Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Phyto-Compounds from a Rather Poisonous Plant, Strychnos nuxvomica, Show High Potency Against SARS-CoV-2 RNA-Dependent RNA Polymerase

Author(s): Acharya Balkrishna, Subarna Pokhrel* and Anurag Varshney*

Volume 22, Issue 10, 2022

Published on: 31 March, 2022

Page: [929 - 940] Pages: 12

DOI: 10.2174/1566524021666210218113409

Price: $65

Abstract

Background: The establishment of strategy to inhibit the virus replication is an attractive means in combating SARS-CoV-2 infection.

Objective: We studied phyto-compounds from Strychnos nux-vomica (a poisonous plant) against SARS-CoV-2 RNA-dependent RNA polymerase by computational methods.

Methods: Molecular docking, molecular dynamics (MD) simulation and energetics calculations were employed to elucidate the role of the phyto-compounds.

Results: Ergotamine with a binding free energy of -14.39 kcal/mol showed a promising capability in terms of binding affinity and the interaction to conserved motifs, especially the SDD signature sequence. The calculated dissociation constants for ATP, ergotamine, isosungucine and sungucine were 12 μM, 0.072 nM, 0.011 nM and 0.152 nM, respectively. The exhibited kd by these phyto-compounds reflected tens of thousands fold potency as compared to ATP. The binding free energies of sungucine and isosungucine were much lower (-13.93 and -15.55 kcal/mol, respectively) compared to that of ATP (-6.98 kcal/mol).

Conclusion: Sharing the same binding location as that of ATP and having high binding affinities, Ergotamine, Isosungucine, Sungucine and Strychnine N-oxide could be effective in controlling the SARS-CoV-2 virus replication by blocking the ATP and inhibiting the enzyme function.

Keywords: SARS-CoV-2, RNA-dependent RNA polymerase, inhibition, Strychnos nux-vomica, phyto-compounds, computational methods

[1]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[2]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[3]
Fields BN, Knipe DM, Howley PM. CoronavirusFields Virology. 6th ed. Wolters Kluwer Health/Lippincott Williams and Wilkins 2013; pp. 825-58.
[4]
Stadler K, Rappuoli R. SARS: understanding the virus and development of rational therapy. Curr Mol Med 2005; 5(7): 677-97.
[http://dx.doi.org/10.2174/156652405774641124] [PMID: 16305493]
[5]
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem 2020; 21(5): 730-8.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[6]
Harrison C. Coronavirus puts drug repurposing on the fast track. Nat Biotechnol 2020; 38(4): 379-81.
[http://dx.doi.org/10.1038/d41587-020-00003-1] [PMID: 32205870]
[7]
Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents 2020; 55(5): 105955.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105955] [PMID: 32234468]
[8]
Warren T, Jordan R, Lo M, et al. Nucleotide prodrug GS- 5734 is a broad-spectrum filovirus inhibitor that provides complete therapeutic protection against the development of Ebola virus disease (EVD) in infected non-human primates. Open Forum Infectious Diseases. Infect Dis Soc Am 2015; 2(1)
[9]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[10]
Green N, Ott RD, Isaacs RJ, Fang H. Cell-based assays to identify inhibitors of viral disease. Expert Opin Drug Discov 2008; 3(6): 671-6.
[http://dx.doi.org/10.1517/17460441.3.6.671] [PMID: 19750206]
[11]
Lung J, Lin YS, Yang YH, et al. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol 2020; 92(6): 693-7.
[http://dx.doi.org/10.1002/jmv.25761] [PMID: 32167173]
[12]
Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal 2020; 10(4): 320-8.
[http://dx.doi.org/10.1016/j.jpha.2020.04.008] [PMID: 32346490]
[13]
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020; 92(5): 479-90.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[14]
Ren JL, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment. Pharmacol Res 2020; 155: 104743.
[http://dx.doi.org/10.1016/j.phrs.2020.104743] [PMID: 32145402]
[15]
Kumar V, Dhanjal JK, Kaul SC, Wadhwa R, Sundar D. Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. J Biomol Struct Dyn 2021; 39(11): 3842-54.
[http://dx.doi.org/10.1080/07391102.2020.1772108] [PMID: 32431217]
[16]
Balkrishna A, Pokhrel S, Singh J, Varshney A. Withanone from Withania somnifera may inhibit novel Coronavirus (COVID-19) entry by disrupting interactions between viral Sprotein receptor binding domain and host ACE2 receptor. 2021; 15: 1111-33.
[17]
Vivek-Ananth RP, Rana A, Rajan N, Biswal HS, Samal A. In silico identification of potential natural product inhibitors of human proteases key to SARS-CoV-2 infection. arXiv preprint arXiv:200600652 2020.
[18]
Mitra S, Shukla VJ, Acharya R. Effect of Shodhana (processing) on Kupeelu (Strychnos nux-vomica Linn.) with special reference to strychnine and brucine content. Ayu 2011; 32(3): 402-7.
[http://dx.doi.org/10.4103/0974-8520.93923] [PMID: 22529660]
[19]
DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 2002; 40(1): 82- 92.
[20]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[21]
Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature 1992; 356(6364): 83-5.
[http://dx.doi.org/10.1038/356083a0] [PMID: 1538787]
[22]
Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 1993; 2(9): 1511-9.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[23]
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26(2): 283-91.
[http://dx.doi.org/10.1107/S0021889892009944]
[24]
Lovell SC, Davis IW, Arendall WB, et al. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 2003; 50: 437-50.
[25]
Pratim B. Strychnos nux-vomica: A poisonous plant with various aspects of therapeutic significance. J Basic Clin Pharm 2017; 8: 252209791.
[26]
Xu YY, Si DY, Liu CX. Research on bioresponse of active compounds of Strychnos nux-vomica L. Asian J Pharmacokin Pharmacodyn 2009; 9: 179-201.
[27]
O’Boyle NM, Banck M. James. C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J Cheminform 2011; 3(1): 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21999342]
[28]
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012; 4(1): 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[29]
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRxChemical biology. New York, NY: Humana Press 2015; pp. 243-50.
[30]
Release S. 2020-2: Maestro. New York, NY: Schrödinger, LLC 2020.
[31]
Dassault Systèmes BIOVIA. Discovery Studio 2017 R2 Client, Release 2017. San Diego: Dassault Systèmes 2017.
[32]
Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J Biomol Struct Dyn 2020; 11: 1-9.
[http://dx.doi.org/10.1080/07391102.2020.1761882] [PMID: 32338164]
[33]
Hasan A, Paray BA, Hussain A, et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn 2021; 39(8): 3025-33.
[http://dx.doi.org/10.1080/07391102.2020.1754293] [PMID: 32274964]
[34]
Subissi L, Imbert I, Ferron F, et al. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets. Antiviral Res 2014; 101: 122-30.
[http://dx.doi.org/10.1016/j.antiviral.2013.11.006] [PMID: 24269475]
[35]
Imbert I, Guillemot JC, Bourhis JM, et al. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 2006; 25(20): 4933-42.
[http://dx.doi.org/10.1038/sj.emboj.7601368] [PMID: 17024178]
[36]
Chu CK, Gadthula S, Chen X, et al. Antiviral activity of nucleoside analogues against SARS-coronavirus (SARS-coV). Antivir Chem Chemother 2006; 17(5): 285-9.
[http://dx.doi.org/10.1177/095632020601700506] [PMID: 17176633]
[37]
Thompson AA, Albertini RA, Peersen OB. Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions. J Mol Biol 2007; 366(5): 1459-74.
[http://dx.doi.org/10.1016/j.jmb.2006.11.070] [PMID: 17223130]
[38]
Shu B, Gong P. Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Proc Natl Acad Sci USA 2016; 113(28): E4005-14.
[http://dx.doi.org/10.1073/pnas.1602591113] [PMID: 27339134]
[39]
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14(1): 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[40]
Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 2008; 29(11): 1859-65.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[41]
Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem 2005; 26(16): 1781-802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[42]
Åqvist J, Medina C, Samuelsson JE. A new method for predicting binding affinity in computer-aided drug design. Protein Eng 1994; 7(3): 385-91.
[http://dx.doi.org/10.1093/protein/7.3.385] [PMID: 8177887]
[43]
Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 1997; 44(3): 309-20.
[http://dx.doi.org/10.1006/geno.1997.4845] [PMID: 9325052]
[44]
Gul S, Ozcan O, Okyar A. Barıs I, Kavakli IH. In Silico Identification of Widely Used and Well Tolerated Drugs That May Inhibit SARSCov-2 3C-like Protease and Viral RNADependent RNA Polymerase Activities, and May Have Potential to Be Directly Used in Clinical Trials 2022; 39(17): 6772-91.
[45]
Vázquez AL, Alonso JM, Parra F. Mutation analysis of the GDD sequence motif of a calicivirus RNA-dependent RNA polymerase. J Virol 2000; 74(8): 3888-91.
[http://dx.doi.org/10.1128/JVI.74.8.3888-3891.2000] [PMID: 10729164]
[46]
Zhou Y, Zheng H, Gao F, Tian D, Yuan S. Mutational analysis of the SDD sequence motif of a PRRSV RNA-dependent RNA polymerase. Sci China Life Sci 2011; 54(9): 870-9.
[http://dx.doi.org/10.1007/s11427-011-4216-4] [PMID: 21922433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy