Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Anti-Diabetic Potentials of Thiazolidinedione Analogues with Efficient Synthetic Procedures: A Review of Literature

Author(s): Ajay Kumar*, Salahuddin, Rajnish Kumar, Rakesh Sahu, Shivali Mishra, Chanchal Singh and Devleena Tiglani

Volume 19, Issue 1, 2022

Published on: 24 February, 2021

Page: [30 - 51] Pages: 22

DOI: 10.2174/1570193X18666210224153849

Price: $65

Abstract

Diabetes mellitus refers to one of the leading cause of diseases that affect large populations of human and is characterized by a high glucose level in the blood (also known as hyperglycemia). Thiazolidinedione (TZD) is a five-member heterocyclic compound consisting of three carbons, nitrogen and sulfur. It is also known as glitazones, can be used as potent hypoglycemic agents and is also reduce many other cardiovascular risk factors including percutaneous coronary intervention, carotid and coronary atherosclerosis. As it plays a very important role in the field of medicinal chemistry or pharmaceutical sciences, novel medicine developed and many are on underdevelopment, these derivatives have thiazolidinedione as their primary nucleus. This article has discussed the different synthetic procedures of thiazolidinediones that exhibited potential antidiabetic activity by the activation of PPAR-γ, by reducing the blood glucose levels and by different metabolic process incorporation. Thiazolidinediones has effective profile as the future investigational drug and can be processed in drug discovery because of its efficient anti-diabetic potential.

Keywords: Thiazolidinediones, PPAR-γ, antidiabetic agents, diabetes, insulin, antihyperglycemics

Graphical Abstract

[1]
Hulin, B.; McCarthy, P.A.; Gibbs, E.M. The glitazone family of antidiabetic agents. Curr. Pharm. Des., 1996, •••, 85-102.
[2]
Dadasaheb, K.; Jain, N. Thiazolidinediones as antidiabetic agents-A Review. Innov. J. Chem., 2016, 1, 50-62.
[3]
Punthakee, Z.; Bosch, J.; Dagenais, G.; Diaz, R.; Holman, R.; Probstfield, J.L.; Ramachandran, A.; Riddle, M.C.; Rydén, L.E.; Zinman, B.; Afzal, R.; Yusuf, S.; Gerstein, H.C. The TIDE Trial Investigators. Design, history and results of the Thiazolidinedione Intervention with Vitamin D Evaluation (TIDE) randomised controlled trial. Diabetologia, 2011, 55, 36-45.
[4]
Sucheta, T.S.; Tahlan, S.; Verma, P.K. Biological potential of thiazolidinedione derivatives of synthetic origin. Chem. Cent. J., 2017, 11(1), 130. [http://dx.doi.org/10.1186/s13065-017-0357-2]. [PMID: 29222671].
[5]
Mannucci, E.; Dicembrini, I. Drugs for type 2 diabetes: Role in the regulation of bone metabolism. Clin. Cases Miner. Bone Metab., 2015, 12(2), 130-134. [http://dx.doi.org/10.11138/ccmbm/2015.12.2.130]. [PMID: 26604937].
[6]
Belfort, R.; Harrison, S.A.; Brown, K.; Darland, C.; Finch, J.; Hardies, J.; Balas, B.; Gastaldelli, A.; Tio, F.; Pulcini, J.; Berria, R.; Ma, J.Z.; Dwivedi, S.; Havranek, R.; Fincke, C.; DeFronzo, R.; Bannayan, G.A.; Schenker, S.; Cusi, K. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med., 2006, 355(22), 2297-2307. [http://dx.doi.org/10.1056/NEJMoa060326]. [PMID: 17135584].
[7]
Boris, M.; Kaiser, C.C.; Goldblatt, A.; Elice, M.W.; Edelson, S.M.; Adams, J.B.; Feinstein, D.L. Effect of pioglitazone treatment on behavioral symptoms in autistic children. J. Neuroinflammation, 2007, 4, 3. [http://dx.doi.org/10.1186/1742-2094-4-3]. [PMID: 17207275].
[8]
Charbonnel, B.; Dormandy, J.; Erdmann, E.; Massi-Benedetti, M.; Skene, A. The prospective pioglitazone clinical trial in macrovascular events (PROactive): Can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care, 2004, 27(7), 1647-1653. [http://dx.doi.org/10.2337/diacare.27.7.1647]. [PMID: 15220241].
[9]
Ferwana, M.; Firwana, B.; Hasan, R.; Al-Mallah, M.H.; Kim, S.; Montori, V.M.; Murad, M.H. Pioglitazone and risk of bladder cancer: A meta-analysis of controlled studies. Diabet. Med., 2013, 30(9), 1026-1032. [http://dx.doi.org/10.1111/dme.12144]. [PMID: 23350856].
[10]
Hulin, B.; Clark, D.A.; Goldstein, S.W.; McDermott, R.E.; Dambek, P.J.; Kappeler, W.H.; Lamphere, C.H.; Lewis, D.M.; Rizzi, J.P. Novel thiazolidine-2,4-diones as potent euglycemic agents. J. Med. Chem., 1992, 35(10), 1853-1864. [http://dx.doi.org/10.1021/jm00088a022]. [PMID: 1588563].
[11]
Rusinova, R.; Herold, K.F.; Sanford, R.L.; Greathouse, D.V.; Hemmings, H.C., Jr; Andersen, O.S. Thiazolidinedione insulin sensitizers alter lipid bilayer properties and voltage-dependent sodium channel function: Implications for drug discovery. J. Gen. Physiol., 2011, 138(2), 249-270. [http://dx.doi.org/10.1085/jgp.201010529]. [PMID: 21788612].
[12]
Shukla, R.; Kalra, S. Pioglitazone: Indian perspective. Indian J. Endocrinol. Metab., 2011, 15(4), 294-297. [http://dx.doi.org/10.4103/2230-8210.85581]. [PMID: 22029000].
[13]
Kendall, D.M. 2006.
[14]
Krentz, A.J.; Friedmann, P.S. Type 2 diabetes, psoriasis and thiazolidinediones., 2006.
[15]
Mannucci, E.; Monami, M.; Lamanna, C.; Gensini, G.F.; Marchionni, N. 2008.
[16]
Nissen, S.E.; Nicholls, S.J.; Wolski, K.; Nesto, R.; Kupfer, S.; Perez, A.; Jure, H.; De Larochellière, R.; Staniloae, C.S.; Mavromatis, K.; Saw, J.; Hu, B.; Lincoff, A.M.; Tuzcu, E.M. Comparison of pioglitazone vs. glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: The PERISCOPE randomized controlled trial. JAMA, 2008, 299(13), 1561-1573. [http://dx.doi.org/10.1001/jama.299.13.1561]. [PMID: 18378631].
[17]
Corigliano, D.M.; Syed, R.; Messineo, S.; Lupia, A.; Patel, R.; Reddy, C.V.R.; Dubey, P.K.; Colica, C.; Amato, R.; De Sarro, G.; Alcaro, S.; Indrasena, A.; Brunetti, A. Indole and 2,4-Thiazolidinedione conjugates as potential anticancer modulators. PeerJ, 2018, 6e, 5386. [http://dx.doi.org/10.7717/peerj.5386]. [PMID: 30123711].
[18]
Schoonjans, K.; Auwerx, J. 2000.
[19]
Shah, D.K.; Menon, K.M.J.; Cabrera, L.M.; Vahratian, A.; Kavoussi, S.K.; Lebovic, D.I. Thiazolidinediones decrease Vascular Endothelial Growth Factor (VEGF) production by human luteinized granulosa cells in vitro. Fertil. Steril., 2009, 93(6), 2024-2047.
[20]
Punthakee, Z.; Bosch, J.; Dagenais, G.; Diaz, R.; Holman, R.; Probstfield, J.; Ramachandran, A.; Riddle, M.; Rydén, L.E.; Zinman, B.; Afzal, R.; Yusuf, S.; Gerstein, H. Design, history and results of the Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) randomised controlled trial. Diabetologia, 2012, 55(1), 36-45. [http://dx.doi.org/10.1007/s00125-011-2357-4]. [PMID: 22038523].
[21]
Sohda, T.; Mizuno, K.; Imamiya, E.; Sugiyama, Y.; Fujita, T.; Kawamatsu, Y. Studies on antidiabetic agents. II. Synthesis of 5-[4-(1-methylcyclohexylmethoxy)-benzyl]thiazolidine-2,4-dione (ADD-3878) and its derivatives. Chem. Pharm. Bull. (Tokyo), 1982, 30(10), 3580-3600. [http://dx.doi.org/10.1248/cpb.30.3580]. [PMID: 7160012].
[24]
Shahnaz, M.; Bhai, P.K.B.R. Synthesis, characterization of 2,4 -thiazolidinedione derivatives and evaluation of their antioxidant activity. J. Drug Deliv. Ther., 2013, 3(6), 96-101. [http://dx.doi.org/10.22270/jddt.v3i6.714].
[25]
Purohit, S.S.; Veerapur, V.P. Benzisoxazole containing Thiazolidinediones as peroxisome proliferator activated receptor-γ agonists: Design, molecular docking, synthesis & antidiabetic studies. Sch. Acad. J. Pharm., 2014, 3(1), 26-37.
[26]
Dadasaheb, K.; Jain, N.; Vijay, J.; Kashid, G. Design synthesis and evaluation of novel thiazolidinedione derivatives as antidiabetic agents. Pharm. Innovat. J., 2017, 6(12), 390-398.
[27]
Srikanth, L.; Raghunandan, N.; Srinivas, P.; Reddy, G.A. Synthesis and evaluation of newer quinoline derivatives of thiazolidinediones for their antidiabetic activity. Int. J. Pharma Bio Sci., 2010, 1(4), 120-131.
[28]
Tunçbilek, M.; Bozdağ-Dündar, O.; Ayhan-Kilcigil, G.; Ceylan, M.; Waheed, A.; Verspohl, E.J.; Ertan, R. 2003.
[29]
Bozdağ-Dündar, O.; Ceylan-Unlüsoy, M.; Verspohl, E.J.; Ertan, R. Synthesis and antidiabetic activity of novel 2,4-thiazolidinedione derivatives containing a thiazole ring. Arzneimittelforschung, 2006, 56(9), 621-625. [PMID: 17063636].
[30]
Bozdag, O.; Verspohl, E.J.; Ertan, R. Synthesis and hypoglycemic activity of some new flavone derivatives. Arzneim.-. Forsch Drug Res., 2000, 50(I), 539-543.
[31]
Ceylan-Ünlüsoy, M.; Verspohl, E.J.; Ertan, R. Synthesis and antidiabetic activity of some new chromonyl-2,4-thiazolidinediones. J. Enzyme Inhib. Med. Chem., 2010, 25(6), 784-789. [http://dx.doi.org/10.3109/14756360903357544]. [PMID: 20687791].
[32]
Bahare, R.S.; Kulkarni, V.M. Synthesis, QSAR and hypoglycemic activity of substituted 2, 4thiazolidinediones. Schol. Res. Lib., 2011, 3(3), 164-173.
[33]
Swathi, N.; Ramu, Y.; Subrahmanyam, C.V.S.; Satyanarayana, K. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 561-566.
[34]
Akhtar, T.; Saini, B.; Khan, A.R.; Kumar, A. Design and synthesis of benzylidene thiazolidine-2, 4dione derivatives with their anticancer and antidiabetic biologial screening. World J. Pharma. Res., 2014, 4(1), 1231-1243.
[35]
Sawant, R.L.; Gade, S.T. Synthesis and pharmacological evaluation of 2, 4thiazolidinediones as antidiabetic agents. World J. Pharm. Res., 2018, 7(3), 469-476.
[36]
Avupati, V.R.; Yejella, R.P.; Akula, A.; Guntuku, G.S.; Doddi, B.R.; Vutla, V.R.; Anagani, S.R.; Adimulam, L.S.; Vyricharla, A.K. Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents. Bioorg. Med. Chem. Lett., 2012, 22(20), 6442-6450. [http://dx.doi.org/10.1016/j.bmcl.2012.08.052]. [PMID: 22981328].
[37]
Bansal, G.; Singh, S.; Monga, V.; Thanikachalam, P.V.; Chawla, P. Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorg. Chem., 2019, •••92103271 [http://dx.doi.org/10.1016/j.bioorg.2019.103271]. [PMID: 31536952].
[38]
Bhat, B.A.; Ponnala, S.; Sahu, D.P.; Tiwari, P.; Tripathi, B.K.; Srivastava, A.K. Synthesis and antihyperglycemic activity profiles of novel thiazolidinedione derivatives. Bioorg. Med. Chem., 2004, 12(22), 5857-5864. [http://dx.doi.org/10.1016/j.bmc.2004.08.031]. [PMID: 15498661].
[39]
Bhattarai, B.R.; Kafle, B.; Hwang, J.S.; Ham, S.W.; Lee, K.H.; Park, H.; Han, I.O.; Cho, H.; Cho, H. Novel thiazolidinedione derivatives with anti-obesity effects: Dual action as PTP1B inhibitors and PPAR-γ activators. Bioorg. Med. Chem. Lett., 2010, 20(22), 6758-6763. [http://dx.doi.org/10.1016/j.bmcl.2010.08.130]. [PMID: 20850970].
[40]
da Costa Leite, L.F.; Veras Mourão, R.H.; de Lima, M.C.; Galdino, S.L.; Hernandes, M.Z.; de Assis Rocha Neves, F.; Vidal, S.; Barbe, J.; da Rocha Pitta, I. Synthesis, biological evaluation and molecular modeling studies of arylidene-thiazolidinediones with potential hypoglycemic and hypolipidemic activities. Eur. J. Med. Chem., 2007, 42(10), 1263-1271. [http://dx.doi.org/10.1016/j.ejmech.2007.02.015]. [PMID: 17448573].
[41]
Datar, P.A.; Aher, S.B. Design and synthesis of novel thiazolidine-2,4-diones as hypoglycemic agents. J. Saudi Chem. Soc., 2012, 20(Suppl. 1), S196-S201.
[42]
Roy, A.; Dumbare, M.R.; Patil, T.D.; Bhanwase, A.S.; Deshmukh, R.D. Synthesis, biological evaluation and molecular modeling studies of 5-[4-(substituted) benzylidene or benzyl] thiazolidine-2,4-dione with oral antihyperglycemic activity. Int. J. Pharm. Tech. Res., 2013, 5(4), 1882-1895.
[43]
Gupta, D.; Ghosh, N.N.; Chandra, R. Synthesis and pharmacological evaluation of substituted 5-[4-[2-(6,7-dimethyl-1,2,3,4-tetrahydro-2-oxo-4 quinoxalinyl)ethoxy]phenyl]methylene]thiazo-lidine-2,4-dione derivatives as potent euglycemic and hypolipidemic agents. Bioorg. Med. Chem. Lett., 2005, 15(4), 1019-1022. [http://dx.doi.org/10.1016/j.bmcl.2004.12.041]. [PMID: 15686904].
[44]
Hidalgo-Figueroa, S.; Estrada-Soto, S.; Ramírez-Espinosa, J.J.; Paoli, P.; Lori, G.; León-Rivera, I.; Navarrete-Vázquez, G. Synthesis and evaluation of thiazolidine-2,4-dione/benzazole derivatives as inhibitors of protein tyrosine phosphatase 1B (PTP-1B): Antihyperglycemic activity with molecular docking study. Biomed. Pharmacother., 2018, 107, 1302-1310. [http://dx.doi.org/10.1016/j.biopha.2018.08.124]. [PMID: 30257345].
[45]
Huiying, Z.; Guangying, C.; Shiyang, Z. Design, synthesis and biological activity evaluation of a new class of 2,4-thiazolidinedione compounds as insulin enhancers. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 981-989. [http://dx.doi.org/10.1080/14756366.2019.1608197]. [PMID: 31072232].
[46]
Pattan, S.R.; Suresh, C.; Pujar, V.D.; Reddy, V.V.K.; Rasal, V.P.; Koti, B.C. 2005.
[47]
Riyaz, S.; Naidu, A.; Dubey, P.K. 2012.
[48]
Pattan, S.; Kedar, M.; Pattan, J.; Dengale, S.; Sanap, M.; Gharate, U.; Shinde, P.; Kadam, S. 2012.
[49]
Jawale, D.V.; Pratap, U.R.; Rahuja, N.; Srivastava, A.K.; Mane, R.A. Synthesis and antihyperglycemic evaluation of new 2,4-thiazolidinediones having biodynamic aryl sulfonylurea moieties. Bioorg. Med. Chem. Lett., 2012, 22(1), 436-439. [http://dx.doi.org/10.1016/j.bmcl.2011.10.110]. [PMID: 22123321].
[50]
Kim, B.Y.; Ahn, J.B.; Lee, H.W.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Hong, C.I.; Yoon, S.S. Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. Eur. J. Med. Chem., 2004, 39(5), 433-447. [http://dx.doi.org/10.1016/j.ejmech.2004.03.001]. [PMID: 15110969].
[51]
Lee, H.W.; Kim, B.Y.; Ahn, J.B.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Lee, S.J.; Yoon, S.S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem., 2005, 40(9), 862-874. [http://dx.doi.org/10.1016/j.ejmech.2005.03.019]. [PMID: 15908051].
[52]
Maccari, R.; Ottanà, R.; Ciurleo, R.; Rakowitz, D.; Matuszczak, B.; Laggner, C.; Langer, T. Synthesis, induced-fit docking investigations, and in vitro aldose reductase inhibitory activity of non-carboxylic acid containing 2,4-thiazolidinedione derivatives. Bioorg. Med. Chem., 2008, 16(11), 5840-5852. [http://dx.doi.org/10.1016/j.bmc.2008.04.072]. [PMID: 18492610].
[53]
Mahapatra, M.K.; Kumar, R.; Kumar, M. Synthesis, biological evaluation and in silico studies of 5-(3-methoxy-benzylidene)thiazolidine-2,4-dione analogues as PTP1B inhibitors. Bioorg. Chem., 2017, 71, 1-9. [http://dx.doi.org/10.1016/j.bioorg.2017.01.007]. [PMID: 28126289].
[54]
Naim, M.J.; Alam, M.J.; Nawaz, F.; Naidu, V.G.M.; Aaghaz, S.; Sahu, M.; Siddiqui, N.; Alam, O. Synthesis, molecular docking and anti-diabetic evaluation of 2,4-thiazolidinedione based amide derivatives. Bioorg. Chem., 2017, 73, 24-36. [http://dx.doi.org/10.1016/j.bioorg.2017.05.007]. [PMID: 28582649].
[55]
Nazreen, S.; Alam, M.S.; Hamid, H.; Yar, M.S.; Shafi, S.; Dhulap, A.; Alam, P.; Pasha, M.A.Q.; Bano, S.; Alam, M.M.; Haider, S.; Ali, Y.; Kharbanda, C.; Pillai, K.K. Design, synthesis, in silico molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2,4-diones bis-heterocycles as PPAR-γ agonists. Eur. J. Med. Chem., 2014, 87, 175-185. [http://dx.doi.org/10.1016/j.ejmech.2014.09.010]. [PMID: 25255433].
[56]
Nazreen, S.; Alam, M.S.; Hamid, H.; Yar, M.S.; Dhulap, A.; Alam, P.; Pasha, M.A.Q.; Bano, S.; Alam, M.M.; Haider, S.; Kharbanda, C.; Ali, Y.; Pillai, K.K. Thiazolidine-2,4-diones derivatives as PPAR-γ agonists: synthesis, molecular docking, in vitro and in vivo antidiabetic activity with hepatotoxicity risk evaluation and effect on PPAR-γ gene expression. Bioorg. Med. Chem. Lett., 2014, 24(14), 3034-3042. [http://dx.doi.org/10.1016/j.bmcl.2014.05.034]. [PMID: 24890090].
[57]
Oguchi, M.; Wada, K.; Honma, H.; Tanaka, A.; Kaneko, T.; Sakakibara, S.; Ohsumi, J.; Serizawa, N.; Fujiwara, T.; Horikoshi, H.; Fujita, T. Molecular design, synthesis, and hypoglycemic activity of a series of thiazolidine-2,4-diones. J. Med. Chem., 2000, 43(16), 3052-3066. [http://dx.doi.org/10.1021/jm990522t]. [PMID: 10956213].
[58]
Ertan, R.; Bozdag, O. 1997.
[59]
Prabhakar, C.; Madhusudhan, G.; Sahadev, K.; Reddy, C.M.; Sarma, M.R.; Reddy, G.O.; Chakrabarti, R.; Rao, C.S.; Kumar, T.D.; Rajagopalan, R. Synthesis and biological activity of novel thiazolidinediones. Bioorg. Med. Chem. Lett., 1998, 8(19), 2725-2730. [http://dx.doi.org/10.1016/S0960-894X(98)00485-5]. [PMID: 9873611].
[60]
Ranjan Srivastava, A.; Bhatia, R.; Chawla, P. Synthesis, biological evaluation and molecular docking studies of novel 3,5-disubstituted 2,4-thiazolidinediones derivatives. Bioorg. Chem., 2019, •••89102993 [http://dx.doi.org/10.1016/j.bioorg.2019.102993]. [PMID: 31129500].
[61]
Deshmukh, A.R.; Dhumal, S.T.; Bhalerao, M.B.; Mishra, A.; Srivastava, A.K.; Mane, R.A. Design, synthesis and antidiabetic evaluation of new cyanoquinoloxy benzylidenyl 2,4-thiazolidinediones. Chem. Biol. Interact., 2016, 6(4), 189-197.
[62]
Murugan, R.; Anbazhagan, S. Lingeshwaran, Narayanan, S.S. Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur. J. Med. Chem., 2009, 44(8), 3272-3279. [http://dx.doi.org/10.1016/j.ejmech.2009.03.035]. [PMID: 19395129].
[63]
Madhavan, G.R.; Chakrabarti, R.; Vikramadithyan, R.K.; Mamidi, R.N.V.S.; Balraju, V.; Rajesh, B.M.; Misra, P.; Kumar, S.K.B.; Lohray, B.B.; Lohray, V.B.; Rajagopalan, R. Synthesis and biological activity of novel pyrimidinone containing thiazolidinedione derivatives. Bioorg. Med. Chem., 2002, 10(8), 2671-2680. [http://dx.doi.org/10.1016/S0968-0896(02)00107-4]. [PMID: 12057656].
[64]
Unlusoy, M.C.; Kazak, C.; Bayro, O.; Verspohl, E.J.; Ertan, R.; Dundar, O.B. Synthesis and antidiabetic activity of 2,4-thiazolidindione, imidazolidinedione and 2-thioxo-imidazolidine-4-one derivatives bearing 6-methyl chromonyl pharmacophore. J. Enzyme Inhib. Med. Chem., 2012, 28(6), 1205-1210. [PMID: 23057864].
[65]
Alam, F.; Islam, M.A.; Mohamed, M.; Ahmad, I.; Kamal, M.A.; Donnelly, R.; Idris, I.; Gan, S.H. Efficacy and safety of pioglitazone monotherapy in type 2 diabetes mellitus: A systematic review and meta-analysis of randomised controlled trials. Sci. Rep., 2019, 9(1), 5389. [http://dx.doi.org/10.1038/s41598-019-41854-2]. [PMID: 30926892].
[66]
Kahn, B.B.; McGraw, T.E. Rosiglitazone, PPARγ, and type 2 diabetes. N. Engl. J. Med., 2010, 363(27), 2667-2669. [http://dx.doi.org/10.1056/NEJMcibr1012075]. [PMID: 21190462].
[67]
Rosenstock, J.; Einhorn, D.; Hershon, K.; Glazer, N.B.; Yu, S. Efficacy and safety of pioglitazone in type 2 diabetes: a randomised, placebo-controlled study in patients receiving stable insulin therapy. Int. J. Clin. Pract., 2002, 56(4), 251-257. [PMID: 12074206].
[68]
King, A.B.; Armstrong, D.U. Lipid response to pioglitazone in diabetic patients: Clinical observations from a retrospective chart review. Diabetes Technol. Ther., 2002, 4(2), 145-151. [http://dx.doi.org/10.1089/15209150260007354]. [PMID: 12079617].
[69]
Miyazaki, Y.; Mahankali, A.; Matsuda, M.; Glass, L.; Mahankali, S.; Ferrannini, E.; Cusi, K.; Mandarino, L.J.; DeFronzo, R.A. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care, 2001, 24(4), 710-719. [http://dx.doi.org/10.2337/diacare.24.4.710]. [PMID: 11315836].
[70]
Einhorn, D.; Rendell, M.; Rosenzweig, J.; Egan, J.W.; Mathisen, A.L.; Schneider, R.L. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin. Ther., 2000, 22(12), 1395-1409. [http://dx.doi.org/10.1016/S0149-2918(00)83039-8]. [PMID: 11192132].
[71]
Aronoff, S.; Rosenblatt, S.; Braithwaite, S.; Egan, J.W.; Mathisen, A.L.; Schneider, R.L. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: A 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care, 2000, 23(11), 1605-1611. [http://dx.doi.org/10.2337/diacare.23.11.1605]. [PMID: 11092281].
[72]
Rosenblatt, S.; Miskin, B.; Glazer, N.B.; Prince, M.J.; Robertson, K.E. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron. Artery Dis., 2001, 12(5), 413-423. [http://dx.doi.org/10.1097/00019501-200108000-00011]. [PMID: 11491207].
[73]
Raskin, P.; Rendell, M.; Riddle, M.C.; Dole, J.F.; Freed, M.I.; Rosenstock, J. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care, 2001, 24(7), 1226-1232. [http://dx.doi.org/10.2337/diacare.24.7.1226]. [PMID: 11423507].
[74]
Fonseca, V.; Rosenstock, J.; Patwardhan, R.; Salzman, A. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA, 2000, 283(13), 1695-1702. [http://dx.doi.org/10.1001/jama.283.13.1695]. [PMID: 10755495].
[75]
Pfützner, A.; Schöndorf, T.; Seidel, D.; Winkler, K.; Matthaei, S.; Hamann, A.; Forst, T. Impact of rosiglitazone on beta-cell function, insulin resistance, and adiponectin concentrations: Results from a double-blind oral combination study with glimepiride. Metabolism, 2006, 55(1), 20-25. [http://dx.doi.org/10.1016/j.metabol.2005.06.021]. [PMID: 16324915].
[76]
Wolffenbuttel, B.H.; Gomis, R.; Squatrito, S.; Jones, N.P.; Patwardhan, R.N. Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabet. Med., 2000, 17(1), 40-47. [http://dx.doi.org/10.1046/j.1464-5491.2000.00224.x]. [PMID: 10691158].
[77]
Vongthavaravat, V.; Wajchenberg, B.L.; Waitman, J.N.; Quimpo, J.A.; Menon, P.S.; Ben Khalifa, F.; Chow, W.H. An international study of the effects of rosiglitazone plus sulphonylurea in patients with type 2 diabetes. Curr. Med. Res. Opin., 2002, 18(8), 456-461. [http://dx.doi.org/10.1185/030079902125001236]. [PMID: 12564655].
[78]
Dailey, G.E., III; Noor, M.A.; Park, J.S.; Bruce, S.; Fiedorek, F.T. Glycemic control with glyburide/metformin tablets in combination with rosiglitazone in patients with type 2 diabetes: A randomized, double-blind trial. Am. J. Med., 2004, 116(4), 223-229. [http://dx.doi.org/10.1016/j.amjmed.2003.07.022]. [PMID: 14969649].
[79]
Orbay, E.; Sargin, M.; Sargin, H.; Gözü, H.; Bayramiçli, O.U.; Yayla, A. Addition of rosiglitazone to glimepirid and metformin combination therapy in type 2 diabetes. Endocr. J., 2004, 51(6), 521-527. [http://dx.doi.org/10.1507/endocrj.51.521]. [PMID: 15644569].
[80]
Rosenstock, J.; Goldstein, B.J.; Vinik, A.I.; O’neill, M.C.; Porter, L.E.; Heise, M.A.; Kravitz, B.; Dirani, R.G.; Freed, M.I. Effect of early addition of rosiglitazone to sulphonylurea therapy in older type 2 diabetes patients (>60 years): The Rosiglitazone Early vs. SULphonylurea Titration (RESULT) study. Diabetes Obes. Metab., 2006, 8(1), 49-57. [http://dx.doi.org/10.1111/j.1463-1326.2005.00541.x]. [PMID: 16367882].
[81]
Patel, J.; Anderson, R.J.; Rappaport, E.B. Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: A twelve-week, randomized, placebo-controlled study. Diabetes Obes. Metab., 1999, 1(3), 165-172. [http://dx.doi.org/10.1046/j.1463-1326.1999.00020.x]. [PMID: 11220295].
[82]
Phillips, L.S.; Grunberger, G.; Miller, E.; Patwardhan, R.; Rappaport, E.B.; Salzman, A. Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care, 2001, 24(2), 308-315. [http://dx.doi.org/10.2337/diacare.24.2.308]. [PMID: 11213884].
[86]
U.S. National Library of Medicine. Safety and efficacy of exenatide in patients with type 2 diabetes using a thiazolidinedione or a thiazolidinedione and metformin., https://clinicaltrials.gov/ct2/show/NCT00603239?cond=thiazolidinedione
[91]
U.S. National Library of Medicine. A study of taspoglutide versus exenatide for the treatment of patients with type 2 diabetes mellitus inadequately controlled with metformin, thiazolidinedione or a combination of both., https://clinicaltrials.gov/ ct2/show/NCT00717457?cond=thiazolidinedione
[92]
U.S. National Library of Medicine. Safety and efficacy of vildagliptin vs. thiazolidinedione as add-on therapy to metformin in patients with type 2 diabetes not controlled with metformin alone., https://clinicaltrials.gov/ct2/show/NCT00396227? cond=thiazolidinedione
[93]
U.S. National Library of Medicine. https://clinicaltrials.gov/ct2/show/
[95]
U.S. National Library of Medicine. Rosiglitazone in subjects with type 2 diabetes mellitus who are inadequately controlled on insulin., https://clinicaltrials.gov/ct2/show/NCT00329225? cond=thiazolidinedione
[96]
U.S. National Library of Medicine. Vascular effects of rosiglitazone versus glyburide in type 2 diabetic patients, 2020.https://clinicaltrials.gov/ct2/show/NCT00123643? cond=thiazolidinedione
[97]
U.S. National Library of Medicine. Placebo controlled dose-response study of rivoglitazone in type 2 diabetes., https://clinicaltrials.gov/ct2/show/NCT00575471?cond=thiazolidinedione
[98]
U.S. National Library of Medicine. https://clinicaltrials.gov/ct2/show/

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy