Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants

Author(s): Temoor Ahmed, Muhammad Noman, Muhammad Shahid*, Sher Muhammad, Muhammad Tahir ul Qamar, Md. Arshad Ali, Awais Maqsood, Rahila Hafeez, Solabomi Olaitan Ogunyemi and Bin Li*

Volume 28, Issue 8, 2021

Published on: 18 February, 2021

Page: [861 - 877] Pages: 17

DOI: 10.2174/0929866528666210218220138

Price: $65

conference banner
Abstract

Abiotic stresses in plants such as salinity, drought, heavy metal toxicity, heat, and nutrients limitations significantly reduce agricultural production worldwide. The genome editing techniques such as transcriptional activator-like effector nucleases (TALENs) and zinc finger nucleases (ZFNs) have been used for genome manipulations in plants. However, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technique has recently emerged as a promising tool for genome editing in plants to acquire desirable traits. The CRISPR/Cas9 system has a great potential to develop crop varieties with improved tolerance against abiotic stresses. This review is centered on the biology and potential application of the CRISPR/Cas9 system to improve abiotic stress tolerance in plants. Furthermore, this review highlighted the recent advancements of CRISPR/Cas9-mediated genome editing for sustainable agriculture.

Keywords: CRISPR/Cas9, abiotic stresses, genome editing, crop improvement, transcription, sgRNA.

Graphical Abstract

[1]
Suweisa, S.; Carrb, J.A.; Maritana, A.; Rinaldoc, A.; D’Odoricob, P. Correction for Suweis et al., Resilience and reactivity of global food security. Proc. Natl. Acad. Sci. USA, 2015, 112(34), E4811.
[http://dx.doi.org/10.1073/pnas.1512971112] [PMID: 26170325]
[2]
Khan, M.S.; Ahmad, D.; Khan, M.A. Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron. J. Biotechnol., 2015, 18(4), 257-266.
[http://dx.doi.org/10.1016/j.ejbt.2015.04.002]
[3]
Zafar, S.A.; Zaidi, S.S-A.; Gaba, Y.; Singla-Pareek, S.L.; Dhankher, O.P.; Li, X.; Mansoor, S.; Pareek, A. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. J. Exp. Bot., 2020, 71(2), 470-479.
[http://dx.doi.org/10.1093/jxb/erz476] [PMID: 31644801]
[4]
Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J., 2016, 4(3), 162-176.
[http://dx.doi.org/10.1016/j.cj.2016.01.010]
[5]
Ahmad, S.; Wei, X.; Sheng, Z.; Hu, P.; Tang, S. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Brief. Funct. Genomics, 2020, 19(1), 26-39.
[http://dx.doi.org/10.1093/bfgp/elz041] [PMID: 31915817]
[6]
Debbarma, J.; Sarki, Y.N.; Saikia, B.; Boruah, H.P.D.; Singha, D.L.; Chikkaputtaiah, C. Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR–Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review. Mol. Biotechnol., 2019, 61(2), 153-172.
[http://dx.doi.org/10.1007/s12033-018-0144-x] [PMID: 30600447]
[7]
Cheeseman, J. Food security in the face of salinity, drought, climate change, and population growth. In: Halophytes for Food Security in Dry Lands; Khan, M.A.; Ozturk, O.; Ahmed, M.Z., Eds.; Academic Press, 2016; pp. 111-123.
[http://dx.doi.org/10.1016/B978-0-12-801854-5.00007-8]
[8]
Shinwari, Z.K.; Jan, S.A.; Nakashima, K.; Yamaguchi-Shinozaki, K. Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnol. Rep., 2020, 14(2), 151-162.
[http://dx.doi.org/10.1007/s11816-020-00598-6]
[9]
Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.; Lotze-Campen, H. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang., 2018, 8(8), 699-703.
[http://dx.doi.org/10.1038/s41558-018-0230-x]
[10]
Driedonks, N.; Rieu, I.; Vriezen, W.H. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod., 2016, 29(1-2), 67-79.
[http://dx.doi.org/10.1007/s00497-016-0275-9] [PMID: 26874710]
[11]
Zaidi, S.S-A.; Tashkandi, M.; Mansoor, S.; Mahfouz, M.M. Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front. Plant Sci., 2016, 7, 1673.
[http://dx.doi.org/10.3389/fpls.2016.01673] [PMID: 27877187]
[12]
Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8(6), e66428.
[http://dx.doi.org/10.1371/journal.pone.0066428] [PMID: 23840465]
[13]
Napier, J.A.; Haslam, R.P.; Tsalavouta, M.; Sayanova, O. The challenges of delivering genetically modified crops with nutritional enhancement traits. Nat. Plants, 2019, 5(6), 563-567.
[http://dx.doi.org/10.1038/s41477-019-0430-z] [PMID: 31160704]
[14]
Shukla, M.; Al-Busaidi, K.T.; Trivedi, M.; Tiwari, R.K. Status of research, regulations and challenges for genetically modified crops in India. GM Crops Food, 2018, 9(4), 173-188.
[http://dx.doi.org/10.1080/21645698.2018.1529518] [PMID: 30346874]
[15]
Zaidi, S.S-A.; Mahfouz, M.M.; Mansoor, S. CRISPR-Cpf1: A New Tool for Plant Genome Editing. Trends Plant Sci., 2017, 22(7), 550-553.
[http://dx.doi.org/10.1016/j.tplants.2017.05.001] [PMID: 28532598]
[16]
Čermák, T.; Curtin, S.J.; Gil-Humanes, J.; Čegan, R.; Kono, T.J.Y.; Konečná, E.; Belanto, J.J.; Starker, C.G.; Mathre, J.W.; Greenstein, R.L.; Voytas, D.F. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 2017, 29(6), 1196-1217.
[http://dx.doi.org/10.1105/tpc.16.00922] [PMID: 28522548]
[17]
Arora, L.; Narula, A. Gene editing and crop improvement using CRISPR-Cas9 system. Front. Plant Sci., 2017, 8, 1932.
[http://dx.doi.org/10.3389/fpls.2017.01932] [PMID: 29167680]
[18]
Stella, S.; Montoya, G. The genome editing revolution: A CRISPR-Cas TALE off-target story. BioEssays, 2016, 38(Suppl. 1), S4-S13.
[http://dx.doi.org/10.1002/bies.201670903] [PMID: 27417121]
[19]
Nongpiur, R.C.; Singla-Pareek, S.L.; Pareek, A. Genomics approaches for improving salinity stress tolerance in crop plants. Curr. Genomics, 2016, 17(4), 343-357.
[http://dx.doi.org/10.2174/1389202917666160331202517] [PMID: 27499683]
[20]
Ceasar, S.A.; Rajan, V.; Prykhozhij, S.V.; Berman, J.N.; Ignacimuthu, S. Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim. Biophys. Acta, 2016, 1863(9), 2333-2344.
[http://dx.doi.org/10.1016/j.bbamcr.2016.06.009] [PMID: 27350235]
[21]
Kamthan, A.; Chaudhuri, A.; Kamthan, M.; Datta, A. Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor. Appl. Genet., 2016, 129(9), 1639-1655.
[http://dx.doi.org/10.1007/s00122-016-2747-6] [PMID: 27381849]
[22]
Zsögön, A.; Cermak, T.; Voytas, D.; Peres, L.E.P. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Sci., 2017, 256, 120-130.
[http://dx.doi.org/10.1016/j.plantsci.2016.12.012] [PMID: 28167025]
[23]
Gao, J.; Wang, G.; Ma, S.; Xie, X.; Wu, X.; Zhang, X.; Wu, Y.; Zhao, P.; Xia, Q. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol. Biol., 2015, 87(1-2), 99-110.
[http://dx.doi.org/10.1007/s11103-014-0263-0] [PMID: 25344637]
[24]
Belhaj, K.; Chaparro-Garcia, A.; Kamoun, S.; Patron, N.J.; Nekrasov, V. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol., 2015, 32, 76-84.
[http://dx.doi.org/10.1016/j.copbio.2014.11.007] [PMID: 25437637]
[25]
Haeussler, M.; Concordet, J.P. Genome editing with CRISPR-Cas9: can it get any better? J. Genet. Genomics, 2016, 43(5), 239-250.
[http://dx.doi.org/10.1016/j.jgg.2016.04.008] [PMID: 27210042]
[26]
Tripathi, L.; Ntui, V.O.; Tripathi, J.N. CRISPR/Cas9-based genome editing of banana for disease resistance. Curr. Opin. Plant Biol., 2020, 56, 118-126.
[http://dx.doi.org/10.1016/j.pbi.2020.05.003] [PMID: 32604025]
[27]
Makarova, K.S.; Haft, D.H.; Barrangou, R.; Brouns, S.J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F.J.; Wolf, Y.I.; Yakunin, A.F.; van der Oost, J.; Koonin, E.V. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol., 2011, 9(6), 467-477.
[http://dx.doi.org/10.1038/nrmicro2577] [PMID: 21552286]
[28]
Rani, R.; Yadav, P.; Barbadikar, K.M.; Baliyan, N.; Malhotra, E.V.; Singh, B.K.; Kumar, A.; Singh, D. CRISPR/Cas9: a promising way to exploit genetic variation in plants. Biotechnol. Lett., 2016, 38(12), 1991-2006.
[http://dx.doi.org/10.1007/s10529-016-2195-z] [PMID: 27571968]
[29]
Schaeffer, S.M.; Nakata, P.A. CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci., 2015, 240, 130-142.
[http://dx.doi.org/10.1016/j.plantsci.2015.09.011] [PMID: 26475194]
[30]
Hussain, M.I.; Lyra, D-A.; Farooq, M.; Nikoloudakis, N.; Khalid, N. Salt and drought stresses in safflower: a review. Agron. Sustain. Dev., 2016, 36(1), 4.
[http://dx.doi.org/10.1007/s13593-015-0344-8]
[31]
Jiang, W.; Yang, B.; Weeks, D.P. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One, 2014, 9(6), e99225.
[http://dx.doi.org/10.1371/journal.pone.0099225] [PMID: 24918588]
[32]
Kumar, V.; AlMomin, S.; Rahman, M.H.; Shajan, A. Use of CRISPR in climate smart/resilient agriculture. In: CRISPR/Cas Genome Editing; Bhattacharya, A.; Parkhi, V.; Char, B., Eds.; Springer International Publishing: Switzerland, 2020; pp. 131-164.
[http://dx.doi.org/10.1007/978-3-030-42022-2_7]
[33]
Alagoz, Y.; Gurkok, T.; Zhang, B.; Unver, T. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci. Rep., 2016, 6(1), 30910.
[http://dx.doi.org/10.1038/srep30910] [PMID: 27483984]
[34]
Mercx, S.; Smargiasso, N.; Chaumont, F.; De Pauw, E.; Boutry, M.; Navarre, C. Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 cells by a multiplex CRISPR/Cas9 strategy results in glycoproteins without plant-specific glycans. Front. Plant Sci., 2017, 8, 403.
[http://dx.doi.org/10.3389/fpls.2017.00403] [PMID: 28396675]
[35]
Niu, Q.; Wu, S.; Li, Y.; Yang, X.; Liu, P.; Xu, Y.; Lang, Z. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid. J. Integr. Plant Biol., 2020, 62(4), 398-402.
[http://dx.doi.org/10.1111/jipb.12886] [PMID: 31702097]
[36]
Liu, X.; Xie, C.; Si, H.; Yang, J. CRISPR/Cas9-mediated genome editing in plants. Methods, 2017, 121-122, 94-102.
[http://dx.doi.org/10.1016/j.ymeth.2017.03.009] [PMID: 28315486]
[37]
Sun, Y.; Zhang, X.; Wu, C.; He, Y.; Ma, Y.; Hou, H.; Guo, X.; Du, W.; Zhao, Y.; Xia, L. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol. Plant, 2016, 9(4), 628-631.
[http://dx.doi.org/10.1016/j.molp.2016.01.001] [PMID: 26768120]
[38]
Eid, A.; Alshareef, S.; Mahfouz, M.M. CRISPR base editors: genome editing without double-stranded breaks. Biochemical Journal, 2018, 475(11), 1955-1964.
[39]
Kantor, A.; McClements, M.E.; MacLaren, R.E. CRISPR-Cas9 DNA base-editing and prime-editing. Int. J. Mol. Sci., 2020, 21(17), 6240.
[http://dx.doi.org/10.3390/ijms21176240] [PMID: 32872311]
[40]
Qin, L.; Li, J.; Wang, Q.; Xu, Z.; Sun, L.; Alariqi, M.; Manghwar, H.; Wang, G.; Li, B.; Ding, X.; Rui, H.; Huang, H.; Lu, T.; Lindsey, K.; Daniell, H.; Zhang, X.; Jin, S. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol. J., 2020, 18(1), 45-56.
[http://dx.doi.org/10.1111/pbi.13168] [PMID: 31116473]
[41]
Molla, K.A.; Yang, Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends Biotechnol., 2019, 37(10), 1121-1142.
[http://dx.doi.org/10.1016/j.tibtech.2019.03.008] [PMID: 30995964]
[42]
Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; Liu, D.R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785), 149-157.
[http://dx.doi.org/10.1038/s41586-019-1711-4] [PMID: 31634902]
[43]
Marzec, M.; Brąszewska-Zalewska, A.; Hensel, G. Prime editing: a new way for genome editing. Trends Cell Biol., 2020, 30(4), 257-259.
[http://dx.doi.org/10.1016/j.tcb.2020.01.004] [PMID: 32001098]
[44]
Feng, Z.; Zhang, B.; Ding, W.; Liu, X.; Yang, D-L.; Wei, P.; Cao, F.; Zhu, S.; Zhang, F.; Mao, Y.; Zhu, J.K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res., 2013, 23(10), 1229-1232.
[http://dx.doi.org/10.1038/cr.2013.114] [PMID: 23958582]
[45]
Mao, Y.; Zhang, H.; Xu, N.; Zhang, B.; Gou, F.; Zhu, J-K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol. Plant, 2013, 6(6), 2008-2011.
[http://dx.doi.org/10.1093/mp/sst121] [PMID: 23963532]
[46]
Li, J-F.; Norville, J.E.; Aach, J.; McCormack, M.; Zhang, D.; Bush, J.; Church, G.M.; Sheen, J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol., 2013, 31(8), 688-691.
[http://dx.doi.org/10.1038/nbt.2654] [PMID: 23929339]
[47]
Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res., 2013, 41(20), e188.
[http://dx.doi.org/10.1093/nar/gkt780] [PMID: 23999092]
[48]
Fauser, F.; Schiml, S.; Puchta, H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J., 2014, 79(2), 348-359.
[http://dx.doi.org/10.1111/tpj.12554] [PMID: 24836556]
[49]
Feng, Z.; Mao, Y.; Xu, N.; Zhang, B.; Wei, P.; Yang, D-L.; Wang, Z.; Zhang, Z.; Zheng, R.; Yang, L.; Zeng, L.; Liu, X.; Zhu, J.K. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2014, 111(12), 4632-4637.
[http://dx.doi.org/10.1073/pnas.1400822111] [PMID: 24550464]
[50]
Schiml, S.; Fauser, F.; Puchta, H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J., 2014, 80(6), 1139-1150.
[http://dx.doi.org/10.1111/tpj.12704] [PMID: 25327456]
[51]
Hyun, Y.; Kim, J.; Cho, S.W.; Choi, Y.; Kim, J-S.; Coupland, G. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta, 2015, 241(1), 271-284.
[http://dx.doi.org/10.1007/s00425-014-2180-5] [PMID: 25269397]
[52]
Wang, Z-P.; Xing, H-L.; Dong, L.; Zhang, H-Y.; Han, C-Y.; Wang, X-C.; Chen, Q-J. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol., 2015, 16(1), 144.
[http://dx.doi.org/10.1186/s13059-015-0715-0] [PMID: 26193878]
[53]
Yan, L.; Wei, S.; Wu, Y.; Hu, R.; Li, H.; Yang, W.; Xie, Q. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol. Plant, 2015, 8(12), 1820-1823.
[http://dx.doi.org/10.1016/j.molp.2015.10.004] [PMID: 26524930]
[54]
Peterson, B.A.; Haak, D.C.; Nishimura, M.T.; Teixeira, P.J.; James, S.R.; Dangl, J.L.; Nimchuk, Z.L. Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS One, 2016, 11(9), e0162169.
[http://dx.doi.org/10.1371/journal.pone.0162169] [PMID: 27622539]
[55]
Gao, X.; Chen, J.; Dai, X.; Zhang, D.; Zhao, Y. An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol., 2016, 171(3), 1794-1800.
[http://dx.doi.org/10.1104/pp.16.00663] [PMID: 27208253]
[56]
Mao, Y.; Zhang, Z.; Feng, Z.; Wei, P.; Zhang, H.; Botella, J.R.; Zhu, J.K. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol. J., 2016, 14(2), 519-532.
[http://dx.doi.org/10.1111/pbi.12468] [PMID: 26360626]
[57]
Hahn, F.; Mantegazza, O.; Greiner, A.; Hegemann, P.; Eisenhut, M.; Weber, A.P. An efficient visual screen for CRISPR/Cas9 activity in Arabidopsis thaliana. Front. Plant Sci., 2017, 8, 39.
[http://dx.doi.org/10.3389/fpls.2017.00039] [PMID: 28174584]
[58]
Ryder, P.; McHale, M.; Fort, A.; Spillane, C. Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using CRISPR/Cas9 genome editing. Plant Cell Rep., 2017, 36(6), 1005-1008.
[http://dx.doi.org/10.1007/s00299-017-2125-0] [PMID: 28289885]
[59]
Tsutsui, H.; Higashiyama, T. pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol., 2017, 58(1), 46-56.
[PMID: 27856772]
[60]
Dong, O.X.; Yu, S.; Jain, R.; Zhang, N.; Duong, P.Q.; Butler, C.; Li, Y.; Lipzen, A.; Martin, J.A.; Barry, K.W.; Schmutz, J.; Tian, L.; Ronald, P.C. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat. Commun., 2020, 11(1), 1178.
[http://dx.doi.org/10.1038/s41467-020-14981-y] [PMID: 32132530]
[61]
Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J-L.; Gao, C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol., 2013, 31(8), 686-688.
[http://dx.doi.org/10.1038/nbt.2650] [PMID: 23929338]
[62]
Zhou, H.; Liu, B.; Weeks, D.P.; Spalding, M.H.; Yang, B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res., 2014, 42(17), 10903-10914.
[http://dx.doi.org/10.1093/nar/gku806] [PMID: 25200087]
[63]
Endo, M.; Mikami, M.; Toki, S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol., 2015, 56(1), 41-47.
[http://dx.doi.org/10.1093/pcp/pcu154] [PMID: 25392068]
[64]
Xu, R-F.; Li, H.; Qin, R-Y.; Li, J.; Qiu, C-H.; Yang, Y-C.; Ma, H.; Li, L.; Wei, P-C.; Yang, J-B. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci. Rep., 2015, 5, 11491.
[http://dx.doi.org/10.1038/srep11491] [PMID: 26089199]
[65]
Li, M.; Li, X.; Zhou, Z.; Wu, P.; Fang, M.; Pan, X.; Lin, Q.; Luo, W.; Wu, G.; Li, H. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci., 2016, 7, 377.
[http://dx.doi.org/10.3389/fpls.2016.00377] [PMID: 27066031]
[66]
Wang, M.; Lu, Y.; Botella, J.R.; Mao, Y.; Hua, K.; Zhu, J.K. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol. Plant, 2017, 10(7), 1007-1010.
[http://dx.doi.org/10.1016/j.molp.2017.03.002] [PMID: 28315751]
[67]
Li, J.; Sun, Y.; Du, J.; Zhao, Y.; Xia, L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant, 2017, 10(3), 526-529.
[http://dx.doi.org/10.1016/j.molp.2016.12.001] [PMID: 27940306]
[68]
Lu, Y.; Zhu, J-K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol. Plant, 2017, 10(3), 523-525.
[http://dx.doi.org/10.1016/j.molp.2016.11.013] [PMID: 27932049]
[69]
Hu, X.; Meng, X.; Liu, Q.; Li, J.; Wang, K. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol. J., 2018, 16(1), 292-297.
[http://dx.doi.org/10.1111/pbi.12771] [PMID: 28605576]
[70]
Endo, M.; Mikami, M.; Endo, A.; Kaya, H.; Itoh, T.; Nishimasu, H.; Nureki, O.; Toki, S. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM. Nat. Plants, 2019, 5(1), 14-17.
[http://dx.doi.org/10.1038/s41477-018-0321-8] [PMID: 30531939]
[71]
Upadhyay, S.K.; Kumar, J.; Alok, A.; Tuli, R. RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda), 2013, 3(12), 2233-2238.
[http://dx.doi.org/10.1534/g3.113.008847] [PMID: 24122057]
[72]
Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qiu, J-L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol., 2014, 32(9), 947-951.
[http://dx.doi.org/10.1038/nbt.2969] [PMID: 25038773]
[73]
Shan, Q.; Wang, Y.; Li, J.; Gao, C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc., 2014, 9(10), 2395-2410.
[http://dx.doi.org/10.1038/nprot.2014.157] [PMID: 25232936]
[74]
Zhang, Y.; Liang, Z.; Zong, Y.; Wang, Y.; Liu, J.; Chen, K.; Qiu, J-L.; Gao, C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun., 2016, 7, 12617.
[http://dx.doi.org/10.1038/ncomms12617] [PMID: 27558837]
[75]
Wang, W.; Akhunova, A.; Chao, S.; Akhunov, E. Optimizing multiplex CRISPR/Cas9-based genome editing for wheat. bioRxiv, 2016, 051342.
[76]
Gil-Humanes, J.; Wang, Y.; Liang, Z.; Shan, Q.; Ozuna, C.V.; Sánchez-León, S.; Baltes, N.J.; Starker, C.; Barro, F.; Gao, C.; Voytas, D.F. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J., 2017, 89(6), 1251-1262.
[http://dx.doi.org/10.1111/tpj.13446] [PMID: 27943461]
[77]
Li, C.; Unver, T.; Zhang, B. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Sci. Rep., 2017, 7, 43902.
[http://dx.doi.org/10.1038/srep43902] [PMID: 28256588]
[78]
Chen, X.; Lu, X.; Shu, N.; Wang, S.; Wang, J.; Wang, D.; Guo, L.; Ye, W. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci. Rep., 2017, 7, 44304.
[http://dx.doi.org/10.1038/srep44304] [PMID: 28287154]
[79]
Wang, P.; Zhang, J.; Sun, L.; Ma, Y.; Xu, J.; Liang, S.; Deng, J.; Tan, J.; Zhang, Q.; Tu, L.; Daniell, H.; Jin, S.; Zhang, X. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol. J., 2018, 16(1), 137-150.
[http://dx.doi.org/10.1111/pbi.12755] [PMID: 28499063]
[80]
Liang, Z.; Zhang, K.; Chen, K.; Gao, C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics, 2014, 41(2), 63-68.
[http://dx.doi.org/10.1016/j.jgg.2013.12.001] [PMID: 24576457]
[81]
Svitashev, S.; Young, J.K.; Schwartz, C.; Gao, H.; Falco, S.C.; Cigan, A.M. Targeted mutagenesis, precise gene editing and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol., 2015, 169(2), 931-945.
[http://dx.doi.org/10.1104/pp.15.00793] [PMID: 26269544]
[82]
Char, S.N.; Neelakandan, A.K.; Nahampun, H.; Frame, B.; Main, M.; Spalding, M.H.; Becraft, P.W.; Meyers, B.C.; Walbot, V.; Wang, K.; Yang, B. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol. J., 2017, 15(2), 257-268.
[http://dx.doi.org/10.1111/pbi.12611] [PMID: 27510362]
[83]
Sun, X.; Hu, Z.; Chen, R.; Jiang, Q.; Song, G.; Zhang, H.; Xi, Y. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci. Rep., 2015, 5, 10342.
[http://dx.doi.org/10.1038/srep10342] [PMID: 26022141]
[84]
Du, H.; Zeng, X.; Zhao, M.; Cui, X.; Wang, Q.; Yang, H.; Cheng, H.; Yu, D. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J. Biotechnol., 2016, 217, 90-97.
[http://dx.doi.org/10.1016/j.jbiotec.2015.11.005] [PMID: 26603121]
[85]
Brooks, C.; Nekrasov, V.; Lippman, Z.B.; Van Eck, J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol., 2014, 166(3), 1292-1297.
[http://dx.doi.org/10.1104/pp.114.247577] [PMID: 25225186]
[86]
Ito, Y.; Nishizawa-Yokoi, A.; Endo, M.; Mikami, M.; Toki, S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun., 2015, 467(1), 76-82.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.117] [PMID: 26408904]
[87]
Čermák, T.; Baltes, N.J.; Čegan, R.; Zhang, Y.; Voytas, D.F. High-frequency, precise modification of the tomato genome. Genome Biol., 2015, 16(1), 232.
[http://dx.doi.org/10.1186/s13059-015-0796-9] [PMID: 26541286]
[88]
Pan, C.; Ye, L.; Qin, L.; Liu, X.; He, Y.; Wang, J.; Chen, L.; Lu, G. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci. Rep., 2016, 6, 24765.
[http://dx.doi.org/10.1038/srep24765] [PMID: 27097775]
[89]
Jacobs, T.B.; Zhang, N.; Patel, D.; Martin, G.B. Generation of a collection of mutant tomato lines using pooled CRISPR libraries. Plant Physiol., 2017, 174(4), 2023-2037.
[http://dx.doi.org/10.1104/pp.17.00489] [PMID: 28646085]
[90]
Ueta, R.; Abe, C.; Watanabe, T.; Sugano, S.S.; Ishihara, R.; Ezura, H.; Osakabe, Y.; Osakabe, K. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci. Rep., 2017, 7(1), 507.
[http://dx.doi.org/10.1038/s41598-017-00501-4] [PMID: 28360425]
[91]
Veillet, F.; Perrot, L.; Chauvin, L.; Kermarrec, M-P.; Guyon-Debast, A.; Chauvin, J-E.; Nogué, F.; Mazier, M. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int. J. Mol. Sci., 2019, 20(2), 402.
[http://dx.doi.org/10.3390/ijms20020402] [PMID: 30669298]
[92]
Ren, C.; Liu, Y.; Wang, X.; Guo, Y.; Fan, P.; Li, S.; Liang, Z. Targeted genome editing in Nicotiana tabacum using inducible CRISPR/Cas9 system. bioRxiv, 2020.
[93]
Jansing, J.; Sack, M.; Augustine, S.M.; Fischer, R.; Bortesi, L. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose. Plant Biotechnol. J., 2019, 17(2), 350-361.
[http://dx.doi.org/10.1111/pbi.12981] [PMID: 29969180]
[94]
Matsuo, K.; Atsumi, G. CRISPR/Cas9-mediated knockout of the RDR6 gene in Nicotiana benthamiana for efficient transient expression of recombinant proteins. Planta, 2019, 250(2), 463-473.
[http://dx.doi.org/10.1007/s00425-019-03180-9] [PMID: 31065786]
[95]
Smith, J.; Bibikova, M.; Whitby, F.G.; Reddy, A.R.; Chandrasegaran, S.; Carroll, D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res., 2000, 28(17), 3361-3369.
[http://dx.doi.org/10.1093/nar/28.17.3361] [PMID: 10954606]
[96]
Petolino, J.F. Genome editing in plants via designed zinc finger nucleases. In Vitro Cell. Dev. Biol. Plant, 2015, 51(1), 1-8.
[http://dx.doi.org/10.1007/s11627-015-9663-3] [PMID: 25774080]
[97]
Ramirez, C.L.; Foley, J.E.; Wright, D.A.; Müller-Lerch, F.; Rahman, S.H.; Cornu, T.I.; Winfrey, R.J.; Sander, J.D.; Fu, F.; Townsend, J.A.; Cathomen, T.; Voytas, D.F.; Joung, J.K. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat. Methods, 2008, 5(5), 374-375.
[http://dx.doi.org/10.1038/nmeth0508-374] [PMID: 18446154]
[98]
Kang, S.; Jeon, S.; Kim, S.; Chang, Y.K.; Kim, Y-C. Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii. Sci. Rep., 2020, 10(1), 22158.
[http://dx.doi.org/10.1038/s41598-020-78968-x] [PMID: 33335164]
[99]
Zala, H.N.; Bosamia, T.C.; Shukla, Y.M.; Kumar, S.; Kulkarni, K.S. Genome modifications in crops employing engineered nucleases. Agric. Rev. (Karnal), 2016, 37, 154-159.
[http://dx.doi.org/10.18805/ar.v0iof.9629]
[100]
Sun, N.; Zhao, H. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol. Bioeng., 2013, 110(7), 1811-1821.
[http://dx.doi.org/10.1002/bit.24890] [PMID: 23508559]
[101]
Jia, H.; Wang, N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One, 2014, 9(4), e93806.
[http://dx.doi.org/10.1371/journal.pone.0093806] [PMID: 24710347]
[102]
Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6), 1262-1278.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[103]
Larson, M.H.; Gilbert, L.A.; Wang, X.; Lim, W.A.; Weissman, J.S.; Qi, L.S. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc., 2013, 8(11), 2180-2196.
[http://dx.doi.org/10.1038/nprot.2013.132] [PMID: 24136345]
[104]
Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5), 1173-1183.
[http://dx.doi.org/10.1016/j.cell.2013.02.022] [PMID: 23452860]
[105]
Cuartero, J.; Bolarín, M.C.; Asíns, M.J.; Moreno, V. Increasing salt tolerance in the tomato. J. Exp. Bot., 2006, 57(5), 1045-1058.
[http://dx.doi.org/10.1093/jxb/erj102] [PMID: 16520333]
[106]
Kumar, V.; Jain, M. The CRISPR-Cas system for plant genome editing: advances and opportunities. J. Exp. Bot., 2015, 66(1), 47-57.
[http://dx.doi.org/10.1093/jxb/eru429] [PMID: 25371501]
[107]
Xie, K.; Yang, Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant, 2013, 6(6), 1975-1983.
[http://dx.doi.org/10.1093/mp/sst119] [PMID: 23956122]
[108]
Zaidi, S.S-A.; Mansoor, S.; Ali, Z.; Tashkandi, M.; Mahfouz, M.M. Engineering plants for geminivirus resistance with CRISPR/Cas9 system. Trends Plant Sci., 2016, 21(4), 279-281.
[http://dx.doi.org/10.1016/j.tplants.2016.01.023] [PMID: 26880316]
[109]
Zhang, Y.; Showalter, A.M. CRISPR/Cas9 genome editing technology: a valuable tool for understanding plant cell wall biosynthesis and function. Front. Plant Sci., 2020, 11, 589517.
[http://dx.doi.org/10.3389/fpls.2020.589517] [PMID: 33329650]
[110]
Jain, M. Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front. Plant Sci., 2015, 6, 375.
[http://dx.doi.org/10.3389/fpls.2015.00375] [PMID: 26074938]
[111]
Gayatonde, V.; Vennela, P.R. CRISPR-Cas; A potential technique for crop improvement. Biotech Express, 2017, 4(42), 34-38.
[112]
Zaidi, S.S-A.; Mahas, A.; Vanderschuren, H.; Mahfouz, M.M. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol., 2020, 21(1), 289.
[http://dx.doi.org/10.1186/s13059-020-02204-y] [PMID: 33256828]
[113]
Bhatta, B.P.; Malla, S. Improving horticultural crops via CRISPR/Cas9: current Successes and Prospects. Plants (Basel), 2020, 9(10), 1360.
[http://dx.doi.org/10.3390/plants9101360] [PMID: 33066510]
[114]
Zhao, H.; Wolt, J.D. Risk associated with off-target plant genome editing and methods for its limitation. Emerg. Top. Life Sci., 2017, 1(2), 231-240.
[http://dx.doi.org/10.1042/ETLS20170037]
[115]
Eş, I.; Gavahian, M.; Marti-Quijal, F.J.; Lorenzo, J.M.; Mousavi Khaneghah, A.; Tsatsanis, C.; Kampranis, S.C.; Barba, F.J. The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: current status, future perspectives, and associated challenges. Biotechnol. Adv., 2019, 37(3), 410-421.
[http://dx.doi.org/10.1016/j.biotechadv.2019.02.006] [PMID: 30779952]
[116]
Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci., 2015, 20(4), 219-229.
[http://dx.doi.org/10.1016/j.tplants.2015.02.001] [PMID: 25731753]
[117]
Feller, U.; Vaseva, I.I. Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Front. Environ. Sci., 2014, 2, 39.
[http://dx.doi.org/10.3389/fenvs.2014.00039]
[118]
Pathak, M.R.; Teixeira da Silva, J.A.; Wani, S.H. Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food, 2014, 5(2), 87-96.
[http://dx.doi.org/10.4161/gmcr.28774] [PMID: 24710064]
[119]
Postel, S.L. For our thirsty world, efficiency or else. Science, 2006, 313(5790), 1046-1047.
[http://dx.doi.org/10.1126/science.1132334]
[120]
Ahuja, I.; de Vos, R.C.; Bones, A.M.; Hall, R.D. Plant molecular stress responses face climate change. Trends Plant Sci., 2010, 15(12), 664-674.
[http://dx.doi.org/10.1016/j.tplants.2010.08.002] [PMID: 20846898]
[121]
Lu, Y.; Li, Y.; Zhang, J.; Xiao, Y.; Yue, Y.; Duan, L.; Zhang, M.; Li, Z. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS One, 2013, 8(1), e52126.
[http://dx.doi.org/10.1371/journal.pone.0052126] [PMID: 23326325]
[122]
Ouyang, S.Q.; Liu, Y.F.; Liu, P.; Lei, G.; He, S.J.; Ma, B.; Zhang, W.K.; Zhang, J.S.; Chen, S.Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J., 2010, 62(2), 316-329.
[http://dx.doi.org/10.1111/j.1365-313X.2010.04146.x] [PMID: 20128882]
[123]
Giri, J.; Vij, S.; Dansana, P.K.; Tyagi, A.K. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol., 2011, 191(3), 721-732.
[http://dx.doi.org/10.1111/j.1469-8137.2011.03740.x] [PMID: 21534973]
[124]
Pham, J.; Liu, J.; Bennett, M.H.; Mansfield, J.W.; Desikan, R. Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. New Phytol., 2012, 194(1), 168-180.
[http://dx.doi.org/10.1111/j.1469-8137.2011.04033.x] [PMID: 22256998]
[125]
Tran, L-S.P.; Urao, T.; Qin, F.; Maruyama, K.; Kakimoto, T.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2007, 104(51), 20623-20628.
[http://dx.doi.org/10.1073/pnas.0706547105] [PMID: 18077346]
[126]
Higuchi, M.; Pischke, M.S.; Mähönen, A.P.; Miyawaki, K.; Hashimoto, Y.; Seki, M.; Kobayashi, M.; Shinozaki, K.; Kato, T.; Tabata, S.; Helariutta, Y.; Sussman, M.R.; Kakimoto, T. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. USA, 2004, 101(23), 8821-8826.
[http://dx.doi.org/10.1073/pnas.0402887101] [PMID: 15166290]
[127]
Shou, H.; Bordallo, P.; Fan, J-B.; Yeakley, J.M.; Bibikova, M.; Sheen, J.; Wang, K. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 3298-3303.
[http://dx.doi.org/10.1073/pnas.0308095100] [PMID: 14960727]
[128]
Ghanem, M.E.; Albacete, A.; Smigocki, A.C.; Frébort, I.; Pospísilová, H.; Martínez-Andújar, C.; Acosta, M.; Sánchez-Bravo, J.; Lutts, S.; Dodd, I.C.; Pérez-Alfocea, F. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot., 2011, 62(1), 125-140.
[http://dx.doi.org/10.1093/jxb/erq266] [PMID: 20959628]
[129]
Habben, J.E.; Bao, X.; Bate, N.J.; DeBruin, J.L.; Dolan, D.; Hasegawa, D.; Helentjaris, T.G.; Lafitte, R.H.; Lovan, N.; Mo, H.; Reimann, K.; Schussler, J.R. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol. J., 2014, 12(6), 685-693.
[http://dx.doi.org/10.1111/pbi.12172] [PMID: 24618117]
[130]
Kobayashi, F.; Maeta, E.; Terashima, A.; Kawaura, K.; Ogihara, Y.; Takumi, S. Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J. Exp. Bot., 2008, 59(4), 891-905.
[http://dx.doi.org/10.1093/jxb/ern014] [PMID: 18326864]
[131]
Fowler, D.B.; Breton, G.; Limin, A.E.; Mahfoozi, S.; Sarhan, F. Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. Plant Physiol., 2001, 127(4), 1676-1681.
[http://dx.doi.org/10.1104/pp.010483] [PMID: 11743112]
[132]
Poole, R.L. The TAIR database. In: Plant Bioinformatics: Methods and Protocol; Edwards, D., Ed.; Springer Nature: Switzerland, 2007; pp. 179-212.
[133]
Sakuma, Y.; Maruyama, K.; Osakabe, Y.; Qin, F.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5), 1292-1309.
[http://dx.doi.org/10.1105/tpc.105.035881] [PMID: 16617101]
[134]
Sakamoto, H.; Matsuda, O.; Iba, K. ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana. Plant J., 2008, 56(3), 411-422.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03614.x] [PMID: 18643991]
[135]
Legnaioli, T.; Cuevas, J.; Mas, P. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J., 2009, 28(23), 3745-3757.
[http://dx.doi.org/10.1038/emboj.2009.297] [PMID: 19816401]
[136]
Zhang, M.; Leng, P.; Zhang, G.; Li, X. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J. Plant Physiol., 2009, 166(12), 1241-1252.
[http://dx.doi.org/10.1016/j.jplph.2009.01.013] [PMID: 19307046]
[137]
Iuchi, S.; Kobayashi, M.; Taji, T.; Naramoto, M.; Seki, M.; Kato, T.; Tabata, S.; Kakubari, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J., 2001, 27(4), 325-333.
[http://dx.doi.org/10.1046/j.1365-313x.2001.01096.x] [PMID: 11532178]
[138]
Wang, Y.; Beaith, M.; Chalifoux, M.; Ying, J.; Uchacz, T.; Sarvas, C.; Griffiths, R.; Kuzma, M.; Wan, J.; Huang, Y. Shoot-specific down-regulation of protein farnesyltransferase (α-subunit) for yield protection against drought in canola. Mol. Plant, 2009, 2(1), 191-200.
[http://dx.doi.org/10.1093/mp/ssn088] [PMID: 19529821]
[139]
Verslues, P.E.; Bray, E.A. Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J. Exp. Bot., 2006, 57(1), 201-212.
[http://dx.doi.org/10.1093/jxb/erj026] [PMID: 16339784]
[140]
Zeller, G.; Henz, S.R.; Widmer, C.K.; Sachsenberg, T.; Rätsch, G.; Weigel, D.; Laubinger, S. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J., 2009, 58(6), 1068-1082.
[http://dx.doi.org/10.1111/j.1365-313X.2009.03835.x] [PMID: 19222804]
[141]
Perez, D.E.; Hoyer, J.S.; Johnson, A.I.; Moody, Z.R.; Lopez, J.; Kaplinsky, N.J. BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. Plant Physiol., 2009, 151(1), 241-252.
[http://dx.doi.org/10.1104/pp.109.142125] [PMID: 19571304]
[142]
Zhang, H.; Ohyama, K.; Boudet, J.; Chen, Z.; Yang, J.; Zhang, M.; Muranaka, T.; Maurel, C.; Zhu, J-K.; Gong, Z. Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis. Plant Cell, 2008, 20(7), 1879-1898.
[http://dx.doi.org/10.1105/tpc.108.061150] [PMID: 18612099]
[143]
Magome, H.; Yamaguchi, S.; Hanada, A.; Kamiya, Y.; Oda, K. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J., 2008, 56(4), 613-626.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03627.x] [PMID: 18643985]
[144]
Allagulova, ChR.; Gimalov, F.R.; Shakirova, F.M.; Vakhitov, V.A. The plant dehydrins: structure and putative functions. Biochemistry (Mosc.), 2003, 68(9), 945-951.
[http://dx.doi.org/10.1023/A:1026077825584] [PMID: 14606934]
[145]
Rampino, P.; Pataleo, S.; Gerardi, C.; Mita, G.; Perrotta, C. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ., 2006, 29(12), 2143-2152.
[http://dx.doi.org/10.1111/j.1365-3040.2006.01588.x] [PMID: 17081248]
[146]
Zhou, Q.Y.; Tian, A.G.; Zou, H.F.; Xie, Z.M.; Lei, G.; Huang, J.; Wang, C.M.; Wang, H.W.; Zhang, J.S.; Chen, S.Y. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol. J., 2008, 6(5), 486-503.
[http://dx.doi.org/10.1111/j.1467-7652.2008.00336.x] [PMID: 18384508]
[147]
Mishkind, M.; Vermeer, J.E.; Darwish, E.; Munnik, T. Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J., 2009, 60(1), 10-21.
[http://dx.doi.org/10.1111/j.1365-313X.2009.03933.x] [PMID: 19500308]
[148]
Werner, T.; Nehnevajova, E.; Köllmer, I.; Novák, O.; Strnad, M.; Krämer, U.; Schmülling, T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell, 2010, 22(12), 3905-3920.
[http://dx.doi.org/10.1105/tpc.109.072694] [PMID: 21148816]
[149]
Zhang, Z.; Wang, Y.; Chang, L.; Zhang, T.; An, J.; Liu, Y.; Cao, Y.; Zhao, X.; Sha, X.; Hu, T.; Yang, P. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Rep., 2016, 35(2), 439-453.
[http://dx.doi.org/10.1007/s00299-015-1895-5] [PMID: 26573680]
[150]
Zhang, Q.; Li, J.; Zhang, W.; Yan, S.; Wang, R.; Zhao, J.; Li, Y.; Qi, Z.; Sun, Z.; Zhu, Z. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J., 2012, 72(5), 805-816.
[http://dx.doi.org/10.1111/j.1365-313X.2012.05121.x] [PMID: 22882529]
[151]
Fujii, H.; Zhu, J-K. An autophosphorylation site of the protein kinase SOS2 is important for salt tolerance in Arabidopsis. Mol. Plant, 2009, 2(1), 183-190.
[http://dx.doi.org/10.1093/mp/ssn087] [PMID: 19529820]
[152]
Im, Y.J.; Ji, M.; Lee, A.; Killens, R.; Grunden, A.M.; Boss, W.F. Expression of Pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance. Plant Physiol., 2009, 151(2), 893-904.
[http://dx.doi.org/10.1104/pp.109.145409] [PMID: 19684226]
[153]
Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322.
[http://dx.doi.org/10.1104/pp.106.077073] [PMID: 16760481]
[154]
Osakabe, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L-S.P. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot., 2013, 64(2), 445-458.
[http://dx.doi.org/10.1093/jxb/ers354] [PMID: 23307915]
[155]
Marshall, A.; Aalen, R.B.; Audenaert, D.; Beeckman, T.; Broadley, MR.; Butenko, M.A.; Caño-Delgado, A.I.; de Vries, S.; Dresselhaus, T.; Felix, G.; Graham, N.S.; Foulkes, J.; Granier, C.; Greb, T.; Grossniklaus, U.; Hammond, J.P.; Heidstra, R.; Hodgman, C.; Hothorn, M.; Inzé, D.; Ostergaard, L.; Russinova, E.; Simon, R.; Skirycz, A.; Stahl, Y.; Zipfel, C.; De Smet, I. Tackling drought stress: receptor-like kinases present new approaches. Plant Cell, 2012, 24(6), 2262-2278.
[http://dx.doi.org/10.1105%2Ftpc.112.096677] [PMID: 22693282]
[156]
Osakabe, Y.; Maruyama, K.; Seki, M.; Satou, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell, 2005, 17(4), 1105-1119.
[http://dx.doi.org/10.1105/tpc.104.027474] [PMID: 15772289]
[157]
Osakabe, Y.; Mizuno, S.; Tanaka, H.; Maruyama, K.; Osakabe, K.; Todaka, D.; Fujita, Y.; Kobayashi, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J. Biol. Chem., 2010, 285(12), 9190-9201.
[http://dx.doi.org/10.1074/jbc.M109.051938] [PMID: 20089852]
[158]
Hua, D.; Wang, C.; He, J.; Liao, H.; Duan, Y.; Zhu, Z.; Guo, Y.; Chen, Z.; Gong, Z. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell, 2012, 24(6), 2546-2561.
[http://dx.doi.org/10.1105/tpc.112.100107] [PMID: 22730405]
[159]
Nongpiur, R.; Soni, P.; Karan, R.; Singla-Pareek, S.L.; Pareek, A. Histidine kinases in plants: cross talk between hormone and stress responses. Plant Signal. Behav., 2012, 7(10), 1230-1237.
[http://dx.doi.org/10.4161/psb.21516] [PMID: 22902699]
[160]
Teige, M.; Scheikl, E.; Eulgem, T.; Dóczi, R.; Ichimura, K.; Shinozaki, K.; Dangl, J.L.; Hirt, H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cell, 2004, 15(1), 141-152.
[http://dx.doi.org/10.1016/j.molcel.2004.06.023] [PMID: 15225555]
[161]
Yamaguchi-Shinozaki, K.; Shinozaki, K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci., 2005, 10(2), 88-94.
[http://dx.doi.org/10.1016/j.tplants.2004.12.012] [PMID: 15708346]
[162]
Yoshida, T.; Fujita, Y.; Sayama, H.; Kidokoro, S.; Maruyama, K.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J., 2010, 61(4), 672-685.
[http://dx.doi.org/10.1111/j.1365-313X.2009.04092.x] [PMID: 19947981]
[163]
Oh, S-J.; Song, S.I.; Kim, Y.S.; Jang, H-J.; Kim, S.Y.; Kim, M.; Kim, Y-K.; Nahm, B.H.; Kim, J-K. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol., 2005, 138(1), 341-351.
[http://dx.doi.org/10.1104/pp.104.059147] [PMID: 15834008]
[164]
Abe, H.; Urao, T.; Ito, T.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15(1), 63-78.
[http://dx.doi.org/10.1105/tpc.006130] [PMID: 12509522]
[165]
Seo, P.J.; Lee, S.B.; Suh, M.C.; Park, M-J.; Go, Y.S.; Park, C-M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23(3), 1138-1152.
[http://dx.doi.org/10.1105/tpc.111.083485] [PMID: 21398568]
[166]
Lippold, F.; Sanchez, D.H.; Musialak, M.; Schlereth, A.; Scheible, W-R.; Hincha, D.K.; Udvardi, M.K. AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol., 2009, 149(4), 1761-1772.
[http://dx.doi.org/10.1104/pp.108.134874] [PMID: 19211694]
[167]
Fahad, S.; Hussain, S.; Bano, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.A.; Khan, F.; Chen, Y.; Wu, C.; Tabassum, M.A.; Chun, M.X.; Afzal, M.; Jan, A.; Jan, M.T.; Huang, J. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. Int., 2015, 22(7), 4907-4921.
[http://dx.doi.org/10.1007/s11356-014-3754-2] [PMID: 25369916]
[168]
Himmelbach, A.; Yang, Y.; Grill, E. Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol., 2003, 6(5), 470-479.
[http://dx.doi.org/10.1016/S1369-5266(03)00090-6] [PMID: 12972048]
[169]
Verslues, P.E.; Zhu, J-K. New developments in abscisic acid perception and metabolism. Curr. Opin. Plant Biol., 2007, 10(5), 447-452.
[http://dx.doi.org/10.1016/j.pbi.2007.08.004] [PMID: 17875396]
[170]
Qin, X.; Zeevaart, J.A. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol., 2002, 128(2), 544-551.
[http://dx.doi.org/10.1104/pp.010663] [PMID: 11842158]
[171]
Ma, Q-H. Genetic engineering of cytokinins and their application to agriculture. Crit. Rev. Biotechnol., 2008, 28(3), 213-232.
[http://dx.doi.org/10.1080/07388550802262205] [PMID: 18855152]
[172]
Huynh, N.; Vantoai, T.; Streeter, J.; Banowetz, G. Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. J. Exp. Bot., 2005, 56(415), 1397-1407.
[http://dx.doi.org/10.1093/jxb/eri141] [PMID: 15797940]
[173]
Rivero, R.M.; Shulaev, V.; Blumwald, E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol., 2009, 150(3), 1530-1540.
[http://dx.doi.org/10.1104/pp.109.139378] [PMID: 19411371]
[174]
Krishna, P. Brassinosteroid-mediated stress responses. J. Plant Growth Regul., 2003, 22(4), 289-297.
[http://dx.doi.org/10.1007/s00344-003-0058-z] [PMID: 14676968]
[175]
Hayat, S.; Maheshwari, P.; Wani, A.S.; Irfan, M.; Alyemeni, M.N.; Ahmad, A. Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiol. Biochem., 2012, 53, 61-68.
[http://dx.doi.org/10.1016/j.plaphy.2012.01.011] [PMID: 22322250]
[176]
Divi, U.K.; Krishna, P. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. N. Biotechnol., 2009, 26(3-4), 131-136.
[http://dx.doi.org/10.1016/j.nbt.2009.07.006] [PMID: 19631770]
[177]
Khatodia, S.; Bhatotia, K.; Passricha, N.; Khurana, S.M.; Tuteja, N. The CRISPR/Cas genome-editing tool: application in improvement of crops. Front. Plant Sci., 2016, 7, 506.
[http://dx.doi.org/10.3389/fpls.2016.00506] [PMID: 27148329]
[178]
Sharma, S.; Kaur, R.; Singh, A. Recent advances in CRISPR/Cas mediated genome editing for crop improvement. Plant Biotechnol. Rep., 2017, 11, 193-207.
[http://dx.doi.org/10.1007/s11816-017-0446-7]
[179]
Globus, R.; Qimron, U. A Technological and regulatory outlook on CRISPR crop editing. J. Cell. Biochem., 2018, 119(2), 1291-1298.
[PMID: 28731201]
[180]
Zetsche, B.; Volz, S.E.; Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol., 2015, 33(2), 139-142.
[http://dx.doi.org/10.1038/nbt.3149] [PMID: 25643054]
[181]
Polstein, L.R.; Gersbach, C.A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol., 2015, 11(3), 198-200.
[http://dx.doi.org/10.1038/nchembio.1753] [PMID: 25664691]
[182]
Gao, P.; Bai, X.; Yang, L.; Lv, D.; Pan, X.; Li, Y.; Cai, H.; Ji, W.; Chen, Q.; Zhu, Y. osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol. Biol. Rep., 2011, 38(1), 237-242.
[http://dx.doi.org/10.1007/s11033-010-0100-8] [PMID: 20336383]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy