[1]
Hulin, B.; McCarthy, P.A.; Gibbs, E.M. The glitazone family of antidiabetic agents. Curr. Pharm. Des., 1996, •••, 85-102.
[2]
Dadasaheb, K.; Jain, N. Thiazolidinediones as antidiabetic agents-A Review. Innov. J. Chem., 2016, 1, 50-62.
[3]
Punthakee, Z.; Bosch, J.; Dagenais, G.; Diaz, R.; Holman, R.; Probstfield, J.L.; Ramachandran, A.; Riddle, M.C.; Rydén, L.E.; Zinman, B.; Afzal, R.; Yusuf, S.; Gerstein, H.C. The TIDE Trial Investigators. Design, history and results of the Thiazolidinedione Intervention with Vitamin D Evaluation (TIDE) randomised controlled trial. Diabetologia, 2011, 55, 36-45.
[4]
Sucheta, T.S.; Tahlan, S.; Verma, P.K. Biological potential of thiazolidinedione derivatives of synthetic origin. Chem. Cent. J., 2017, 11(1), 130. [http://dx.doi.org/10.1186/s13065-017-0357-2]. [PMID: 29222671].
[5]
Mannucci, E.; Dicembrini, I. Drugs for type 2 diabetes: Role in the regulation of bone metabolism. Clin. Cases Miner. Bone Metab., 2015, 12(2), 130-134. [http://dx.doi.org/10.11138/ccmbm/2015.12.2.130]. [PMID: 26604937].
[6]
Belfort, R.; Harrison, S.A.; Brown, K.; Darland, C.; Finch, J.; Hardies, J.; Balas, B.; Gastaldelli, A.; Tio, F.; Pulcini, J.; Berria, R.; Ma, J.Z.; Dwivedi, S.; Havranek, R.; Fincke, C.; DeFronzo, R.; Bannayan, G.A.; Schenker, S.; Cusi, K. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med., 2006, 355(22), 2297-2307. [http://dx.doi.org/10.1056/NEJMoa060326]. [PMID: 17135584].
[7]
Boris, M.; Kaiser, C.C.; Goldblatt, A.; Elice, M.W.; Edelson, S.M.; Adams, J.B.; Feinstein, D.L. Effect of pioglitazone treatment on behavioral symptoms in autistic children. J. Neuroinflammation, 2007, 4, 3. [http://dx.doi.org/10.1186/1742-2094-4-3]. [PMID: 17207275].
[8]
Charbonnel, B.; Dormandy, J.; Erdmann, E.; Massi-Benedetti, M.; Skene, A. The prospective pioglitazone clinical trial in macrovascular events (PROactive): Can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care, 2004, 27(7), 1647-1653. [http://dx.doi.org/10.2337/diacare.27.7.1647]. [PMID: 15220241].
[9]
Ferwana, M.; Firwana, B.; Hasan, R.; Al-Mallah, M.H.; Kim, S.; Montori, V.M.; Murad, M.H. Pioglitazone and risk of bladder cancer: A meta-analysis of controlled studies. Diabet. Med., 2013, 30(9), 1026-1032. [http://dx.doi.org/10.1111/dme.12144]. [PMID: 23350856].
[10]
Hulin, B.; Clark, D.A.; Goldstein, S.W.; McDermott, R.E.; Dambek, P.J.; Kappeler, W.H.; Lamphere, C.H.; Lewis, D.M.; Rizzi, J.P. Novel thiazolidine-2,4-diones as potent euglycemic agents. J. Med. Chem., 1992, 35(10), 1853-1864. [http://dx.doi.org/10.1021/jm00088a022]. [PMID: 1588563].
[11]
Rusinova, R.; Herold, K.F.; Sanford, R.L.; Greathouse, D.V.; Hemmings, H.C., Jr; Andersen, O.S. Thiazolidinedione insulin sensitizers alter lipid bilayer properties and voltage-dependent sodium channel function: Implications for drug discovery. J. Gen. Physiol., 2011, 138(2), 249-270. [http://dx.doi.org/10.1085/jgp.201010529]. [PMID: 21788612].
[12]
Shukla, R.; Kalra, S. Pioglitazone: Indian perspective. Indian J. Endocrinol. Metab., 2011, 15(4), 294-297. [http://dx.doi.org/10.4103/2230-8210.85581]. [PMID: 22029000].
[14]
Krentz, A.J.; Friedmann, P.S. Type 2 diabetes, psoriasis and thiazolidinediones., 2006.
[15]
Mannucci, E.; Monami, M.; Lamanna, C.; Gensini, G.F.; Marchionni, N. 2008.
[16]
Nissen, S.E.; Nicholls, S.J.; Wolski, K.; Nesto, R.; Kupfer, S.; Perez, A.; Jure, H.; De Larochellière, R.; Staniloae, C.S.; Mavromatis, K.; Saw, J.; Hu, B.; Lincoff, A.M.; Tuzcu, E.M. Comparison of pioglitazone vs. glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: The PERISCOPE randomized controlled trial. JAMA, 2008, 299(13), 1561-1573. [http://dx.doi.org/10.1001/jama.299.13.1561]. [PMID: 18378631].
[17]
Corigliano, D.M.; Syed, R.; Messineo, S.; Lupia, A.; Patel, R.; Reddy, C.V.R.; Dubey, P.K.; Colica, C.; Amato, R.; De Sarro, G.; Alcaro, S.; Indrasena, A.; Brunetti, A. Indole and 2,4-Thiazolidinedione conjugates as potential anticancer modulators. PeerJ, 2018, 6e, 5386. [http://dx.doi.org/10.7717/peerj.5386]. [PMID: 30123711].
[18]
Schoonjans, K.; Auwerx, J. 2000.
[19]
Shah, D.K.; Menon, K.M.J.; Cabrera, L.M.; Vahratian, A.; Kavoussi, S.K.; Lebovic, D.I. Thiazolidinediones decrease Vascular Endothelial Growth Factor (VEGF) production by human luteinized granulosa cells in vitro. Fertil. Steril., 2009, 93(6), 2024-2047.
[20]
Punthakee, Z.; Bosch, J.; Dagenais, G.; Diaz, R.; Holman, R.; Probstfield, J.; Ramachandran, A.; Riddle, M.; Rydén, L.E.; Zinman, B.; Afzal, R.; Yusuf, S.; Gerstein, H. Design, history and results of the Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) randomised controlled trial. Diabetologia, 2012, 55(1), 36-45. [http://dx.doi.org/10.1007/s00125-011-2357-4]. [PMID: 22038523].
[21]
Sohda, T.; Mizuno, K.; Imamiya, E.; Sugiyama, Y.; Fujita, T.; Kawamatsu, Y. Studies on antidiabetic agents. II. Synthesis of 5-[4-(1-methylcyclohexylmethoxy)-benzyl]thiazolidine-2,4-dione (ADD-3878) and its derivatives. Chem. Pharm. Bull. (Tokyo), 1982, 30(10), 3580-3600. [http://dx.doi.org/10.1248/cpb.30.3580]. [PMID: 7160012].
[24]
Shahnaz, M.; Bhai, P.K.B.R. Synthesis, characterization of 2,4 -thiazolidinedione derivatives and evaluation of their antioxidant activity. J. Drug Deliv. Ther., 2013, 3(6), 96-101. [http://dx.doi.org/10.22270/jddt.v3i6.714].
[25]
Purohit, S.S.; Veerapur, V.P. Benzisoxazole containing Thiazolidinediones as peroxisome proliferator activated receptor-γ agonists: Design, molecular docking, synthesis & antidiabetic studies. Sch. Acad. J. Pharm., 2014, 3(1), 26-37.
[26]
Dadasaheb, K.; Jain, N.; Vijay, J.; Kashid, G. Design synthesis and evaluation of novel thiazolidinedione derivatives as antidiabetic agents. Pharm. Innovat. J., 2017, 6(12), 390-398.
[27]
Srikanth, L.; Raghunandan, N.; Srinivas, P.; Reddy, G.A. Synthesis and evaluation of newer quinoline derivatives of thiazolidinediones for their antidiabetic activity. Int. J. Pharma Bio Sci., 2010, 1(4), 120-131.
[28]
Tunçbilek, M.; Bozdağ-Dündar, O.; Ayhan-Kilcigil, G.; Ceylan, M.; Waheed, A.; Verspohl, E.J.; Ertan, R. 2003.
[29]
Bozdağ-Dündar, O.; Ceylan-Unlüsoy, M.; Verspohl, E.J.; Ertan, R. Synthesis and antidiabetic activity of novel 2,4-thiazolidinedione derivatives containing a thiazole ring. Arzneimittelforschung, 2006, 56(9), 621-625. [PMID: 17063636].
[30]
Bozdag, O.; Verspohl, E.J.; Ertan, R. Synthesis and hypoglycemic activity of some new flavone derivatives. Arzneim.-. Forsch Drug Res., 2000, 50(I), 539-543.
[31]
Ceylan-Ünlüsoy, M.; Verspohl, E.J.; Ertan, R. Synthesis and antidiabetic activity of some new chromonyl-2,4-thiazolidinediones. J. Enzyme Inhib. Med. Chem., 2010, 25(6), 784-789. [http://dx.doi.org/10.3109/14756360903357544]. [PMID: 20687791].
[32]
Bahare, R.S.; Kulkarni, V.M. Synthesis, QSAR and hypoglycemic activity of substituted 2, 4thiazolidinediones. Schol. Res. Lib., 2011, 3(3), 164-173.
[33]
Swathi, N.; Ramu, Y.; Subrahmanyam, C.V.S.; Satyanarayana, K. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 561-566.
[34]
Akhtar, T.; Saini, B.; Khan, A.R.; Kumar, A. Design and synthesis of benzylidene thiazolidine-2, 4dione derivatives with their anticancer and antidiabetic biologial screening. World J. Pharma. Res., 2014, 4(1), 1231-1243.
[35]
Sawant, R.L.; Gade, S.T. Synthesis and pharmacological evaluation of 2, 4thiazolidinediones as antidiabetic agents. World J. Pharm. Res., 2018, 7(3), 469-476.
[36]
Avupati, V.R.; Yejella, R.P.; Akula, A.; Guntuku, G.S.; Doddi, B.R.; Vutla, V.R.; Anagani, S.R.; Adimulam, L.S.; Vyricharla, A.K. Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents. Bioorg. Med. Chem. Lett., 2012, 22(20), 6442-6450. [http://dx.doi.org/10.1016/j.bmcl.2012.08.052]. [PMID: 22981328].
[37]
Bansal, G.; Singh, S.; Monga, V.; Thanikachalam, P.V.; Chawla, P. Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorg. Chem., 2019, •••92103271 [http://dx.doi.org/10.1016/j.bioorg.2019.103271]. [PMID: 31536952].
[38]
Bhat, B.A.; Ponnala, S.; Sahu, D.P.; Tiwari, P.; Tripathi, B.K.; Srivastava, A.K. Synthesis and antihyperglycemic activity profiles of novel thiazolidinedione derivatives. Bioorg. Med. Chem., 2004, 12(22), 5857-5864. [http://dx.doi.org/10.1016/j.bmc.2004.08.031]. [PMID: 15498661].
[39]
Bhattarai, B.R.; Kafle, B.; Hwang, J.S.; Ham, S.W.; Lee, K.H.; Park, H.; Han, I.O.; Cho, H.; Cho, H. Novel thiazolidinedione derivatives with anti-obesity effects: Dual action as PTP1B inhibitors and PPAR-γ activators. Bioorg. Med. Chem. Lett., 2010, 20(22), 6758-6763. [http://dx.doi.org/10.1016/j.bmcl.2010.08.130]. [PMID: 20850970].
[40]
da Costa Leite, L.F.; Veras Mourão, R.H.; de Lima, M.C.; Galdino, S.L.; Hernandes, M.Z.; de Assis Rocha Neves, F.; Vidal, S.; Barbe, J.; da Rocha Pitta, I. Synthesis, biological evaluation and molecular modeling studies of arylidene-thiazolidinediones with potential hypoglycemic and hypolipidemic activities. Eur. J. Med. Chem., 2007, 42(10), 1263-1271. [http://dx.doi.org/10.1016/j.ejmech.2007.02.015]. [PMID: 17448573].
[41]
Datar, P.A.; Aher, S.B. Design and synthesis of novel thiazolidine-2,4-diones as hypoglycemic agents. J. Saudi Chem. Soc., 2012, 20(Suppl. 1), S196-S201.
[42]
Roy, A.; Dumbare, M.R.; Patil, T.D.; Bhanwase, A.S.; Deshmukh, R.D. Synthesis, biological evaluation and molecular modeling studies of 5-[4-(substituted) benzylidene or benzyl] thiazolidine-2,4-dione with oral antihyperglycemic activity. Int. J. Pharm. Tech. Res., 2013, 5(4), 1882-1895.
[43]
Gupta, D.; Ghosh, N.N.; Chandra, R. Synthesis and pharmacological evaluation of substituted 5-[4-[2-(6,7-dimethyl-1,2,3,4-tetrahydro-2-oxo-4 quinoxalinyl)ethoxy]phenyl]methylene]thiazo-lidine-2,4-dione derivatives as potent euglycemic and hypolipidemic agents. Bioorg. Med. Chem. Lett., 2005, 15(4), 1019-1022. [http://dx.doi.org/10.1016/j.bmcl.2004.12.041]. [PMID: 15686904].
[44]
Hidalgo-Figueroa, S.; Estrada-Soto, S.; Ramírez-Espinosa, J.J.; Paoli, P.; Lori, G.; León-Rivera, I.; Navarrete-Vázquez, G. Synthesis and evaluation of thiazolidine-2,4-dione/benzazole derivatives as inhibitors of protein tyrosine phosphatase 1B (PTP-1B): Antihyperglycemic activity with molecular docking study. Biomed. Pharmacother., 2018, 107, 1302-1310. [http://dx.doi.org/10.1016/j.biopha.2018.08.124]. [PMID: 30257345].
[45]
Huiying, Z.; Guangying, C.; Shiyang, Z. Design, synthesis and biological activity evaluation of a new class of 2,4-thiazolidinedione compounds as insulin enhancers. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 981-989. [http://dx.doi.org/10.1080/14756366.2019.1608197]. [PMID: 31072232].
[46]
Pattan, S.R.; Suresh, C.; Pujar, V.D.; Reddy, V.V.K.; Rasal, V.P.; Koti, B.C. 2005.
[47]
Riyaz, S.; Naidu, A.; Dubey, P.K. 2012.
[48]
Pattan, S.; Kedar, M.; Pattan, J.; Dengale, S.; Sanap, M.; Gharate, U.; Shinde, P.; Kadam, S. 2012.
[49]
Jawale, D.V.; Pratap, U.R.; Rahuja, N.; Srivastava, A.K.; Mane, R.A. Synthesis and antihyperglycemic evaluation of new 2,4-thiazolidinediones having biodynamic aryl sulfonylurea moieties. Bioorg. Med. Chem. Lett., 2012, 22(1), 436-439. [http://dx.doi.org/10.1016/j.bmcl.2011.10.110]. [PMID: 22123321].
[50]
Kim, B.Y.; Ahn, J.B.; Lee, H.W.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Hong, C.I.; Yoon, S.S. Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. Eur. J. Med. Chem., 2004, 39(5), 433-447. [http://dx.doi.org/10.1016/j.ejmech.2004.03.001]. [PMID: 15110969].
[51]
Lee, H.W.; Kim, B.Y.; Ahn, J.B.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Lee, S.J.; Yoon, S.S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem., 2005, 40(9), 862-874. [http://dx.doi.org/10.1016/j.ejmech.2005.03.019]. [PMID: 15908051].
[52]
Maccari, R.; Ottanà, R.; Ciurleo, R.; Rakowitz, D.; Matuszczak, B.; Laggner, C.; Langer, T. Synthesis, induced-fit docking investigations, and in vitro aldose reductase inhibitory activity of non-carboxylic acid containing 2,4-thiazolidinedione derivatives. Bioorg. Med. Chem., 2008, 16(11), 5840-5852. [http://dx.doi.org/10.1016/j.bmc.2008.04.072]. [PMID: 18492610].
[53]
Mahapatra, M.K.; Kumar, R.; Kumar, M. Synthesis, biological evaluation and in silico studies of 5-(3-methoxy-benzylidene)thiazolidine-2,4-dione analogues as PTP1B inhibitors. Bioorg. Chem., 2017, 71, 1-9. [http://dx.doi.org/10.1016/j.bioorg.2017.01.007]. [PMID: 28126289].
[54]
Naim, M.J.; Alam, M.J.; Nawaz, F.; Naidu, V.G.M.; Aaghaz, S.; Sahu, M.; Siddiqui, N.; Alam, O. Synthesis, molecular docking and anti-diabetic evaluation of 2,4-thiazolidinedione based amide derivatives. Bioorg. Chem., 2017, 73, 24-36. [http://dx.doi.org/10.1016/j.bioorg.2017.05.007]. [PMID: 28582649].
[55]
Nazreen, S.; Alam, M.S.; Hamid, H.; Yar, M.S.; Shafi, S.; Dhulap, A.; Alam, P.; Pasha, M.A.Q.; Bano, S.; Alam, M.M.; Haider, S.; Ali, Y.; Kharbanda, C.; Pillai, K.K. Design, synthesis, in silico molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2,4-diones bis-heterocycles as PPAR-γ agonists. Eur. J. Med. Chem., 2014, 87, 175-185. [http://dx.doi.org/10.1016/j.ejmech.2014.09.010]. [PMID: 25255433].
[56]
Nazreen, S.; Alam, M.S.; Hamid, H.; Yar, M.S.; Dhulap, A.; Alam, P.; Pasha, M.A.Q.; Bano, S.; Alam, M.M.; Haider, S.; Kharbanda, C.; Ali, Y.; Pillai, K.K. Thiazolidine-2,4-diones derivatives as PPAR-γ agonists: synthesis, molecular docking, in vitro and in vivo antidiabetic activity with hepatotoxicity risk evaluation and effect on PPAR-γ gene expression. Bioorg. Med. Chem. Lett., 2014, 24(14), 3034-3042. [http://dx.doi.org/10.1016/j.bmcl.2014.05.034]. [PMID: 24890090].
[57]
Oguchi, M.; Wada, K.; Honma, H.; Tanaka, A.; Kaneko, T.; Sakakibara, S.; Ohsumi, J.; Serizawa, N.; Fujiwara, T.; Horikoshi, H.; Fujita, T. Molecular design, synthesis, and hypoglycemic activity of a series of thiazolidine-2,4-diones. J. Med. Chem., 2000, 43(16), 3052-3066. [http://dx.doi.org/10.1021/jm990522t]. [PMID: 10956213].
[58]
Ertan, R.; Bozdag, O. 1997.
[59]
Prabhakar, C.; Madhusudhan, G.; Sahadev, K.; Reddy, C.M.; Sarma, M.R.; Reddy, G.O.; Chakrabarti, R.; Rao, C.S.; Kumar, T.D.; Rajagopalan, R. Synthesis and biological activity of novel thiazolidinediones. Bioorg. Med. Chem. Lett., 1998, 8(19), 2725-2730. [http://dx.doi.org/10.1016/S0960-894X(98)00485-5]. [PMID: 9873611].
[60]
Ranjan Srivastava, A.; Bhatia, R.; Chawla, P. Synthesis, biological evaluation and molecular docking studies of novel 3,5-disubstituted 2,4-thiazolidinediones derivatives. Bioorg. Chem., 2019, •••89102993 [http://dx.doi.org/10.1016/j.bioorg.2019.102993]. [PMID: 31129500].
[61]
Deshmukh, A.R.; Dhumal, S.T.; Bhalerao, M.B.; Mishra, A.; Srivastava, A.K.; Mane, R.A. Design, synthesis and antidiabetic evaluation of new cyanoquinoloxy benzylidenyl 2,4-thiazolidinediones. Chem. Biol. Interact., 2016, 6(4), 189-197.
[62]
Murugan, R.; Anbazhagan, S. Lingeshwaran, Narayanan, S.S. Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur. J. Med. Chem., 2009, 44(8), 3272-3279. [http://dx.doi.org/10.1016/j.ejmech.2009.03.035]. [PMID: 19395129].
[63]
Madhavan, G.R.; Chakrabarti, R.; Vikramadithyan, R.K.; Mamidi, R.N.V.S.; Balraju, V.; Rajesh, B.M.; Misra, P.; Kumar, S.K.B.; Lohray, B.B.; Lohray, V.B.; Rajagopalan, R. Synthesis and biological activity of novel pyrimidinone containing thiazolidinedione derivatives. Bioorg. Med. Chem., 2002, 10(8), 2671-2680. [http://dx.doi.org/10.1016/S0968-0896(02)00107-4]. [PMID: 12057656].
[64]
Unlusoy, M.C.; Kazak, C.; Bayro, O.; Verspohl, E.J.; Ertan, R.; Dundar, O.B. Synthesis and antidiabetic activity of 2,4-thiazolidindione, imidazolidinedione and 2-thioxo-imidazolidine-4-one derivatives bearing 6-methyl chromonyl pharmacophore. J. Enzyme Inhib. Med. Chem., 2012, 28(6), 1205-1210. [PMID: 23057864].
[65]
Alam, F.; Islam, M.A.; Mohamed, M.; Ahmad, I.; Kamal, M.A.; Donnelly, R.; Idris, I.; Gan, S.H. Efficacy and safety of pioglitazone monotherapy in type 2 diabetes mellitus: A systematic review and meta-analysis of randomised controlled trials. Sci. Rep., 2019, 9(1), 5389. [http://dx.doi.org/10.1038/s41598-019-41854-2]. [PMID: 30926892].
[66]
Kahn, B.B.; McGraw, T.E. Rosiglitazone, PPARγ, and type 2 diabetes. N. Engl. J. Med., 2010, 363(27), 2667-2669. [http://dx.doi.org/10.1056/NEJMcibr1012075]. [PMID: 21190462].
[67]
Rosenstock, J.; Einhorn, D.; Hershon, K.; Glazer, N.B.; Yu, S. Efficacy and safety of pioglitazone in type 2 diabetes: a randomised, placebo-controlled study in patients receiving stable insulin therapy. Int. J. Clin. Pract., 2002, 56(4), 251-257. [PMID: 12074206].
[68]
King, A.B.; Armstrong, D.U. Lipid response to pioglitazone in diabetic patients: Clinical observations from a retrospective chart review. Diabetes Technol. Ther., 2002, 4(2), 145-151. [http://dx.doi.org/10.1089/15209150260007354]. [PMID: 12079617].
[69]
Miyazaki, Y.; Mahankali, A.; Matsuda, M.; Glass, L.; Mahankali, S.; Ferrannini, E.; Cusi, K.; Mandarino, L.J.; DeFronzo, R.A. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care, 2001, 24(4), 710-719. [http://dx.doi.org/10.2337/diacare.24.4.710]. [PMID: 11315836].
[70]
Einhorn, D.; Rendell, M.; Rosenzweig, J.; Egan, J.W.; Mathisen, A.L.; Schneider, R.L. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin. Ther., 2000, 22(12), 1395-1409. [http://dx.doi.org/10.1016/S0149-2918(00)83039-8]. [PMID: 11192132].
[71]
Aronoff, S.; Rosenblatt, S.; Braithwaite, S.; Egan, J.W.; Mathisen, A.L.; Schneider, R.L. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: A 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care, 2000, 23(11), 1605-1611. [http://dx.doi.org/10.2337/diacare.23.11.1605]. [PMID: 11092281].
[72]
Rosenblatt, S.; Miskin, B.; Glazer, N.B.; Prince, M.J.; Robertson, K.E. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron. Artery Dis., 2001, 12(5), 413-423. [http://dx.doi.org/10.1097/00019501-200108000-00011]. [PMID: 11491207].
[73]
Raskin, P.; Rendell, M.; Riddle, M.C.; Dole, J.F.; Freed, M.I.; Rosenstock, J. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care, 2001, 24(7), 1226-1232. [http://dx.doi.org/10.2337/diacare.24.7.1226]. [PMID: 11423507].
[74]
Fonseca, V.; Rosenstock, J.; Patwardhan, R.; Salzman, A. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA, 2000, 283(13), 1695-1702. [http://dx.doi.org/10.1001/jama.283.13.1695]. [PMID: 10755495].
[75]
Pfützner, A.; Schöndorf, T.; Seidel, D.; Winkler, K.; Matthaei, S.; Hamann, A.; Forst, T. Impact of rosiglitazone on beta-cell function, insulin resistance, and adiponectin concentrations: Results from a double-blind oral combination study with glimepiride. Metabolism, 2006, 55(1), 20-25. [http://dx.doi.org/10.1016/j.metabol.2005.06.021]. [PMID: 16324915].
[76]
Wolffenbuttel, B.H.; Gomis, R.; Squatrito, S.; Jones, N.P.; Patwardhan, R.N. Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabet. Med., 2000, 17(1), 40-47. [http://dx.doi.org/10.1046/j.1464-5491.2000.00224.x]. [PMID: 10691158].
[77]
Vongthavaravat, V.; Wajchenberg, B.L.; Waitman, J.N.; Quimpo, J.A.; Menon, P.S.; Ben Khalifa, F.; Chow, W.H. An international study of the effects of rosiglitazone plus sulphonylurea in patients with type 2 diabetes. Curr. Med. Res. Opin., 2002, 18(8), 456-461. [http://dx.doi.org/10.1185/030079902125001236]. [PMID: 12564655].
[78]
Dailey, G.E., III; Noor, M.A.; Park, J.S.; Bruce, S.; Fiedorek, F.T. Glycemic control with glyburide/metformin tablets in combination with rosiglitazone in patients with type 2 diabetes: A randomized, double-blind trial. Am. J. Med., 2004, 116(4), 223-229. [http://dx.doi.org/10.1016/j.amjmed.2003.07.022]. [PMID: 14969649].
[79]
Orbay, E.; Sargin, M.; Sargin, H.; Gözü, H.; Bayramiçli, O.U.; Yayla, A. Addition of rosiglitazone to glimepirid and metformin combination therapy in type 2 diabetes. Endocr. J., 2004, 51(6), 521-527. [http://dx.doi.org/10.1507/endocrj.51.521]. [PMID: 15644569].
[80]
Rosenstock, J.; Goldstein, B.J.; Vinik, A.I.; O’neill, M.C.; Porter, L.E.; Heise, M.A.; Kravitz, B.; Dirani, R.G.; Freed, M.I. Effect of early addition of rosiglitazone to sulphonylurea therapy in older type 2 diabetes patients (>60 years): The Rosiglitazone Early vs. SULphonylurea Titration (RESULT) study. Diabetes Obes. Metab., 2006, 8(1), 49-57. [http://dx.doi.org/10.1111/j.1463-1326.2005.00541.x]. [PMID: 16367882].
[81]
Patel, J.; Anderson, R.J.; Rappaport, E.B. Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: A twelve-week, randomized, placebo-controlled study. Diabetes Obes. Metab., 1999, 1(3), 165-172. [http://dx.doi.org/10.1046/j.1463-1326.1999.00020.x]. [PMID: 11220295].
[82]
Phillips, L.S.; Grunberger, G.; Miller, E.; Patwardhan, R.; Rappaport, E.B.; Salzman, A. Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care, 2001, 24(2), 308-315. [http://dx.doi.org/10.2337/diacare.24.2.308]. [PMID: 11213884].