Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Recent Trends in Carbon Nanotubes Based Prostate Cancer Therapy: A Biomedical Hybrid for Diagnosis and Treatment

Author(s): Raja Murugesan and Sureshkumar Raman*

Volume 19, Issue 2, 2022

Published on: 24 February, 2021

Page: [229 - 237] Pages: 9

DOI: 10.2174/1567201818666210224101456

Price: $65

Abstract

At present, treatment methods for cancer are limited, partially due to the solubility, poor cellular distribution of drug molecules and the incapability of drugs to cross the cellular barriers. Carbon Nanotubes (CNTs) generally have excellent physio-chemical properties, which include High-level penetration into the cell membrane, high surface area, and high capacity of drug-loading by circulating modification with biomolecules, projecting them as an appropriate candidate to diagnose and deliver drugs to Prostate Cancer (PCa). Additionally, the chemically modified CNTs possess excellent 'biosensing' properties, thus helping them detect the PCa easily without a fluorescent agent and additionally, targeting the particular site of PCa. In this way, drug delivery can accomplish high efficacy, enhanced permeability with less toxic effects. While CNTs have been mainly engaged in cancer treatment, a few studies are focused on the diagnosis and treatment of PCa. Here, we have meticulously reviewed the current progress of the CNTs-based diagnosis and the targeted drug delivery system for managing and curing PCa.

Keywords: Prostate cancer, biosensor, carbon nanotubes, diagnosis, drug delivery system, bioimaging.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Ferlay, J.E.M.; Lam, F.; Colombet, M. Global cancer observatory: cancer today; International Agency for Research on Cancer: Lyon, France, 2019, p. 2.
[3]
Platz, E.A.; Leitzmann, M.F.; Michaud, D.S.; Willett, W.C.; Giovannucci, E. Interrelation of energy intake, body size, and physical activity with prostate cancer in a large prospective cohort study. Cancer Res., 2003, 63(23), 8542-8548.
[PMID: 14679023]
[4]
Willis, M.S.; Wians, F.H. The role of nutrition in preventing prostate cancer: a review of the proposed mechanism of action of various dietary substances. Clin. Chim. Acta, 2003, 330(1-2), 57-83.
[http://dx.doi.org/10.1016/S0009-8981(03)00048-2] [PMID: 12636926]
[5]
Aliakbarinodehi, N.; Micheli, G.D.; Carrara, S. Anal. Chem., 2016, 88(19), 9347-9350.
[6]
Kim, J.P.; Lee, B.Y.; Lee, J.; Hong, S.; Sim, S.J. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens. Bioelectron., 2009, 24(11), 3372-3378.
[http://dx.doi.org/10.1016/j.bios.2009.04.048] [PMID: 19481922]
[7]
Andraka, J. Sensors for detection of mesothelin. US patent, PCT/US2012/068589, 21.Nov. 2013.
[8]
Koo, Y.; Shanov, V.N.; Yun, Y. Carbon nanotube paper-based electroanalytical devices. Micromachines (Basel), 2016, 7(4), 72.
[http://dx.doi.org/10.3390/mi7040072] [PMID: 30407444]
[9]
Wang, J. Carbon nanotube based electrochemical biosensor: a review. Electroanalysis, 2005, 17(1), 7-14.
[http://dx.doi.org/10.1002/elan.200403113]
[10]
Patel, S.; Nanda, R.; Sahoo, S.; Mohapatra, E. Biosensors in health care: the milestones achieved in their development towards lab-on-chip-analysis. Biochem. Res. Int., 2016, 2016, 3130469.
[http://dx.doi.org/10.1155/2016/3130469] [PMID: 27042353]
[11]
Mehrotra, P. Biosensors and their applications - A review. J. Oral Biol. Craniofac. Res., 2016, 6(2), 153-159.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[12]
Wang, J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron., 2006, 21(10), 1887-1892.
[http://dx.doi.org/10.1016/j.bios.2005.10.027] [PMID: 16330202]
[13]
Yun, Y.; Dong, Z.; Shanov, V.N.; Schulz, M.J. Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel. Nanotechnology, 2007, 18(46), 465505.
[http://dx.doi.org/10.1088/0957-4484/18/46/465505] [PMID: 21730479]
[14]
Chikkaveeraiah, B.V.; Bhirde, A.; Malhotra, R.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal. Chem., 2009, 81(21), 9129-9134.
[http://dx.doi.org/10.1021/ac9018022] [PMID: 19775154]
[15]
Wan, Y.; Deng, W.; Su, Y.; Zhu, X.; Peng, C.; Hu, H.; Peng, H.; Song, S.; Fan, C. Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens. Bioelectron., 2011, 30(1), 93-99.
[http://dx.doi.org/10.1016/j.bios.2011.08.033] [PMID: 21944923]
[16]
Salimi, A.; Kavosi, B.; Fathi, F.; Hallaj, R. Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid-carbon nanotubes modified electrode: application as cancer biomarker for prostate biopsies. Biosens. Bioelectron., 2013, 42, 439-446.
[http://dx.doi.org/10.1016/j.bios.2012.10.053] [PMID: 23235113]
[17]
Lerner, M.B.; D'Souza, J.; Pazina, T. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. ACS Nano., 2012, 6, 5143-5149.
[18]
Sharma, A.; Hong, S.; Singh, R.; Jang, J. Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin. Anal. Chim. Acta, 2015, 869, 68-73.
[http://dx.doi.org/10.1016/j.aca.2015.02.010] [PMID: 25818141]
[19]
Tran, H.V.; Piro, B.; Reisberg, S. Label-free and reagent less electrochemical detection of micro RNAs using a conducting polymer nano structured by carbon nanotubes. Application to prostate cancer biomarker miR-141. Biosens. Bioelectron., 2013, 49, 164-169.
[20]
Shobha, B.N.; Muniraj, N.J.R. Design, modeling and performance analysis of carbon nanotube with DNA strands as biosensor for prostate cancer. Microsyst. Technol., 2014, 10.
[21]
Topkaya, S.N.; Ozkan-Ariksoysal, D. Prostate cancer biomarker detection with carbon nanotubes modified screen printed electrodes. Electroanalysis, 2016, 28, 1077-1084.
[http://dx.doi.org/10.1002/elan.201501003]
[22]
Karthik, R.; Sasikumar, R.; Chen, A.; Shen-Ming, C. Highly sensitive and selective electrochemical determination of non-steroidal prostate anti-cancer drug nilutamide based on ƒ-MWCNT in tablet and human blood serum sample. J. Colloid Interface Sci., 2016, S0021-9797(16), 30814-30811.
[23]
Farzin, L.; Sadjadi, S.; Shamsipur, M.; Sheibani, S. An immunosensing device based on inhibition of mediator’s faradaic process for early diagnosis of prostate cancer using bifunctional nanoplatform reinforced by carbon nanotube. J. Pharm. Biomed. Anal., 2019, 172, 259-267.
[http://dx.doi.org/10.1016/j.jpba.2019.05.008] [PMID: 31078062]
[24]
Xiaokai, S.; Canguo, L.; Qiying, Z. A novel ultrasensitive sandwich-type photoelectrochemical immunoassay for PSA detection based on dual inhibition effect of Au/MWCNTs nanohybrids on N-GQDs/ CdS QDs dual sensitized urchin-like TiO2. Electrochimica Acta, 2019, S0013-4686(19), 32352-32357.
[25]
Annadurai, T.; Venkatachalam, R.; Vembu, S. Highly sensitive and selective amperometric determination of BPA on carbon black/f-MWCNT composite modified GCE. J. Alloys Compd., 2019, 786, 698-706.
[http://dx.doi.org/10.1016/j.jallcom.2019.02.020]
[26]
Mehra, N.K.; Jain, K.; Jain, N.K. Design of multifunctional nanocarriers for delivery of anti-cancer therapy. Curr. Pharm. Des., 2015, 21(42), 6157-6164.
[http://dx.doi.org/10.2174/1381612821666151027153106] [PMID: 26503145]
[27]
Mehra, N.K.; Jain, N.K. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting. J. Drug Target., 2016, 24(4), 294-308.
[http://dx.doi.org/10.3109/1061186X.2015.1055571] [PMID: 26147085]
[28]
Bonifazi, D.; Nacci, C.; Marega, R.; Campidelli, S.; Ceballos, G.; Modesti, S.; Meneghetti, M.; Prato, M. Microscopic and spectroscopic characterization of paintbrush-like single-walled carbon nanotubes. Nano Lett., 2006, 6(7), 1408-1414.
[http://dx.doi.org/10.1021/nl060394d] [PMID: 16834420]
[29]
Zhao, B.; Hu, H.; Yu, A.; Perea, D.; Haddon, R.C. Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. J. Am. Chem. Soc., 2005, 127(22), 8197-8203.
[http://dx.doi.org/10.1021/ja042924i] [PMID: 15926849]
[30]
Malarkey, E.B.; Reyes, R.C.; Zhao, B.; Haddon, R.C.; Parpura, V. Water soluble single-walled carbon nanotubes inhibit stimulated endocytosis in neurons. Nano Lett., 2008, 8(10), 3538-3542.
[http://dx.doi.org/10.1021/nl8017912] [PMID: 18759491]
[31]
Malarkey, E.B.; Fisher, K.A.; Bekyarova, E.; Liu, W.; Haddon, R.C.; Parpura, V. Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett., 2009, 9(1), 264-268.
[http://dx.doi.org/10.1021/nl802855c] [PMID: 19143503]
[32]
Cheng, J.; Meziani, M.J.; Sun, Y.P.; Cheng, S.H. Poly(ethylene glycol)-conjugated multi-walled carbon nanotubes as an efficient drug carrier for overcoming multidrug resistance. Toxicol. Appl. Pharmacol., 2011, 250(2), 184-193.
[http://dx.doi.org/10.1016/j.taap.2010.10.012] [PMID: 20970441]
[33]
Wu, P.; Chen, X.; Hu, N.; Tam, U.C.; Blixt, O.; Zettl, A.; Bertozzi, C.R. Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angew. Chem. Int. Ed. Engl., 2008, 47(27), 5022-5025.
[http://dx.doi.org/10.1002/anie.200705363] [PMID: 18509843]
[34]
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res., 2008, 68(16), 6652-6660.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1468] [PMID: 18701489]
[35]
Mehra, N.K.; Jain, N.K. Drug delivery aspects of carbon nanotubes; CRC Press, Taylor& Francis: LLC, USA., 2015.
[http://dx.doi.org/10.1201/b18724-30]
[36]
Mehra, N.K.; Jain, N.K. One platform comparison of estrone and folic acid anchored surface engineered MWCNTs for doxorubicin delivery. Mol. Pharm., 2015, 12(2), 630-643.
[http://dx.doi.org/10.1021/mp500720a] [PMID: 25517904]
[37]
Gu, Y.J.; Cheng, J.; Jin, J.; Cheng, S.H.; Wong, W.T. Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells. Int. J. Nanomed., 2011, 6, 2889-2898.
[PMID: 22131835]
[38]
Datir, S.R.; Das, M.; Singh, R.P.; Jain, S. Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug. Chem., 2012, 23(11), 2201-2213.
[http://dx.doi.org/10.1021/bc300248t] [PMID: 23039830]
[39]
Ji, Z.; Lin, G.; Lu, Q.; Meng, L.; Shen, X.; Dong, L.; Fu, C.; Zhang, X. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J. Colloid Interface Sci., 2012, 365(1), 143-149.
[http://dx.doi.org/10.1016/j.jcis.2011.09.013] [PMID: 21974923]
[40]
Gupta, R.; Mehra, N.K.; Jain, N.K. Fucosylated multiwalled carbon nanotubes for Kupffer cells targeting for the treatment of cytokine-induced liver damage. Pharm. Res., 2014, 31(2), 322-334.
[http://dx.doi.org/10.1007/s11095-013-1162-9] [PMID: 24043294]
[41]
Mehra, N.K.; Jain, N.K. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J. Drug Target., 2013, 21(8), 745-758.
[http://dx.doi.org/10.3109/1061186X.2013.813028] [PMID: 23822734]
[42]
Arora, S.; Saharan, R.; Kaur, H. Attachment of Docetaxel to multi-walled carbon nanotubes for drug delivery applications. Adv. Sci. Lett., 2012, 5, 1-6.
[43]
Arora, S.; Kumar, R.; Kaur, H.; Rayat, C.S.; Kaur, I.; Arora, S.K.; Srivastava, J.; Bharadwaj, L.M. Translocation and toxicity of docetaxel multi-walled carbon nanotube conjugates in mammalian breast cancer cells. J. Biomed. Nanotechnol., 2014, 10(12), 3601-3609.
[http://dx.doi.org/10.1166/jbn.2014.1875] [PMID: 26000373]
[44]
Wang, L.; Zhang, M.; Zhang, N.; Shi, J.; Zhang, H.; Li, M.; Lu, C.; Zhang, Z. Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int. J. Nanomed., 2011, 6, 2641-2652.
[http://dx.doi.org/10.2147/IJN.S24167] [PMID: 22114495]
[45]
Tripisciano, C.; Kraemer, K.; Taylor, A. Single wall carbon nanotubes based anticancer drug delivery system. Chem. Phys. Lett., 2009, 478(4-6), 200-205.
[http://dx.doi.org/10.1016/j.cplett.2009.07.071]
[46]
Fisher, J.W.; Sarkar, S.; Buchanan, C.F.; Szot, C.S.; Whitney, J.; Hatcher, H.C.; Torti, S.V.; Rylander, C.G.; Rylander, M.N. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res., 2010, 70(23), 9855-9864.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0250] [PMID: 21098701]
[47]
Neves, V.; Gerondopoulos, A.; Heister, E. Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells. Nano Res., 2012, 5(4), 223-234.
[http://dx.doi.org/10.1007/s12274-012-0202-9]
[48]
Ringel, J.; Erdmann, K.; Hampel, S.; Kraemer, K.; Maier, D.; Arlt, M.; Kunze, D.; Wirth, M.P.; Fuessel, S. Carbon nanofibers and carbon nanotubes sensitize prostate and bladder cancer cells to platinum-based chemotherapeutics. J. Biomed. Nanotechnol., 2014, 10(3), 463-477.
[http://dx.doi.org/10.1166/jbn.2014.1758] [PMID: 24730242]
[49]
Mihaela, B.; Sabrina, C.; Adriana, D. Fabrication and toxicity characterization of a hybrid material based on oxidized and aminated MWCNT loaded with carboplastin. Toxico in vitro, 2016, S0887-2333(16), 30183-30187.
[50]
Tang, X. Preparation and evaluation of polydopamine imprinting layer coated multi-walled carbon nanotubes for the determination of testosterone in prostate cancer LNcap cells. Anal. Methods, 2015, 7, 8326-.
[http://dx.doi.org/10.1039/C5AY01690H]
[51]
Vedran, M.; Ludmila, K.; Roman, G.; Buchtelova, H.; Wawrzak, D.; Richtera, L.; Heger, Z.; Kopel, P.; Adam, V. Exceptional release kinetics and cytotoxic selectivity of oxidised mwcnts double-functionalised with doxorubicin and prostate-homing peptide. Colloids Surf B Biointerfaces., 2017, 156, 123-132.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.008] [PMID: 28527356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy