Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A Label-Free Fluorescent AND Logic Gate Aptasensor for Carbohydrate Antigen 15-3 Detection Based on Graphene Oxide

Author(s): Wenxiao Hu, Yafei Dong*, Luhui Wang, Yue Wang, Mengyao Qian and Sunfan Xi

Volume 25, Issue 4, 2022

Published on: 16 February, 2021

Page: [651 - 657] Pages: 7

DOI: 10.2174/1386207324666210216095053

Price: $65

Abstract

Background: Molecular logic gate always makes use of fluorescent dyes to realize fluorescence signals. The labeling of the fluorophore is relatively expensive, resulting in low yield, and singly labeled impurities affect the affinity between the target and the aptamer. Label-free fluorescent aptamer biosensor strategy has attracted widespread interest due to lower cost and simplicity.

Objective: Herein, we have designed an AND logic gate fluorescent aptasensor for detecting carbohydrate antigen 15-3(CA15-3) based on label-free fluorescence signal output.

Materials and Methods: A hairpin DNA probe consists of CA15-3 aptamer and partly anti-CA15- 3 aptamer sequences as a long stem and G-rich sequences of the middle ring as a quadruplexforming oligomer. G-rich sequences can fold into a quadruplex by K+, and then G-quadruplex interacts specifically with N-methylmesoporphyrin IX(NMM), leading to a dramatic increase in fluorescence of NMM. With CA15-3 and NMM as the two inputs, the fluorescence intensity of the NMM is the output signal. Lacking CA15-3 or NMM, there is no significant fluorescence enhancement, and the output of the signal is “0”. The fluorescence signal dramatically increases and the output of the signal is “1” only when CA15-3 protein and NMM are added at the same time.

Results: This biosensor strategy was observed to possess selectivity and high sensitivity for detecting CA15-3 protein from 10 to 500 U mL-1 and the detection limit was found to be 10 U mL-1, which also showed good reproducibility in spiked human serum.

Conclusion: In summary, the proposed AND logic gate fluorescent aptasensor could specifically detect CA15-3.

Keywords: DNA logic gate, CA15-3, G-quadruplex, graphene oxide, label-free detection, fluorescence biosensor.

Graphical Abstract

[1]
de Silva, A.P.; McClenaghan, N.D. Molecular-scale logic gates. Chemistry, 2004, 10(3), 574-586.
[http://dx.doi.org/10.1002/chem.200305054] [PMID: 14767921]
[2]
Huo, Y-F.; Zhu, L-N.; Li, X-Y.; Han, G-M.; Kong, D-M. Water soluble cationic por- phyrin showing pH-dependent optical responses to G-quadruplexes: Applications in pH- sensing and DNA logic gate. Sens. Actuators B Chem., 2016, 237, 179-189.
[http://dx.doi.org/10.1016/j.snb.2016.06.098]
[3]
Lu, W.; Gao, Y.; Jiao, Y.; Shuang, S.; Li, C.; Dong, C. Carbon nano-dots as a fluorescent and colorimetric dual-readout probe for the detection of arginine and Cu2+ and its logic gate operation. Nanoscale, 2017, 9(32), 11545-11552.
[http://dx.doi.org/10.1039/C7NR02336G] [PMID: 28770932]
[4]
Deng, J.; Tao, Z.; Liu, Y.; Lin, X.; Qian, P.; Lyu, Y.; Li, Y.; Fu, K.; Wang, S. A target-induced logically reversible logic gate for intelligent and rapid detection of pathogenic bacterial genes. Chem. Commun. (Camb.), 2018, 54(25), 3110-3113.
[http://dx.doi.org/10.1039/C8CC00178B] [PMID: 29517789]
[5]
Zhang, Y.; Wang, L.; Dong, Y. A label-free and universal platform for the construction of various logic circuits based on graphene oxide and g-quadruplex structurE. Anal. Sci., 2019, 35(2), 181-187.
[http://dx.doi.org/10.2116/analsci.18P349] [PMID: 30745511]
[6]
Prasanna de S.A.. Seiichi, U. Molecular logic and computing. Nat. Nanotechnol., 2007, 2(2)
[7]
Wang, L.; Zhu, J.; Han, L.; Jin, L.; Zhu, C.; Wang, E.; Dong, S. Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano, 2012, 6(8), 6659-6666.
[http://dx.doi.org/10.1021/nn300997f] [PMID: 22823159]
[8]
Yang, J.; Shen, L.; Ma, J.; Schlaberg, H.I.; Liu, S.; Xu, J.; Zhang, C. Fluorescent nanoparticle beacon for logic gate operation regulated by strand displacement. ACS Appl. Mater. Interfaces, 2013, 5(12), 5392-5396.
[http://dx.doi.org/10.1021/am401493d]
[9]
Zhang, Y.; Li, C.; Zhou, L.; Chen, Z.; Yi, C. “Plug and Play” logic gate construction based on chemically triggered fluorescence switching of gold nanoparticles conjugated with Cy3-tagged aptamer. Microchim. Acta., 2020, 187(8)
[10]
Gellert, M.; Lipsett, M. N.; Davies, D. R. Helix formation by guanylic acid. Proc. Nat. Acad. Sci. India A., 1962, 48(2013-2018)
[http://dx.doi.org/10.1073/pnas.48.12.2013]
[11]
Jiande, G.; Leszczynski, J. Origin of Na+/K+ Selectivity of the guanine tetraplexes in water: The theoretical rationale. J. Phys. Chem. A, 2002, 106(529–532)
[12]
Balaratnam, S.; Basu, S. Divalent cation-aided identification of physico-chemical properties of metal ions that stabilize RNA G-quadruplexes. Biopolymers, 2015, 103(7), 376-386.
[http://dx.doi.org/10.1002/bip.22628] [PMID: 25807937]
[13]
Miles, H.T.; Frazier, J. Poly(I) helix formation. Dependence on size-specific complexing to alkali metal ions. J. Am. Chem. Soc., 1978, 100(25), 8037-8038.
[http://dx.doi.org/10.1021/ja00493a058]
[14]
Guschlbauer, W.; Chantot, J.F.; Thiele, D. Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomer DNA. J. Biomol. Struct. Dyn., 1990, 8(3), 491-511.
[http://dx.doi.org/10.1080/07391102.1990.10507825] [PMID: 2100515]
[15]
Li, R.; Liu, Q.; Jin, Y.; Li, B. G-triplex/hemin DNAzyme: An ideal signal generator for isothermal exponential amplification reaction-based biosensing platform. Anal. Chim. Acta, 2019, 1079, 139-145.
[http://dx.doi.org/10.1016/j.aca.2019.06.002] [PMID: 31387704]
[16]
Zhang, Y.; Wang, L.; Wang, Y.; Dong, Y. Label-free optical biosensor for target detection based on simulation-assisted catalyzed hairpin assembly. Comput. Biol. Chem., 2019, 78, 448-454.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.11.030] [PMID: 30545762]
[17]
Wei, Y.; Wang, L.; Zhang, Y.; Dong, Y. An enzyme- and label-free fluorescence aptasensor for detection of thrombin based on graphene oxide and g-quadruplex. Sensors (Basel), 2019, 19(20), 3-11.
[http://dx.doi.org/10.3390/s19204424] [PMID: 31614837]
[18]
Khusbu, F.Y.; Zhou, X.; Chen, H.; Ma, C.; Wang, K. Thioflavin T as a fluorescence probe for biosensing applications. Trac-Trends in Anal Chem, 2018, 109, 1-18.
[http://dx.doi.org/10.1016/j.trac.2018.09.013]
[19]
Li, Y.; Wang, J.; Zhang, B.; He, Y.; Wang, J.; Wang, S. A rapid fluorometric method for determination of aflatoxin B1 in plant-derived food by using a thioflavin T-based aptasensor. Mikrochim. Acta, 2019, 186(4), 214.
[http://dx.doi.org/10.1007/s00604-019-3325-9] [PMID: 30830273]
[20]
Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. Engl., 2009, 48(42), 7752-7777.
[http://dx.doi.org/10.1002/anie.200901678] [PMID: 19784976]
[21]
Zhou, Q.; Yan, H.; Ran, F.; Cao, J.; Chen, L.; Shang, B.; Chen, H.; Wei, J.; Chen, Q. Ultra-sensitive enzyme-free fluorescent detection of VEGF (165) based on target-triggered hy- bridization chain reaction amplification. RSC Advances, 2018, 8(25955-25960)
[22]
Ning, Y.; Hu, J.; Wei, K.; He, G.; Wu, T.; Lu, F. Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine- Hg (II)-thymidine interaction. Microchim. Acta., 2019, 186(3-8)
[23]
Huang, Z.; Luo, Z.; Chen, J.; Xu, Y.; Duan, Y. A facile, label-free, and universal biosensor platform based on target-induced graphene oxide constrained DNA dissociation coupling with improved strand displacement amplification. ACS Sens., 2018, 3(11), 2423-2431.
[http://dx.doi.org/10.1021/acssensors.8b00935] [PMID: 30335968]
[24]
Zhou, J.; Meng, L.; Ye, W.; Wang, Q.; Geng, S.; Sun, C. A sensitive detection assay based on signal amplification technology for Alzheimer’s disease’s early biomarker in exosome. Anal. Chim. Acta, 2018, 1022, 124-130.
[http://dx.doi.org/10.1016/j.aca.2018.03.016] [PMID: 29729732]
[25]
Lu, C-H.; Yang, H-H.; Zhu, C-L.; Chen, X.; Chen, G-N. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. Engl., 2009, 48(26), 4785-4787.
[http://dx.doi.org/10.1002/anie.200901479] [PMID: 19475600]
[26]
Park, J.S.; Goo, N-I.; Kim, D-E. Mechanism of DNA adsorption and desorption on graphene oxide. Langmuir, 2014, 30(42), 12587-12595.
[http://dx.doi.org/10.1021/la503401d] [PMID: 25283243]
[27]
Lee, J.; Kim, J.; Kim, S.; Min, D-H. Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev., 2016, 105(Pt B), 275-287.
[http://dx.doi.org/10.1016/j.addr.2016.06.001] [PMID: 27302607]
[28]
Ou, X.; Zhan, S.; Sun, C.; Cheng, Y.; Wang, X.; Liu, B.; Zhai, T.; Lou, X.; Xia, F. Simultaneous detection of telomerase and miRNA with graphene oxide-based fluorescent aptasensor in living cells and tissue samples. Biosens. Bioelectron., 2018.
[PMID: 30388562]
[29]
He, Y.; Lin, Y.; Tang, H.; Pang, D. A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nanoscale, 2012, 4(6), 2054-2059.
[http://dx.doi.org/10.1039/c2nr12061e] [PMID: 22336777]
[30]
Liang, J. Wei. R; He, S.; Liu, Y.; Guo L.; Li, L. A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB. Analyst (Lond.), 2013, 138(6)
[http://dx.doi.org/10.1039/c2an36529d]
[31]
Wang, Y.; Wei, Z.; Luo, X.; Wan, Q.; Qiu, R.; Wang, S. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Talanta, 2019, 195, 33-39.
[http://dx.doi.org/10.1016/j.talanta.2018.11.011] [PMID: 30625551]
[32]
Wang, Y.; Wang, S.; Lu, C.; Yang, X. Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125; Sensor Actuat B-Chem, 2018, p. 262.
[33]
Xu, J.; Shi, M.; Huang, H.; Hu, K.; Chen, W.; Huang, Y.; Zhao, S. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection. Analyst (Lond.), 2018, 143(16), 3918-3925.
[http://dx.doi.org/10.1039/C8AN01032C] [PMID: 30043777]
[34]
Li, X.; Ding, X.; Fan, J. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform. Analyst (Lond.), 2015, 140(23), 7918-7925.
[http://dx.doi.org/10.1039/C5AN01759A] [PMID: 26502364]
[35]
Li, B.; Pan, W.; Liu, C.; Guo, J.; Shen, J.; Feng, J.; Luo, T.; Situ, B.; Zhang, Y.; An, T.; Xu, C.; Zheng, W.; Zheng, L. Homogenous magneto-fluorescent nanosensor for tumor-derived exosome isolation and analysis. ACS Sens., 2020, 5(7), 2052-2060.
[http://dx.doi.org/10.1021/acssensors.0c00513] [PMID: 32594744]
[36]
Wang, H.; Chen, H.; Huang, Z.; Li, T.; Deng, A.; Kong, J. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta, 2018, 184, 219-226.
[http://dx.doi.org/10.1016/j.talanta.2018.02.083] [PMID: 29674035]
[37]
Wei, W.; Pan, X.; Li, D.; Qian, J.; Yin, L.; Pu, Y.; Liu, S. Detection of MUC-1 protein and MCF-7 cells based on fluorescence resonance energy transfer from quantum dots to graphene oxide. J. Nanosci. Nanotechnol., 2012, 12(10), 7685-7691.
[http://dx.doi.org/10.1166/jnn.2012.6617] [PMID: 23421128]
[38]
Cao, L.; Cheng, L.; Zhang, Z.; Wang, Y.; Zhang, X.; Chen, H.; Liu, B.; Zhang, S.; Kong, J. Visual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip. Lab Chip, 2012, 12(22), 4864-4869.
[http://dx.doi.org/10.1039/c2lc40564d] [PMID: 23023186]
[39]
Ha, N.R.; Jung, I.P.; La, I.J.; Jung, H.S.; Yoon, M.Y. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor. Sci. Rep., 2017, 7(1), 40305.
[http://dx.doi.org/10.1038/srep40305] [PMID: 28054670]
[40]
Dolati, S.; Ramezani, M.; Nabavinia, M.S.; Soheili, V.; Abnous, K.; Taghdisi, S.M. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay. Anal. Biochem., 2018, 549(124-129), 124-129.
[http://dx.doi.org/10.1016/j.ab.2018.03.021] [PMID: 29574118]
[41]
Youn, H.; Lee, K.; Her, J.; Jeon, J.; Mok, J.; So, J.I.; Shin, S.; Ban, C. Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Sci. Rep., 2019, 9(1), 7659.
[http://dx.doi.org/10.1038/s41598-019-44051-3] [PMID: 31114011]
[42]
Wu, S.; Duan, N.; Ma, X.; Xia, Y.; Wang, H.; Wang, Z.; Zhang, Q. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal. Chem., 2012, 84(14), 6263-6270.
[http://dx.doi.org/10.1021/ac301534w] [PMID: 22816786]
[43]
Wen, L.; Lv, J.; Chen, L.; Li, S.; Mou, X.; Xu, Y. A fluorescent probe composed of quantum dot labeled aptamer and graphene oxide for the determination of the lipopolysaccharide endotoxin. Microchimica Acta, 2019, 186(2)
[44]
Jia, Y.; Wu, F.; Liu, P.; Zhou, G.; Yu, B.; Lou, X.; Xia, F. A label-free fluorescent aptasensor for the detection of Aflatoxin B1 in food samples using AIEgens and graphene oxide. Talanta, 2019, 198, 71-77.
[http://dx.doi.org/10.1016/j.talanta.2019.01.078] [PMID: 30876604]
[45]
Zhang, X.; Peng, X.; Jin, W. Scanning electrochemical microscopy with enzyme immunoassay of the cancer-related antigen CA15-3. Anal. Chim. Acta, 2006, 558(1-2), 110-114.
[http://dx.doi.org/10.1016/j.aca.2005.11.032]
[46]
Marques, Raquel Voltammetric immunosensor for the simultaneous analysis of the breast cancer biomarkers CA 15-3 and HER2-ECD. Sensors and Actuators, B. Chemical, 2018, 225(1), 918-925.
[47]
Deng, K.; Zhang, Y.; Tong, X.D. A novel potentiometric immunoassay for carcinoma antigen 15-3 by coupling enzymatic biocatalytic precipitation with a nanogold labelling strategy. Analyst (Lond.), 2018, 143(6), 1454-1461.
[http://dx.doi.org/10.1039/C7AN02091K] [PMID: 29469158]
[48]
Saadati, A.; Hassanpour, S.; Hasanzadeh, M.; Shadjou, N.; Hassanzadeh, A. Immunosensing of breast cancer tumor protein CA 15-3 (carbohydrate antigen 15.3) using a novel nano-bioink: A new platform for screening of proteins in human biofluids by pen-on-paper technology. Int. J. Biol. Macromol., 2019, 132, 748-758.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.170] [PMID: 30940584]
[49]
Zhao, L.; Wei, Q.; Wu, H.; Dou, J.; Li, H. Ionic liquid functionalized graphene based immunosensor for sensitive detection of carbohydrate antigen 15-3 integrated with Cd(2+)-functionalized nanoporous TiO2 as labels. Biosens. Bioelectron., 2014, 59(75-80), 75-80.
[http://dx.doi.org/10.1016/j.bios.2014.03.006] [PMID: 24690564]
[50]
Zhu, H.; Dale, P.S.; Caldwell, C.W.; Fan, X. Rapid and label-free detection of breast cancer biomarker CA15-3 in clinical human serum samples with optofluidic ring resonator sensors. Anal. Chem., 2009, 81(24), 9858-9865.
[http://dx.doi.org/10.1021/ac902437g] [PMID: 19911811]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy