Phys. Lett., 2012, 545, 78-82.
[http://dx.doi.org/10.1016/j.cplett.2012.07.024]
[55]
Nisar, J.; Jiang, X.; Pathak, B.; Zhao, J.; Kang, T.W.; Ahuja, R. Semiconducting allotrope of graphene. Nanotechnology, 2012, 23(38)385704
[http://dx.doi.org/10.1088/0957-4484/23/38/385704] [PMID: 22947918]
[56]
Wang, X-Q.; Li, H-D.; Wang, J-T. Structural stabilities and electronic properties of planar C4 carbon sheet and nanoribbons. Phys. Chem. Chem. Phys., 2012, 14(31), 11107-11111.
[http://dx.doi.org/10.1039/c2cp41464c] [PMID: 22763793]
[57]
Wang, X-Q.; Li, H-D.; Wang, J-T. Prediction of a new two-dimensional metallic carbon allotrope. Phys. Chem. Chem. Phys., 2013, 15(6), 2024-2030.
[http://dx.doi.org/10.1039/C2CP43070C] [PMID: 23264961]
[58]
Tyutyulkov, N.; Dietz, F.; Müllen, K.; Baumgarten, M. Structure and energy spectra of a two-dimensional dielectric carbon allotrope. Chem. Phys. Lett., 1997, 272, 111-114.
[http://dx.doi.org/10.1016/S0009-2614(97)00465-X]
[59]
Hu, M.; Zhao, Z.; Tian, F.; Oganov, A.R.; Wang, Q.; Xiong, M.; Fan, C.; Wen, B.; He, J.; Yu, D.; Wang, H-T.; Xu, B.; Tian, Y. Compressed carbon nanotubes: A family of new multifunctional carbon allotropes. Sci. Rep., 2013, 3, 1331.
[http://dx.doi.org/10.1038/srep01331] [PMID: 23435585]
[60]
Zou, X.; Yakobson, B.I. An open canvas--2D materials with defects, disorder, and functionality. Acc. Chem. Res., 2015, 48(1), 73-80.
[http://dx.doi.org/10.1021/ar500302q] [PMID: 25514190]
[61]
Fan, D.; Lu, S.; Golov, A.A.; Kabanov, A.A.; Hu, X. D-carbon: Ab initio study of a novel carbon allotrope. J. Chem. Phys., 2018, 149(11)114702
[http://dx.doi.org/10.1063/1.5037380] [PMID: 30243276]
[62]
Mills, W.H.; Nixon, I.G. Stereochemical influences on aromatic substitution. Substitution derivatives of 5-hydroxyhydrindene. J. Chem. Soc., 1930, 2510-2524.
[http://dx.doi.org/10.1039/JR9300002510]
[63]
Stanger, A. Is the Mills-Nixon effect real? J. Am. Chem. Soc., 1991, 113, 8277-8280.
[http://dx.doi.org/10.1021/ja00022a012]
[64]
Stanger, A. Strain-induced bond localization. The heteroatom case. J. Am. Chem. Soc., 1998, 120, 12034-12040.
[http://dx.doi.org/10.1021/ja9819662]
[65]
Siegel, J.S. Mills-Nixon effect: Wherefore art thou? Angew. Chem. Int. Ed. Engl., 1994, 33, 1721-1723.
[http://dx.doi.org/10.1002/anie.199417211]
[66]
Maksic, Z.B.; Eckert-Maksic, M.; Mó, O.; Yáñez, M. The Mills- Nixon effect: fallacies, facts and chemical relevance, in Pauling's Polyhedra, Tiles and Graphene Defects Mini-Reviews in Organic Chemistry, 2022, Vol. 19, No. 2 145 Legacy: Modern Modeling of the Chemical BondTheor. Comp. Chem; Maksic, Z.B.; Orville-Thomas, W. J., Eds.; , 1999; 6, pp. 47-101.
[67]
Krygowski, T.M.; Cyrański, M.K. Structural aspects of aromaticity. Chem. Rev., 2001, 101(5), 1385-1419.
[http://dx.doi.org/10.1021/cr990326u] [PMID: 11710226]
[68]
Bachrach, S.M. Aromaticity of annulated benzene, pyridine and phosphabenzene. J. Organomet. Chem., 2002, 643-644, 39-46.
[http://dx.doi.org/10.1016/S0022-328X(01)01144-5]
[69]
Kleinpeter, E.; Koch, A. Trisannelated benzenes - Aromatic molecules or 1,3,5-cyclohexatriene derivatives subjected to magnetic properties. J. Mol. Struct. Theochem, 2008, 857, 89-94.
[http://dx.doi.org/10.1016/j.theochem.2008.02.013]
[70]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[71]
Merino, G.; Vela, A.; Heine, T. Description of electron delocalization via the analysis of molecular fields. Chem. Rev., 2005, 105(10), 3812-3841.
[http://dx.doi.org/10.1021/cr030086p] [PMID: 16218568]
[72]
Martin, N.H.; Teague, M.R.; Mills, K.H. Computed NMR shielding effects over fused aromatic/antiaromatic hydrocarbons. Symmetry (Basel), 2010, 2, 418-436.
[http://dx.doi.org/10.3390/sym2010418]
[73]
Eckert-Maksic, M.; Glasovac, Z.; Maksic, Z.B. Molecular and electronic structure of some silacyclopropabenzenes: The reversed Mills-Nixon effect. J. Organomet. Chem., 1998, 571, 65-75.
[http://dx.doi.org/10.1016/S0022-328X(98)00858-4]
[74]
Alkorta, I.; Elguero, J. Can aromaticity be described with a single parameter? Benzene vs. cyclohexatriene. New J. Chem., 1999, 23, 951-954.
[http://dx.doi.org/10.1039/a904537f]
[75]
Alkorta, I.; Rozas, I.; Elguero, J. An ab initio study of the NMR properties (absolute shieldings and NICS) of a series of significant aromatic and antiaromatic compounds. Tetrahedron, 2001, 57, 6043-6049.
[http://dx.doi.org/10.1016/S0040-4020(01)00585-3]
[76]
Alkorta, I.; Elguero, J. Tautomerism and the Mills-Nixon-like effect in pyrazoles. Struct. Chem., 1997, 8, 189-195.
[http://dx.doi.org/10.1007/BF02263506]
[77]
Ramos, M.; Alkorta, I.; Elguero, J. The Mills-Nixon effect on enol-enol tautomerism in β-dicarbonyl compounds and on annular tautomerism in NH-pyrazoles: a semi-empirical study. Tetrahedron, 1997, 53, 1403-1410.
[http://dx.doi.org/10.1016/S0040-4020(96)01052-6]
[78]
Faure, R.; Frideling, A.; Galy, J-P.; Alkorta, I.; Elguero, J. Synthesis, 1H and 13C NMR study of pyrazoles derived from chiral cyclohexanones (3-methyl-cyclohexanone, menthone, pulegone, dihydrocarvone and carvone). Heterocycles, 2002, 57, 307-316.
[http://dx.doi.org/10.3987/COM-01-9407]
[79]
Alkorta, I.; Elguero, J. Theoretical estimation of the annular tautomerism of indazoles. J. Phys. Org. Chem., 2005, 18, 719-724.
[http://dx.doi.org/10.1002/poc.923]
[80]
Martins, M.A.P.; Zanatta, N.; Bonacorso, H.G.; Rosa, F.A.; Claramunt, R.M.; García, M.A.; Santa María, M.D.; Elguero, J. ARKIVOC, 2006, iv, 29-37.
[http://dx.doi.org/10.3998/ark.5550190.0007.404]
[81]
Claramunt, R.M.; López, C.; Santa María, M.D.; Sanz, D. Elguero, The use of NMR spectroscopy to study tautomerism. Prog. Nucl. Magn. Reson. Spectrosc., 2006, 49, 169-206.
[http://dx.doi.org/10.1016/j.pnmrs.2006.07.001]
[82]
Fernández, F.; Caamaño, O.; García, M.D.; Alkorta, I.; Elguero, J. Regioselectivity in the formation of norbornene-fused pyrazoles: preparation of 1-substituted derivatives of 4,5,6,7-tetrahydro-1H-4,7-methanoindazole. Tetrahedron, 2006, 62, 3362-3369.
[http://dx.doi.org/10.1016/j.tet.2006.01.059]
[83]
Alkorta, I.; Elguero, J. How aromaticity affects the chemical and physicochemical properties of heterocycles: a computational approach. Top. Heterocycl. Chem., 2009, 19, 155-202.
[http://dx.doi.org/10.1007/978-3-540-68343-8_4]
[84]
Elguero, J.; Alkorta, I.; Claramunt, R.M.; Cabildo, P.; Cornago, P.; Farrán, M.A.; García, M.A.; López, C.; Pérez-Torralba, M.; Santa María, D.; Sanz, D. Structure of NH-benzazoles (1H-benzimidazoles, 1H- and 2H-indazoles, 1H- and 2H-benzotriazoles). Chem. Heterocycl. Compd., 2013, 49, 177-202.
[http://dx.doi.org/10.1007/s10593-013-1237-x]
[85]
Glidewell, C.; Lloyd, D. MNDO study of bond orders in some conjugated bi- and tri-cyclic hydrocarbons. Tetrahedron, 1984, 40, 4455-4472.
[http://dx.doi.org/10.1016/S0040-4020(01)98821-0]
[86]
El Bakouri, O.; Poater, J.; Feixas, F.; Solà, M. Exploring the validity of the Glidewell-Lloyd extension of Clar’s π-sextet rule: assessment from polycyclic conjugated hydrocarbons. Theor. Chem. Acc., 2016, 135, 205.
[http://dx.doi.org/10.1007/s00214-016-1970-1]
[87]
Krigowski, T.M.; Pindelska, E.; Cyranski, M.K.; Häfelinger, G. Planarization of 1,3,5,7-cyclooctatetraene as a result of partial rehybridization at carbon atoms: an MP2/6-31G* and B3LYP/6-311G** study. Chem. Phys. Lett., 2002, 359, 158-162.
[http://dx.doi.org/10.1016/S0009-2614(02)00681-4]
[88]
Fowler, P.W.; Havenith, R.W.A.; Jenneskens, L.W.; Soncini, A.; Steiner, E. Paratropic delocalized ring currents in flattened cyclooctatetraene systems with bond alternation. Angew. Chem. Int. Ed. Engl., 2002, 41(9), 1558-1560.
[http://dx.doi.org/10.1002/1521-3773(20020503)41:9<1558:AID-ANIE1558>3.0.CO;2-G] [PMID: 19750664]
[89]
Havenith, R.W.A.; Jenneskens, L.W.; Fowler, P.W. Ring currents that survive bond alternation in constrained 8π and 6π monocycles. Chem. Phys. Lett., 2003, 367, 468-474.
[http://dx.doi.org/10.1016/S0009-2614(02)01711-6]
[90]
Palusiak, M.; Krigowski, T.M. Substituent effects in mono- and disubstituted 1,3,5,7-cyclooctatetraene derivatives in natural and planar conformations. New J. Chem., 2009, 33, 1753-1759.
[http://dx.doi.org/10.1039/b905909a]
[91]
Dominikowska, J.; Palusiak, M. Cyclooctatetraene in metal complexes - planar does not mean aromatic. New J. Chem., 2010, 34, 1855-1861.
[http://dx.doi.org/10.1039/c0nj00060d]
[92]
Krygowski, T.M.; Szatylowicz, H.; Stasyuk, O.A.; Dominikowska, J.; Palusiak, M. Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem. Rev., 2014, 114(12), 6383-6422.
[http://dx.doi.org/10.1021/cr400252h] [PMID: 24779633]
[93]
Li, L.; Lei, M.; Xie, Y.; Schaefer, H.F., III; Chen, B.; Hoffmann, R. Stabilizing a different cyclooctatetraene stereoisomer. Proc. Natl. Acad. Sci. USA, 2017, 114(37), 9803-9808.
[http://dx.doi.org/10.1073/pnas.1709586114] [PMID: 28847954]
[94]
Jaffé, H.H.; Orchin, M. Symmetry in Chemistry; John Wiley and Sons: 605 Third Ave., New York, N.Y. , 1965.
[95]
Hargittai, I., Ed.; Symmetry. Unifying Human Understanding; Pergamon Press: New York, Oxford, Toronto, Sydney, Frankfurt, 1986.
[96]
Hargittai, I.; Hargittai, M. Symmetry: A Unifying Concept; Shelter Publications Inc.: Bolinas, California, 1994.
[97]
Hargittai, M.; Hargittai, I. Symmetry through the Eyes of a Chemist, 3rd ed; Springer: Boston, 2009.
[http://dx.doi.org/10.1007/978-1-4020-5628-4]
[98]
Cintas, P. Biochirality. Origins, Evolution and Molecular Recognition.Top. Curr. Chem; Springer: Heidelberg , 2013; 333, pp. 255-395.
[http://dx.doi.org/10.1007/978-3-642-37626-9]
[99]
Barron, L.D. Chirality and Life, Strategies of Life Detection. Space Sci. Rev., 2008, 135, 187-201.
[http://dx.doi.org/10.1007/s11214-007-9254-7]
[100]
Guijarro, A.; Yus, M. The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem; Royal Society of Chemistry: Cambridge, UK, 2008.
[101]
Levi-Montalcini R. In praise of imperfection: My life and work. Sloan Foundation science series, 198
[102]
Elices Calafat, M. Sobre la necesidad de las imperfecciones; Real Academia de Ciencias Exactas, Físicas y Natura Madrid , 1994. November

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy