Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

瘦素和吡格列酮联合对APP / PS1转基因小鼠的抗淀粉样蛋白作用增强

卷 17, 期 14, 2020

页: [1294 - 1301] 页: 8

弟呕挨: 10.2174/1567205018666210218163857

价格: $65

摘要

背景:阿尔茨海默氏病(AD)挑战了单靶标治疗策略,增加了联合疗法可能提供更有效治疗策略的可能性。 目的:有充分的证据证明瘦素(L)(神经保护激素)和吡格列酮(P)(抗炎药)在AD中的单一疗法有效。先前我们已经表明,在病理发生时,在APP / PS1小鼠中联合治疗L + P相对于对照小鼠,显着改善了记忆力并降低了大脑Aβ水平。在这项新研究中,我们试图在一个新的APP / PS1小鼠队列中复制我们以前的发现,以进一步证实L + P的联合治疗是否优于单独的每种治疗。 方法:我们使用硫代黄素-S染色,MOAβ免疫标记和酶联免疫吸附测定(ELISA),重新评估了L + P联合治疗对APP / PS1小鼠的作用,以检查相对于Aβ水平和病理学的影响分别接受L或P的动物。 结果:我们证明,L和P的组合可显着增强APP / PS1小鼠海马中L或P的抗Aβ效应。 结论:我们的研究结果表明,将L和P联合使用可显着增强L / P在APP / PS1小鼠海马中的抗Aβ效应,可能是AD治疗的潜在新有效策略。

关键词: 阿尔茨海默氏病(AD),瘦素,吡格列酮,APP / PS1转基因小鼠,信号传导途径,痴呆。

[1]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011; 377(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[2]
Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70(11): 960-9.
[http://dx.doi.org/10.1097/NEN.0b013e318232a379] [PMID: 22002422]
[3]
Medina-Franco JL, Martinez-Mayorga K, Meurice N. Balancing novelty with confined chemical space in modern drug discovery. Expert Opin Drug Discov 2014; 9(2): 151-65.
[http://dx.doi.org/10.1517/17460441.2014.872624] [PMID: 24350718]
[4]
Vickers JC, Mitew S, Woodhouse A, et al. Defining the earliest pathological changes of Alzheimer’s disease. Curr Alzheimer Res 2016; 13(3): 281-7.
[http://dx.doi.org/10.2174/1567205013666151218150322] [PMID: 26679855]
[5]
Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol 2013; 12(4): 357-67.
[http://dx.doi.org/10.1016/S1474-4422(13)70044-9] [PMID: 23477989]
[6]
Nicolakakis N, Aboulkassim T, Ongali B, et al. Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J Neurosci 2008; 28(37): 9287-96.
[http://dx.doi.org/10.1523/JNEUROSCI.3348-08.2008] [PMID: 18784309]
[7]
Tseng CH. Pioglitazone reduces dementia risk in patients with type 2 diabetes mellitus: A retrospective cohort analysis. J Clin Med 2018; 7(10)E306
[http://dx.doi.org/10.3390/jcm7100306] [PMID: 30262775]
[8]
Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 2005; 128(Pt 6): 1442-53.
[http://dx.doi.org/10.1093/brain/awh452] [PMID: 15817521]
[9]
Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 2011; 32(9): 1626-33.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.10.009] [PMID: 19923038]
[10]
Searcy JL, Phelps JT, Pancani T, et al. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer’s disease. J Alzheimers Dis 2012; 30(4): 943-61.
[http://dx.doi.org/10.3233/JAD-2012-111661] [PMID: 22495349]
[11]
Papadopoulos P, Rosa-Neto P, Rochford J, Hamel E. Pioglitazone improves reversal learning and exerts mixed cerebrovascular effects in a mouse model of Alzheimer’s disease with combined amyloid-β and cerebrovascular pathology. PLoS One 2013; 8(7)e68612
[http://dx.doi.org/10.1371/journal.pone.0068612] [PMID: 23874687]
[12]
Mandrekar-Colucci S, Karlo JC, Landreth GE. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J Neurosci 2012; 32(30): 10117-28.
[http://dx.doi.org/10.1523/JNEUROSCI.5268-11.2012] [PMID: 22836247]
[13]
Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B. Peroxisome-proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J Neurosci 2004; 24(48): 10908-17.
[http://dx.doi.org/10.1523/JNEUROSCI.3987-04.2004] [PMID: 15574741]
[14]
Bonda DJ, Stone JG, Torres SL, et al. Dysregulation of leptin signaling in Alzheimer disease: Evidence for neuronal leptin resistance. J Neurochem 2014; 128(1): 162-72.
[http://dx.doi.org/10.1111/jnc.12380] [PMID: 23895348]
[15]
Lieb W, Beiser AS, Vasan RS, et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 2009; 302(23): 2565-72.
[http://dx.doi.org/10.1001/jama.2009.1836] [PMID: 20009056]
[16]
Power DA, Noel J, Collins R, O’Neill D. Circulating leptin levels and weight loss in Alzheimer’s disease patients. Dement Geriatr Cogn Disord 2001; 12(2): 167-70.
[http://dx.doi.org/10.1159/000051252] [PMID: 11173891]
[17]
Rosenbaum M, Nicolson M, Hirsch J, et al. Effects of gender, body composition, and menopause on plasma concentrations of leptin. J Clin Endocrinol Metab 1996; 81(9): 3424-7.
[PMID: 8784109]
[18]
Tezapsidis N, Johnston JM, Smith MA, et al. Leptin: A novel therapeutic strategy for Alzheimer’s disease. J Alzheimers Dis 2009; 16(4): 731-40.
[http://dx.doi.org/10.3233/JAD-2009-1021] [PMID: 19387109]
[19]
Weng Z, Signore AP, Gao Y, et al. Leptin protects against 6-hydroxydopamine-induced dopaminergic cell death via mitogen-activated protein kinase signaling. J Biol Chem 2007; 282(47): 34479-91.
[http://dx.doi.org/10.1074/jbc.M705426200] [PMID: 17895242]
[20]
Zhang F, Wang S, Signore AP, Chen J. Neuroprotective effects of leptin against ischemic injury induced by oxygen-glucose deprivation and transient cerebral ischemia. Stroke 2007; 38(8): 2329-36.
[http://dx.doi.org/10.1161/STROKEAHA.107.482786] [PMID: 17600230]
[21]
Fernandez-Martos CM, Atkinson RAK, Chuah MI, King AE, Vickers JC. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer’s disease. Alzheimers Dement (N Y) 2016; 3(1): 92-106.
[http://dx.doi.org/10.1016/j.trci.2016.11.002] [PMID: 29067321]
[22]
Marwarha G, Dasari B, Prasanthi JR, Schommer J, Ghribi O. Leptin reduces the accumulation of Abeta and phosphorylated tau induced by 27-hydroxycholesterol in rabbit organotypic slices. J Alzheimers Dis 2010; 19(3): 1007-19.
[http://dx.doi.org/10.3233/JAD-2010-1298] [PMID: 20157255]
[23]
Bahor Z, Liao J, Macleod MR, et al. Risk of bias reporting in the recent animal focal cerebral ischaemia literature. Clin Sci (Lond) 2017; 131(20): 2525-32.
[http://dx.doi.org/10.1042/CS20160722] [PMID: 29026002]
[24]
Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature 2012; 483(7391): 531-3.
[http://dx.doi.org/10.1038/483531a] [PMID: 22460880]
[25]
Folch J, Patraca I, Martínez N, et al. The role of leptin in the sporadic form of Alzheimer’s disease. Interactions with the adipokines amylin, ghrelin and the pituitary hormone prolactin. Life Sci 2015; 140: 19-28.
[http://dx.doi.org/10.1016/j.lfs.2015.05.002] [PMID: 25998028]
[26]
Jankowsky JL, Fadale DJ, Anderson J, et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: Evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 2004; 13(2): 159-70.
[http://dx.doi.org/10.1093/hmg/ddh019] [PMID: 14645205]
[27]
Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, et al. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 2006; 24(3): 516-24.
[http://dx.doi.org/10.1016/j.nbd.2006.08.017] [PMID: 17029828]
[28]
Turner CL, Eggleston GW, Lunos S, Johnson N, Wiedmann TS, Bowles WR. Sniffing out endodontic pain: Use of an intranasal analgesic in a randomized clinical trial. J Endod 2011; 37(4): 439-44.
[http://dx.doi.org/10.1016/j.joen.2010.12.010] [PMID: 21419286]
[29]
Rosseels V, Nazé F, De Craeye S, Francart A, Kalai M, Van Gucht S. A non-invasive intranasal inoculation technique using isoflurane anesthesia to infect the brain of mice with rabies virus. J Virol Methods 2011; 173(1): 127-36.
[http://dx.doi.org/10.1016/j.jviromet.2011.01.019] [PMID: 21295615]
[30]
Wu S, Li K, Yan Y, et al. Intranasal delivery of neural stem cells: A CNS-specific, Non-invasive cell-based therapy for experimental autoimmune encephalomyelitis. J Clin Cell Immunol > 2013; 4(3): 10.4172/2155-9899.1000142
[http://dx.doi.org/10.4172/2155-9899.1000142] [PMID: 24244890]
[31]
Liu Y, Staal JA, Canty AJ, et al. Cytoskeletal changes during development and aging in the cortex of neurofilament light protein knockout mice. J Comp Neurol 2013; 521(8): 1817-27.
[http://dx.doi.org/10.1002/cne.23261] [PMID: 23172043]
[32]
Mitew S, Kirkcaldie MT, Dickson TC, Vickers JC. Neurites containing the neurofilament-triplet proteins are selectively vulnerable to cytoskeletal pathology in Alzheimer’s disease and transgenic mouse models. Front Neuroanat 2013; 7: 30.
[http://dx.doi.org/10.3389/fnana.2013.00030] [PMID: 24133416]
[33]
Collins JM, King AE, Woodhouse A, Kirkcaldie MT, Vickers JC. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer’s disease. Exp Neurol 2015; 267: 219-29.
[http://dx.doi.org/10.1016/j.expneurol.2015.02.034] [PMID: 25747037]
[34]
Youmans KL, Tai LM, Kanekiyo T, et al. Intraneuronal Aβ detection in 5xFAD mice by a new Aβ-specific antibody. Mol Neurodegener 2012; 7: 8.
[http://dx.doi.org/10.1186/1750-1326-7-8] [PMID: 22423893]
[35]
Youmans KL, Tai LM, Nwabuisi-Heath E, et al. APOE4-specific changes in Aβ accumulation in a new transgenic mouse model of Alzheimer disease. J Biol Chem 2012; 287(50): 41774-86.
[http://dx.doi.org/10.1074/jbc.M112.407957] [PMID: 23060451]
[36]
O’Mara AR, Collins JM, King AE, Vickers JC, Kirkcaldie MTK. Accurate and unbiased quantitation of amyloid-β fluorescence images using ImageSURF. Curr Alzheimer Res 2019; 16(2): 102-8.
[http://dx.doi.org/10.2174/1567205016666181212152622] [PMID: 30543169]
[37]
Atkinson RA, Fernandez-Martos CM, Atkin JD, Vickers JC, King AE. C9ORF72 expression and cellular localization over mouse development. Acta Neuropathol Commun 2015; 3(1): 59.
[http://dx.doi.org/10.1186/s40478-015-0238-7] [PMID: 26408000]
[38]
Liu Y, Atkinson RA, Fernandez-Martos CM, et al. Changes in TDP-43 expression in development, aging, and in the neurofilament light protein knockout mouse. Neurobiol Aging 2015; 36(2): 1151-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.001] [PMID: 25457553]
[39]
Owen RT. Memantine and donepezil: A fixed drug combination for the treatment of moderate to severe Alzheimer’s dementia. Drugs Today (Barc) 2016; 52(4): 239-48.
[PMID: 27252988]
[40]
Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10(9): 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[41]
Gervais F, Paquette J, Morissette C, et al. Targeting soluble Abeta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 2007; 28(4): 537-47.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.015] [PMID: 16675063]
[42]
McLaurin J, Kierstead ME, Brown ME, et al. Cyclohexanehexol inhibitors of Abeta aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med 2006; 12(7): 801-8.
[http://dx.doi.org/10.1038/nm1423] [PMID: 16767098]
[43]
Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F. New pharmacological strategies for treatment of Alzheimer’s disease: Focus on disease modifying drugs. Br J Clin Pharmacol 2012; 73(4): 504-17.
[http://dx.doi.org/10.1111/j.1365-2125.2011.04134.x] [PMID: 22035455]
[44]
Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2005; 280(7): 5892-901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[45]
Kim HY, Kim HV, Lee DK, Yang SH, Kim Y. Rapid and sustained cognitive recovery in APP/PS1 transgenic mice by co-administration of EPPS and donepezil. Sci Rep 2016; 6: 34165.
[http://dx.doi.org/10.1038/srep34165] [PMID: 27796293]
[46]
Weinstein JD. A new direction for Alzheimer’s research. Neural Regen Res 2018; 13(2): 190-3.
[http://dx.doi.org/10.4103/1673-5374.226381] [PMID: 29557358]
[47]
Schmitt B, Bernhardt T, Moeller HJ, Heuser I, Frölich L. Combination therapy in Alzheimer’s disease: A review of current evidence. CNS Drugs 2004; 18(13): 827-44.
[http://dx.doi.org/10.2165/00023210-200418130-00001] [PMID: 15521788]
[48]
Greig SL. Memantine ER/donepezil: A review in Alzheimer’s disease. CNS Drugs 2015; 29(11): 963-70.
[http://dx.doi.org/10.1007/s40263-015-0287-2] [PMID: 26519339]
[49]
Scherbaum WA, Göke B. Metabolic efficacy and safety of once-daily pioglitazone monotherapy in patients with type 2 diabetes: A double-blind, placebo-controlled study. Horm Metab Res 2002; 34(10): 589-95.
[http://dx.doi.org/10.1055/s-2002-35421] [PMID: 12439788]
[50]
Galimberti D, Scarpini E. Pioglitazone for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 2017; 26(1): 97-101.
[http://dx.doi.org/10.1080/13543784.2017.1265504] [PMID: 27885860]
[51]
Paz-Filho G, Mastronardi CA, Licinio J. .Leptin treatment: Facts and expectations. Metabolism 2015; 64(1): 146-56..
[http://dx.doi.org/10.1016/j.metabol.2014.07.014] [PMID: 25156686 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy