Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Putative Roles of Astrocytes in General Anesthesia

Author(s): Daniel K. Mulkey*, Michelle L. Olsen, Mengchan Ou, Colin M. Cleary and Guizhi Du

Volume 20, Issue 1, 2022

Published on: 15 February, 2021

Page: [5 - 15] Pages: 11

DOI: 10.2174/1570159X19666210215120755

Price: $65

Abstract

General anesthetics are a mainstay of modern medicine, and although much progress has been made towards identifying molecular targets of anesthetics and neural networks contributing to endpoints of general anesthesia, our understanding of how anesthetics work remains unclear. Reducing this knowledge gap is of fundamental importance to prevent unwanted and life-threatening side-effects associated with general anesthesia. General anesthetics are chemically diverse, yet they all have similar behavioral endpoints, and so for decades, research has sought to identify a single underlying mechanism to explain how anesthetics work. However, this effort has given way to the ‘multiple target hypothesis’ as it has become clear that anesthetics target many cellular proteins, including GABAA receptors, glutamate receptors, voltage-independent K+ channels, and voltagedependent K+, Ca2+ and Na+ channels, to name a few. Yet, despite evidence that astrocytes are capable of modulating multiple aspects of neural function and express many anesthetic target proteins, they have been largely ignored as potential targets of anesthesia. The purpose of this brief review is to highlight the effects of anesthetic on astrocyte processes and identify potential roles of astrocytes in behavioral endpoints of anesthesia (hypnosis, amnesia, analgesia, and immobilization).

Keywords: Astrocyte, general anesthesia, mechanism, ion channel, synaptic, neuron-astrocyte communication.

Graphical Abstract

[1]
Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol. Rev., 2018, 98(1), 239-389.
[http://dx.doi.org/10.1152/physrev.00042.2016] [PMID: 29351512]
[2]
Filosa, J.A.; Morrison, H.W.; Iddings, J.A.; Du, W.; Kim, K.J. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience, 2016, 323, 96-109.
[http://dx.doi.org/10.1016/j.neuroscience.2015.03.064] [PMID: 25843438]
[3]
Iadecola, C. The Neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron, 2017, 96(1), 17-42.
[http://dx.doi.org/10.1016/j.neuron.2017.07.030] [PMID: 28957666]
[4]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[5]
Panatier, A.; Vallée, J.; Haber, M.; Murai, K.K.; Lacaille, J-C.; Robitaille, R. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell, 2011, 146(5), 785-798.
[http://dx.doi.org/10.1016/j.cell.2011.07.022] [PMID: 21855979]
[6]
Khakh, B.S.; Deneen, B. The Emerging nature of astrocyte diversity. Annu. Rev. Neurosci., 2019, 42(1), 187-207.
[http://dx.doi.org/10.1146/annurev-neuro-070918-050443] [PMID: 31283899]
[7]
Ingiosi, A.M.; Hayworth, C.R.; Harvey, D.O.; Singletary, K.G.; Rempe, M.J.; Wisor, J.P.; Frank, M.G. A role for astroglial calcium in mammalian sleep and sleep regulation. Curr. Biol., 2020, 30(22), 4373-4383.e7.
[http://dx.doi.org/10.1016/j.cub.2020.08.052] [PMID: 32976809]
[8]
Hines, D.J.; Schmitt, L.I.; Hines, R.M.; Moss, S.J.; Haydon, P.G. Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Transl. Psychiatry, 2013, 3(1)e212
[http://dx.doi.org/10.1038/tp.2012.136] [PMID: 23321809]
[9]
Gourine, A.V.; Kasymov, V.; Marina, N.; Tang, F.; Figueiredo, M.F.; Lane, S.; Teschemacher, A.G.; Spyer, K.M.; Deisseroth, K.; Kasparov, S. Astrocytes control breathing through pH-dependent release of ATP. Science, 2010, 329(5991), 571-575.
[http://dx.doi.org/10.1126/science.1190721] [PMID: 20647426]
[10]
Forsberg, D.; Ringstedt, T.; Herlenius, E. Astrocytes release prostaglandin E2 to modify respiratory network activity. eLife, 2017, 6e29566
[http://dx.doi.org/10.7554/eLife.29566] [PMID: 28976306]
[11]
Tso, C.F.; Simon, T.; Greenlaw, A.C.; Puri, T.; Mieda, M.; Herzog, E.D. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr. Biol., 2017, 27(7), 1055-1061.
[http://dx.doi.org/10.1016/j.cub.2017.02.037] [PMID: 28343966]
[12]
Brancaccio, M.; Patton, A.P.; Chesham, J.E.; Maywood, E.S.; Hastings, M.H. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron, 2017, 93(6), 1420-1435.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.02.030] [PMID: 28285822]
[13]
Robin, L.M.; Oliveira da Cruz, J.F.; Langlais, V.C.; Martin-Fernandez, M.; Metna-Laurent, M.; Busquets-Garcia, A.; Bellocchio, L.; Soria-Gomez, E.; Papouin, T.; Varilh, M.; Sherwood, M.W.; Belluomo, I.; Balcells, G.; Matias, I.; Bosier, B.; Drago, F.; Van Eeckhaut, A.; Smolders, I.; Georges, F.; Araque, A.; Panatier, A.; Oliet, S.H.R.; Marsicano, G. Astroglial CB1 receptors determine synaptic D-Serine availability to enable recognition memory. Neuron, 2018, 98(5), 935-944.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.04.034] [PMID: 29779943]
[14]
Henneberger, C.; Papouin, T.; Oliet, S.H.R.; Rusakov, D.A. Long-term potentiation depends on release of D-serine from astrocytes. Nature, 2010, 463(7278), 232-236.
[http://dx.doi.org/10.1038/nature08673] [PMID: 20075918]
[15]
Pacholko, A.G.; Wotton, C.A.; Bekar, L.K. Astrocytes-the ultimate effectors of long-range neuromodulatory networks? Front. Cell. Neurosci., 2020, 14581075
[http://dx.doi.org/10.3389/fncel.2020.581075] [PMID: 33192327]
[16]
Dermietzel, R.; Spray, D.C. From neuro-glue (‘Nervenkitt’) to glia: a prologue. Glia, 1998, 24(1), 1-7.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199809)24:1<1:AID-GLIA1>3.0.CO;2-A] [PMID: 9700484]
[17]
Mantz, J.; Cordier, J.; Giaume, C. Effects of general anesthetics on intercellular communications mediated by gap junctions between astrocytes in primary culture. Anesthesiology, 1993, 78(5), 892-901.
[http://dx.doi.org/10.1097/00000542-199305000-00014] [PMID: 7683851]
[18]
Mantz, J.; Delumeau, J.C.; Cordier, J.; Petitet, F. Differential effects of propofol and ketamine on cytosolic calcium concentrations of astrocytes in primary culture. Br. J. Anaesth., 1994, 72(3), 351-353.
[http://dx.doi.org/10.1093/bja/72.3.351] [PMID: 8130058]
[19]
Liu, X.; Gangoso, E.; Yi, C.; Jeanson, T.; Kandelman, S.; Mantz, J.; Giaume, C. General anesthetics have differential inhibitory effects on gap junction channels and hemichannels in astrocytes and neurons. Glia, 2016, 64(4), 524-536.
[http://dx.doi.org/10.1002/glia.22946] [PMID: 26666873]
[20]
Nuriya, M.; Yasui, D.; Yamada, T.; Aoki, T.; Yasui, M. Direct posttranslational modification of astrocytic connexin 43 proteins by the general anesthetic propofol in the cerebral cortex. Biochem. Biophys. Res. Commun., 2018, 497(2), 734-741.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.142] [PMID: 29462621]
[21]
Khakh, B.S.; McCarthy, K.D. Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb. Perspect. Biol., 2015, 7(4)a020404
[http://dx.doi.org/10.1101/cshperspect.a020404] [PMID: 25605709]
[22]
Thrane, A.S.; Rangroo Thrane, V.; Zeppenfeld, D.; Lou, N.; Xu, Q.; Nagelhus, E.A.; Nedergaard, M. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proc. Natl. Acad. Sci. USA, 2012, 109(46), 18974-18979.
[http://dx.doi.org/10.1073/pnas.1209448109] [PMID: 23112168]
[23]
Bindocci, E.; Savtchouk, I.; Liaudet, N.; Becker, D.; Carriero, G.; Volterra, A. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science, 2017, 356(6339), 356.
[http://dx.doi.org/10.1126/science.aai8185] [PMID: 28522470]
[24]
Danbolt, N.C. Glutamate uptake. Prog. Neurobiol., 2001, 65(1), 1-105.
[http://dx.doi.org/10.1016/S0301-0082(00)00067-8] [PMID: 11369436]
[25]
Murphy-Royal, C.; Dupuis, J.; Groc, L.; Oliet, S.H.R. Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission. J. Neurosci. Res., 2017, 95(11), 2140-2151.
[http://dx.doi.org/10.1002/jnr.24029] [PMID: 28150867]
[26]
Zuo, Z. Isoflurane enhances glutamate uptake via glutamate transporters in rat glial cells. Neuroreport, 2001, 12(5), 1077-1080.
[http://dx.doi.org/10.1097/00001756-200104170-00042] [PMID: 11303749]
[27]
Miyazaki, H.; Nakamura, Y.; Arai, T.; Kataoka, K. Increase of glutamate uptake in astrocytes: a possible mechanism of action of volatile anesthetics. Anesthesiology, 1997, 86(6), 1359-1366.
[http://dx.doi.org/10.1097/00000542-199706000-00018] [PMID: 9197306]
[28]
Eskandari, S.; Willford, S.L.; Anderson, C.M. Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters. Adv. Neurobiol., 2017, 16, 85-116.
[http://dx.doi.org/10.1007/978-3-319-55769-4_5] [PMID: 28828607]
[29]
Kersanté, F.; Rowley, S.C.S.; Pavlov, I.; Gutièrrez-Mecinas, M.; Semyanov, A.; Reul, J.M.H.M.; Walker, M.C.; Linthorst, A.C.E. A functional role for both -aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J. Physiol., 2013, 591(10), 2429-2441.
[http://dx.doi.org/10.1113/jphysiol.2012.246298] [PMID: 23381899]
[30]
Caraiscos, V.B.; Newell, J.G.; You-Ten, K.E.; Elliott, E.M.; Rosahl, T.W.; Wafford, K.A.; MacDonald, J.F.; Orser, B.A. Selective enhancement of tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane. J. Neurosci., 2004, 24(39), 8454-8458.
[http://dx.doi.org/10.1523/JNEUROSCI.2063-04.2004] [PMID: 15456818]
[31]
Jia, F.; Yue, M.; Chandra, D.; Homanics, G.E.; Goldstein, P.A.; Harrison, N.L. Isoflurane is a potent modulator of extrasynaptic GABA(A) receptors in the thalamus. J. Pharmacol. Exp. Ther., 2008, 324(3), 1127-1135.
[http://dx.doi.org/10.1124/jpet.107.134569] [PMID: 18094320]
[32]
Westphalen, R.I.; Hemmings, H.C., Jr Effects of isoflurane and propofol on glutamate and GABA transporters in isolated cortical nerve terminals. Anesthesiology, 2003, 98(2), 364-372.
[http://dx.doi.org/10.1097/00000542-200302000-00016] [PMID: 12552195]
[33]
Sugimura, M.; Kitayama, S.; Morita, K.; Irifune, M.; Takarada, T.; Kawahara, M.; Dohi, T. Effects of volatile and intravenous anesthetics on the uptake of GABA, glutamate and dopamine by their transporters heterologously expressed in COS cells and in rat brain synaptosomes. Toxicol. Lett., 2001, 123(1), 69-76.
[http://dx.doi.org/10.1016/S0378-4274(01)00386-1] [PMID: 11514107]
[34]
Olsen, M.L.; Khakh, B.S.; Skatchkov, S.N.; Zhou, M.; Lee, C.J.; Rouach, N. New insights on astrocyte ion channels: critical for homeostasis and neuron-glia signaling. J. Neurosci., 2015, 35(41), 13827-13835.
[http://dx.doi.org/10.1523/JNEUROSCI.2603-15.2015] [PMID: 26468182]
[35]
Saunders, A.; Macosko, E.Z.; Wysoker, A.; Goldman, M.; Krienen, F.M.; de Rivera, H.; Bien, E.; Baum, M.; Bortolin, L.; Wang, S.; Goeva, A.; Nemesh, J.; Kamitaki, N.; Brumbaugh, S.; Kulp, D.; McCarroll, S.A. Molecular diversity and specializations among the cells of the adult mouse brain. Cell, 2018, 174(4), 1015-1030.e16.
[http://dx.doi.org/10.1016/j.cell.2018.07.028] [PMID: 30096299]
[36]
Djillani, A.; Mazella, J.; Heurteaux, C.; Borsotto, M. Role of TREK-1 in Health and Disease, focus on the central nervous system. Front. Pharmacol., 2019, 10, 379.
[http://dx.doi.org/10.3389/fphar.2019.00379] [PMID: 31031627]
[37]
Patel, A.J.; Honoré, E.; Lesage, F.; Fink, M.; Romey, G.; Lazdunski, M. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat. Neurosci., 1999, 2(5), 422-426.
[http://dx.doi.org/10.1038/8084] [PMID: 10321245]
[38]
Pavel, M.A.; Petersen, E.N.; Wang, H.; Lerner, R.A.; Hansen, S.B. Studies on the mechanism of general anesthesia. Proc. Natl. Acad. Sci. USA, 2020, 117(24), 13757-13766.
[http://dx.doi.org/10.1073/pnas.2004259117] [PMID: 32467161]
[39]
Heurteaux, C.; Guy, N.; Laigle, C.; Blondeau, N.; Duprat, F.; Mazzuca, M.; Lang-Lazdunski, L.; Widmann, C.; Zanzouri, M.; Romey, G.; Lazdunski, M. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J., 2004, 23(13), 2684-2695.
[http://dx.doi.org/10.1038/sj.emboj.7600234] [PMID: 15175651]
[40]
Honoré, E. The neuronal background K2P channels: focus on TREK1. Nat. Rev. Neurosci., 2007, 8(4), 251-261.
[http://dx.doi.org/10.1038/nrn2117] [PMID: 17375039]
[41]
Zhou, M.; Xu, G.; Xie, M.; Zhang, X.; Schools, G.P.; Ma, L.; Kimelberg, H.K.; Chen, H. TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J. Neurosci., 2009, 29(26), 8551-8564.
[http://dx.doi.org/10.1523/JNEUROSCI.5784-08.2009] [PMID: 19571146]
[42]
Wu, X.; Liu, Y.; Chen, X.; Sun, Q.; Tang, R.; Wang, W.; Yu, Z.; Xie, M. Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions. J. Mol. Neurosci., 2013, 49(3), 499-506.
[http://dx.doi.org/10.1007/s12031-012-9875-5] [PMID: 22895843]
[43]
Woo, D.H.; Han, K-S.; Shim, J.W.; Yoon, B-E.; Kim, E.; Bae, J.Y.; Oh, S-J.; Hwang, E.M.; Marmorstein, A.D.; Bae, Y.C.; Park, J-Y.; Lee, C.J. TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell, 2012, 151(1), 25-40.
[http://dx.doi.org/10.1016/j.cell.2012.09.005] [PMID: 23021213]
[44]
Nwaobi, S.E.; Cuddapah, V.A.; Patterson, K.C.; Randolph, A.C.; Olsen, M.L. The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol., 2016, 132(1), 1-21.
[http://dx.doi.org/10.1007/s00401-016-1553-1] [PMID: 26961251]
[45]
Pessia, M.; Imbrici, P.; D’Adamo, M.C.; Salvatore, L.; Tucker, S.J.; Differential, P.H. Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1. J. Physiol., 2001, 532(Pt 2), 359-367.
[http://dx.doi.org/10.1111/j.1469-7793.2001.0359f.x] [PMID: 11306656]
[46]
Patterson, K.C.; Kahanovitch, U.; Gonçalves, C.M.; Hablitz, J.J.; Staruschenko, A.; Mulkey, D.K.; Olsen, M.L. Kir 5.1-dependent CO2/H+ -sensitive currents contribute to astrocyte heterogeneity across brain regions. Glia, 2021, 69(2), 310-325.
[http://dx.doi.org/10.1002/glia.23898] [PMID: 32865323]
[47]
Guyenet, P.G.; Stornetta, R.L.; Souza, G.M.P.R.; Abbott, S.B.G.; Shi, Y.; Bayliss, D.A. The retrotrapezoid nucleus: central chemoreceptor and regulator of breathing automaticity. Trends Neurosci., 2019, 42(11), 807-824.
[http://dx.doi.org/10.1016/j.tins.2019.09.002] [PMID: 31635852]
[48]
Ou, M.; Kuo, F.S.; Chen, X.; Kahanovitch, U.; Olsen, M.L.; Du, G.; Mulkey, D.K. Isoflurane inhibits a Kir4.1/5.1-like conductance in neonatal rat brainstem astrocytes and recombinant Kir4.1/5.1 channels in a heterologous expression system. J. Neurophysiol., 2020, 124(3), 740-749.
[http://dx.doi.org/10.1152/jn.00358.2020] [PMID: 32727273]
[49]
Bushong, E.A.; Martone, M.E.; Jones, Y.Z.; Ellisman, M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci., 2002, 22(1), 183-192.
[http://dx.doi.org/10.1523/JNEUROSCI.22-01-00183.2002] [PMID: 11756501]
[50]
Halassa, M.M.; Fellin, T.; Takano, H.; Dong, J-H.; Haydon, P.G. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci., 2007, 27(24), 6473-6477.
[http://dx.doi.org/10.1523/JNEUROSCI.1419-07.2007] [PMID: 17567808]
[51]
Oberheim, N.A.; Wang, X.; Goldman, S.; Nedergaard, M. Astrocytic complexity distinguishes the human brain. Trends Neurosci., 2006, 29(10), 547-553.
[http://dx.doi.org/10.1016/j.tins.2006.08.004] [PMID: 16938356]
[52]
Schiweck, J.; Eickholt, B.J.; Murk, K. Important shapeshifter: mechanisms allowing astrocytes to respond to the changing nervous system during development, injury and disease. Front. Cell. Neurosci., 2018, 12, 261.
[http://dx.doi.org/10.3389/fncel.2018.00261] [PMID: 30186118]
[53]
Tas, P.W.L.; Gambaryan, S.; Roewer, N. Volatile anesthetics affect the morphology of rat glioma C6 cells via RhoA, ERK, and Akt activation. J. Cell. Biochem., 2007, 102(2), 368-376.
[http://dx.doi.org/10.1002/jcb.21294] [PMID: 17492663]
[54]
Lunardi, N.; Hucklenbruch, C.; Latham, J.R.; Scarpa, J.; Jevtovic-Todorovic, V. Isoflurane impairs immature astroglia development in vitro: the role of actin cytoskeleton. J. Neuropathol. Exp. Neurol., 2011, 70(4), 281-291.
[http://dx.doi.org/10.1097/NEN.0b013e31821284e9] [PMID: 21412172]
[55]
Culley, D.J.; Cotran, E.K.; Karlsson, E.; Palanisamy, A.; Boyd, J.D.; Xie, Z.; Crosby, G. Isoflurane affects the cytoskeleton but not survival, proliferation, or synaptogenic properties of rat astrocytes in vitro. Br. J. Anaesth., 2013, 110(Suppl. 1), i19-i28.
[http://dx.doi.org/10.1093/bja/aet169] [PMID: 23722058]
[56]
Shimizu, N.; Kumamoto, T. Histochemical studies on the glycogen of the mammalian brain. Anat. Rec., 1952, 114(3), 479-497.
[http://dx.doi.org/10.1002/ar.1091140307] [PMID: 12996885]
[57]
Oe, Y.; Baba, O.; Ashida, H.; Nakamura, K.C.; Hirase, H. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns. Glia, 2016, 64(9), 1532-1545.
[http://dx.doi.org/10.1002/glia.23020] [PMID: 27353480]
[58]
Calì, C.; Tauffenberger, A.; Magistretti, P. The strategic location of glycogen and lactate: from body energy reserve to brain plasticity. Front. Cell. Neurosci., 2019, 13, 82.
[http://dx.doi.org/10.3389/fncel.2019.00082] [PMID: 30894801]
[59]
Lundgaard, I.; Lu, M.L.; Yang, E.; Peng, W.; Mestre, H.; Hitomi, E.; Deane, R.; Nedergaard, M. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J. Cereb. Blood Flow Metab., 2017, 37(6), 2112-2124.
[http://dx.doi.org/10.1177/0271678X16661202] [PMID: 27481936]
[60]
Hadjihambi, A.; Karagiannis, A.; Theparambil, S.M.; Ackland, G.L.; Gourine, A.V. The effect of general anaesthetics on brain lactate release. Eur. J. Pharmacol., 2020, 881173188
[http://dx.doi.org/10.1016/j.ejphar.2020.173188] [PMID: 32439258]
[61]
Otsu, Y.; Couchman, K.; Lyons, D.G.; Collot, M.; Agarwal, A.; Mallet, J-M.; Pfrieger, F.W.; Bergles, D.E.; Charpak, S. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat. Neurosci., 2015, 18(2), 210-218.
[http://dx.doi.org/10.1038/nn.3906] [PMID: 25531572]
[62]
Howarth, C.; Sutherland, B.; Choi, H.B.; Martin, C.; Lind, B.L.; Khennouf, L.; LeDue, J.M.; Pakan, J.M.P.; Ko, R.W.Y.; Ellis-Davies, G.; Lauritzen, M.; Sibson, N.R.; Buchan, A.M.; MacVicar, B.A. A critical role for astrocytes in hypercapnic vasodilation in brain. J. Neurosci., 2017, 37(9), 2403-2414.
[http://dx.doi.org/10.1523/JNEUROSCI.0005-16.2016] [PMID: 28137973]
[63]
Hawkins, V.E.; Takakura, A.C.; Trinh, A.; Malheiros-Lima, M.R.; Cleary, C.M.; Wenker, I.C.; Dubreuil, T.; Rodriguez, E.M.; Nelson, M.T.; Moreira, T.S.; Mulkey, D.K. Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe. eLife, 2017, 6e25232
[http://dx.doi.org/10.7554/eLife.25232] [PMID: 28387198]
[64]
Cleary, C.M.; Moreira, T.S.; Takakura, A.C.; Nelson, M.T.; Longden, T.A.; Mulkey, D.K. Vascular control of the CO2/H+-dependent drive to breathe. eLife, 2020, 9e59499
[http://dx.doi.org/10.7554/eLife.59499] [PMID: 32924935]
[65]
Slupe, A.M.; Kirsch, J.R. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection. J. Cereb. Blood Flow Metab., 2018, 38(12), 2192-2208.
[http://dx.doi.org/10.1177/0271678X18789273] [PMID: 30009645]
[66]
Masamoto, K.; Kanno, I. Anesthesia and the quantitative evaluation of neurovascular coupling. J. Cereb. Blood Flow Metab., 2012, 32(7), 1233-1247.
[http://dx.doi.org/10.1038/jcbfm.2012.50] [PMID: 22510601]
[67]
Fraser, D.D.; Mudrick-Donnon, L.A.; MacVicar, B.A. Astrocytic GABA receptors. Glia, 1994, 11(2), 83-93.
[http://dx.doi.org/10.1002/glia.440110203] [PMID: 7927650]
[68]
Skowrońska, K.; Obara-Michlewska, M.; Zielińska, M.; Albrecht, J. NMDA receptors in astrocytes: In search for roles in neurotransmission and astrocytic homeostasis.S. Int. J. Mol. Sci., 2019, 20(2)E309
[http://dx.doi.org/10.3390/ijms20020309] [PMID: 30646531]
[69]
Eger, E.I. II Age, minimum alveolar anesthetic concentration, and minimum alveolar anesthetic concentration-awake. Anesth. Analg., 2001, 93(4), 947-953.
[http://dx.doi.org/10.1097/00000539-200110000-00029] [PMID: 11574362]
[70]
Alkire, M.T.; Hudetz, A.G.; Tononi, G. Consciousness and anesthesia. Science, 2008, 322(5903), 876-880.
[http://dx.doi.org/10.1126/science.1149213] [PMID: 18988836]
[71]
Wasilczuk, A.Z.; Maier, K.L.; Kelz, M.B. The mouse as a model organism for assessing anesthetic sensitivity. Methods Enzymol., 2018, 602, 211-228.
[http://dx.doi.org/10.1016/bs.mie.2018.01.008] [PMID: 29588030]
[72]
Sanders, R.D.; Banks, M.I.; Darracq, M.; Moran, R.; Sleigh, J.; Gosseries, O.; Bonhomme, V.; Brichant, J.F.; Rosanova, M.; Raz, A.; Tononi, G.; Massimini, M.; Laureys, S.; Boly, M. Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy. Br. J. Anaesth., 2018, 121(5), 1084-1096.
[http://dx.doi.org/10.1016/j.bja.2018.07.006] [PMID: 30336853]
[73]
Lee, U.; Mashour, G.A.; Kim, S.; Noh, G-J.; Choi, B-M. Propofol induction reduces the capacity for neural information integration: implications for the mechanism of consciousness and general anesthesia. Conscious. Cogn., 2009, 18(1), 56-64.
[http://dx.doi.org/10.1016/j.concog.2008.10.005] [PMID: 19054696]
[74]
Hemmings, H.C., Jr; Riegelhaupt, P.M.; Kelz, M.B.; Solt, K.; Eckenhoff, R.G.; Orser, B.A.; Goldstein, P.A. Towards a comprehensive understanding of anesthetic mechanisms of action: a decade of discovery. Trends Pharmacol. Sci., 2019, 40(7), 464-481.
[http://dx.doi.org/10.1016/j.tips.2019.05.001] [PMID: 31147199]
[75]
Brown, E.N.; Pavone, K.J.; Naranjo, M. Multimodal general anesthesia: theory and practice. Anesth. Analg., 2018, 127(5), 1246-1258.
[http://dx.doi.org/10.1213/ANE.0000000000003668] [PMID: 30252709]
[76]
Papouin, T.; Dunphy, J.; Tolman, M.; Foley, J.C.; Haydon, P.G. Astrocytic control of synaptic function. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1715) 20160154.
[http://dx.doi.org/10.1098/rstb.2016.0154] [PMID: 28093548]
[77]
Kjaerby, C.; Rasmussen, R.; Andersen, M.; Nedergaard, M. Does global astrocytic calcium signaling participate in awake brain state transitions and neuronal circuit function? Neurochem. Res., 2017, 42(6), 1810-1822.
[http://dx.doi.org/10.1007/s11064-017-2195-y] [PMID: 28210958]
[78]
Pereira, A., Jr; Furlan, F.A. On the role of synchrony for neuron-astrocyte interactions and perceptual conscious processing. J. Biol. Phys., 2009, 35(4), 465-480.
[http://dx.doi.org/10.1007/s10867-009-9147-y] [PMID: 19669426]
[79]
Robertson, J.M. Astrocyte domains and the three-dimensional and seamless expression of consciousness and explicit memories. Med. Hypotheses, 2013, 81(6), 1017-1024.
[http://dx.doi.org/10.1016/j.mehy.2013.09.021] [PMID: 24099930]
[80]
Robertson, J.M. The gliocentric brain. Int. J. Mol. Sci., 2018, 19(10)E3033
[http://dx.doi.org/10.3390/ijms19103033] [PMID: 30301132]
[81]
Zhang, Y.; Wu, S.; Xie, L.; Yu, S.; Zhang, L.; Liu, C.; Zhou, W.; Yu, T. Ketamine within clinically effective range inhibits glutamate transmission from astrocytes to neurons and disrupts synchronization of astrocytic SICs. Front. Cell. Neurosci., 2019, 13, 240.
[http://dx.doi.org/10.3389/fncel.2019.00240] [PMID: 31244607]
[82]
Fellin, T.; Pascual, O.; Gobbo, S.; Pozzan, T.; Haydon, P.G.; Carmignoto, G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron, 2004, 43(5), 729-743.
[http://dx.doi.org/10.1016/j.neuron.2004.08.011] [PMID: 15339653]
[83]
Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron, 1999, 24(1), 49-65, 111-125.
[http://dx.doi.org/10.1016/S0896-6273(00)80821-1] [PMID: 10677026]
[84]
Nam, M-H.; Han, K-S.; Lee, J.; Won, W.; Koh, W.; Bae, J.Y.; Woo, J.; Kim, J.; Kwong, E.; Choi, T-Y.; Chun, H.; Lee, S.E.; Kim, S-B.; Park, K.D.; Choi, S-Y.; Bae, Y.C.; Lee, C.J. Activation of astrocytic μ-Opioid receptor causes conditioned place preference. Cell Rep., 2019, 28(5), 1154-1166.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.06.071] [PMID: 31365861]
[85]
Woo, D.H.; Bae, J.Y.; Nam, M.H.; An, H.; Ju, Y.H.; Won, J.; Choi, J.H.; Hwang, E.M.; Han, K.S.; Bae, Y.C.; Lee, C.J. Activation of astrocytic μ-opioid receptor elicits fast glutamate release through TREK-1-containing K2P channel in hippocampal astrocytes.s. Front. Cell. Neurosci., 2018, 12, 319.
[http://dx.doi.org/10.3389/fncel.2018.00319] [PMID: 30319359]
[86]
Dutton, R.C.; Maurer, A.J.; Sonner, J.M.; Fanselow, M.S.; Laster, M.J.; Eger, E.I., II The concentration of isoflurane required to suppress learning depends on the type of learning. Anesthesiology, 2001, 94(3), 514-519.
[http://dx.doi.org/10.1097/00000542-200103000-00024] [PMID: 11374614]
[87]
Eger, E.I., II; Saidman, L.J.; Brandstater, B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology, 1965, 26(6), 756-763.
[http://dx.doi.org/10.1097/00000542-196511000-00010] [PMID: 5844267]
[88]
Eichenbaum, H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron, 2004, 44(1), 109-120.
[http://dx.doi.org/10.1016/j.neuron.2004.08.028] [PMID: 15450164]
[89]
Frankland, P.W.; Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci., 2005, 6(2), 119-130.
[http://dx.doi.org/10.1038/nrn1607] [PMID: 15685217]
[90]
Nagashima, K.; Zorumski, C.F.; Izumi, Y. Propofol inhibits long-term potentiation but not long-term depression in rat hippocampal slices. Anesthesiology, 2005, 103(2), 318-326.
[http://dx.doi.org/10.1097/00000542-200508000-00015] [PMID: 16052114]
[91]
Zarnowska, E.D.; Rodgers, F.C.; Oh, I.; Rau, V.; Lor, C.; Laha, K.T.; Jurd, R.; Rudolph, U.; Eger, E.I.; Pearce, R.A. Etomidate blocks LTP and impairs learning but does not enhance tonic inhibition in mice carrying the N265M point mutation in the beta3 subunit of the GABA(A) receptor. Neuropharmacology, 2015, 93, 171-178.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.011] [PMID: 25680234]
[92]
Ballesteros, K.A.; Sikorski, A.; Orfila, J.E.; Martinez, J.L., Jr Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo. Int. J. Gen. Med., 2012, 5, 935-942.
[http://dx.doi.org/10.2147/IJGM.S30570] [PMID: 23204857]
[93]
MacIver, M.B.; Tauck, D.L.; Kendig, J.J. General anaesthetic modification of synaptic facilitation and long-term potentiation in hippocampus. Br. J. Anaesth., 1989, 62(3), 301-310.
[http://dx.doi.org/10.1093/bja/62.3.301] [PMID: 2539171]
[94]
Abraham, W.C.; Jones, O.D.; Glanzman, D.L. Is plasticity of synapses the mechanism of long-term memory storage? NPJ Sci. Learn., 2019, 4(1), 9.
[http://dx.doi.org/10.1038/s41539-019-0048-y] [PMID: 31285847]
[95]
Adamsky, A.; Kol, A.; Kreisel, T.; Doron, A.; Ozeri-Engelhard, N.; Melcer, T.; Refaeli, R.; Horn, H.; Regev, L.; Groysman, M.; London, M.; Goshen, I. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell, 2018, 174(1), 59-71.e14.
[http://dx.doi.org/10.1016/j.cell.2018.05.002] [PMID: 29804835]
[96]
Kol, A.; Adamsky, A.; Groysman, M.; Kreisel, T.; London, M.; Goshen, I. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nat. Neurosci., 2020, 23(10), 1229-1239.
[http://dx.doi.org/10.1038/s41593-020-0679-6] [PMID: 32747787]
[97]
Pascual, O.; Casper, K.B.; Kubera, C.; Zhang, J.; Revilla-Sanchez, R.; Sul, J-Y.; Takano, H.; Moss, S.J.; McCarthy, K.; Haydon, P.G. Astrocytic purinergic signaling coordinates synaptic networks. Science, 2005, 310(5745), 113-116.
[http://dx.doi.org/10.1126/science.1116916] [PMID: 16210541]
[98]
Suzuki, A.; Stern, S.A.; Bozdagi, O.; Huntley, G.W.; Walker, R.H.; Magistretti, P.J.; Alberini, C.M. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 2011, 144(5), 810-823.
[http://dx.doi.org/10.1016/j.cell.2011.02.018] [PMID: 21376239]
[99]
Adamsky, A.; Goshen, I. Astrocytes in Memory Function: Pioneering Findings and Future Directions. Neuroscience, 2018, 370, 14-26.
[http://dx.doi.org/10.1016/j.neuroscience.2017.05.033] [PMID: 28571720]
[100]
Lee, H.S.; Ghetti, A.; Pinto-Duarte, A.; Wang, X.; Dziewczapolski, G.; Galimi, F.; Huitron-Resendiz, S.; Piña-Crespo, J.C.; Roberts, A.J.; Verma, I.M.; Sejnowski, T.J.; Heinemann, S.F. Astrocytes contribute to gamma oscillations and recognition memory. Proc. Natl. Acad. Sci. USA, 2014, 111(32), E3343-E3352.
[http://dx.doi.org/10.1073/pnas.1410893111] [PMID: 25071179]
[101]
Ye, Z-C.; Wyeth, M.S.; Baltan-Tekkok, S.; Ransom, B.R. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci., 2003, 23(9), 3588-3596.
[http://dx.doi.org/10.1523/JNEUROSCI.23-09-03588.2003] [PMID: 12736329]
[102]
Karagiannis, A.; Sylantyev, S.; Hadjihambi, A.; Hosford, P.S.; Kasparov, S.; Gourine, A.V. Hemichannel-mediated release of lactate. J. Cereb. Blood Flow Metab., 2016, 36(7), 1202-1211.
[http://dx.doi.org/10.1177/0271678X15611912] [PMID: 26661210]
[103]
Huckstepp, R.T.R. id Bihi, R.; Eason, R.; Spyer, K.M.; Dicke, N.; Willecke, K.; Marina, N.; Gourine, A.V.; Dale, N. Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J. Physiol., 2010, 588(Pt 20), 3901-3920.
[http://dx.doi.org/10.1113/jphysiol.2010.192088] [PMID: 20736421]
[104]
Stehberg, J.; Moraga-Amaro, R.; Salazar, C.; Becerra, A.; Echeverría, C.; Orellana, J.A.; Bultynck, G.; Ponsaerts, R.; Leybaert, L.; Simon, F.; Sáez, J.C.; Retamal, M.A. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J., 2012, 26(9), 3649-3657.
[http://dx.doi.org/10.1096/fj.11-198416] [PMID: 22665389]
[105]
Wentlandt, K.; Samoilova, M.; Carlen, P.L.; El Beheiry, H. General anesthetics inhibit gap junction communication in cultured organotypic hippocampal slices. Anesth. Analg., 2006, 102(6), 1692-1698.
[http://dx.doi.org/10.1213/01.ane.0000202472.41103.78] [PMID: 16717311]
[106]
Ramadasan-Nair, R.; Hui, J.; Itsara, L.S.; Morgan, P.G.; Sedensky, M.M. Mitochondrial function in astrocytes is essential for normal emergence from anesthesia in mice. Anesthesiology, 2019, 130(3), 423-434.
[http://dx.doi.org/10.1097/ALN.0000000000002528] [PMID: 30707122]
[107]
Manjeri, G.R.; Rodenburg, R.J.; Blanchet, L.; Roelofs, S.; Nijtmans, L.G.; Smeitink, J.A.; Driessen, J.J.; Koopman, W.J.H.; Willems, P.H. Increased mitochondrial ATP production capacity in brain of healthy mice and a mouse model of isolated complex I deficiency after isoflurane anesthesia. J. Inherit. Metab. Dis., 2016, 39(1), 59-65.
[http://dx.doi.org/10.1007/s10545-015-9885-x] [PMID: 26310962]
[108]
Fan, Z.; Zhang, Z.; Zhao, S.; Zhu, Y.; Guo, D.; Yang, B.; Zhuo, L.; Han, J.; Wang, R.; Fang, Z.; Dong, H.; Li, Y.; Xiong, L. Dynamic variations in brain glycogen are involved in modulating isoflurane anesthesia in mice. Neurosci. Bull., 2020, 36(12), 1513-1523.
[http://dx.doi.org/10.1007/s12264-020-00587-3] [PMID: 33048310]
[109]
Newman, L.A.; Korol, D.L.; Gold, P.E. Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One, 2011, 6(12)e28427
[http://dx.doi.org/10.1371/journal.pone.0028427] [PMID: 22180782]
[110]
Glykys, J.; Mody, I. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice. J. Neurophysiol., 2006, 95(5), 2796-2807.
[http://dx.doi.org/10.1152/jn.01122.2005] [PMID: 16452257]
[111]
Zurek, A.A.; Yu, J.; Wang, D.S.; Haffey, S.C.; Bridgwater, E.M.; Penna, A.; Lecker, I.; Lei, G.; Chang, T.; Salter, E.W.; Orser, B.A. Sustained increase in α5GABAA receptor function impairs memory after anesthesia. J. Clin. Invest., 2014, 124(12), 5437-5441.
[http://dx.doi.org/10.1172/JCI76669] [PMID: 25365226]
[112]
Milligan, E.D.; Watkins, L.R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci., 2009, 10(1), 23-36.
[http://dx.doi.org/10.1038/nrn2533] [PMID: 19096368]
[113]
Ji, R-R.; Donnelly, C.R.; Nedergaard, M. Astrocytes in chronic pain and itch. Nat. Rev. Neurosci., 2019, 20(11), 667-685.
[http://dx.doi.org/10.1038/s41583-019-0218-1] [PMID: 31537912]
[114]
Chiang, C-Y.; Sessle, B.J.; Dostrovsky, J.O. Role of astrocytes in pain. Neurochem. Res., 2012, 37(11), 2419-2431.
[http://dx.doi.org/10.1007/s11064-012-0801-6] [PMID: 22638776]
[115]
Roh, D-H.; Yoon, S-Y.; Seo, H-S.; Kang, S-Y.; Han, H-J.; Beitz, A.J.; Lee, J-H. Intrathecal injection of carbenoxolone, a gap junction decoupler, attenuates the induction of below-level neuropathic pain after spinal cord injury in rats. Exp. Neurol., 2010, 224(1), 123-132.
[http://dx.doi.org/10.1016/j.expneurol.2010.03.002] [PMID: 20226782]
[116]
Chen, G.; Park, C-K.; Xie, R-G.; Berta, T.; Nedergaard, M.; Ji, R-R. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain, 2014, 137(Pt 8), 2193-2209.
[http://dx.doi.org/10.1093/brain/awu140] [PMID: 24919967]
[117]
Chen, M.J.; Kress, B.; Han, X.; Moll, K.; Peng, W.; Ji, R-R.; Nedergaard, M. Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia, 2012, 60(11), 1660-1670.
[http://dx.doi.org/10.1002/glia.22384] [PMID: 22951907]
[118]
Tsantoulas, C.; McMahon, S.B. Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci., 2014, 37(3), 146-158.
[http://dx.doi.org/10.1016/j.tins.2013.12.002] [PMID: 24461875]
[119]
Vit, J.P.; Ohara, P.T.; Bhargava, A.; Kelley, K.; Jasmin, L. Silencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J. Neurosci., 2008, 28(16), 4161-4171.
[http://dx.doi.org/10.1523/JNEUROSCI.5053-07.2008] [PMID: 18417695]
[120]
Franks, N.P. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci., 2008, 9(5), 370-386.
[http://dx.doi.org/10.1038/nrn2372] [PMID: 18425091]
[121]
Du, Y.; Kiyoshi, C.M.; Wang, Q.; Wang, W.; Ma, B.; Alford, C.C.; Zhong, S.; Wan, Q.; Chen, H.; Lloyd, E.E.; Bryan, R.M., Jr; Zhou, M. Genetic deletion of TREK-1 or TWIK-1/TREK-1 potassium channels does not alter the basic electrophysiological properties of mature hippocampal astrocytes in situ. Front. Cell. Neurosci., 2016, 10, 13.
[http://dx.doi.org/10.3389/fncel.2016.00013] [PMID: 26869883]
[122]
Jinks, S.L.; Bravo, M.; Hayes, S.G. Volatile anesthetic effects on midbrain-elicited locomotion suggest that the locomotor network in the ventral spinal cord is the primary site for immobility. Anesthesiology, 2008, 108(6), 1016-1024.
[http://dx.doi.org/10.1097/ALN.0b013e3181730297] [PMID: 18497602]
[123]
Antognini, J.F.; Carstens, E. Increasing isoflurane from 0.9 to 1.1 minimum alveolar concentration minimally affects dorsal horn cell responses to noxious stimulation. Anesthesiology, 1999, 90(1), 208-214.
[http://dx.doi.org/10.1097/00000542-199901000-00027] [PMID: 9915330]
[124]
Jinks, S.L.; Dominguez, C.L.; Antognini, J.F. Drastic decrease in isoflurane minimum alveolar concentration and limb movement forces after thoracic spinal cooling and chronic spinal transection in rats. Anesthesiology, 2005, 102(3), 624-632.
[http://dx.doi.org/10.1097/00000542-200503000-00022] [PMID: 15731602]
[125]
Skinner, R.D.; Garcia-Rill, E. The mesencephalic locomotor region (MLR) in the rat. Brain Res., 1984, 323(2), 385-389.
[http://dx.doi.org/10.1016/0006-8993(84)90319-6] [PMID: 6525525]
[126]
Jinks, S.L.; Bravo, M.; Satter, O.; Chan, Y-M. Brainstem regions affecting minimum alveolar concentration and movement pattern during isoflurane anesthesia. Anesthesiology, 2010, 112(2), 316-324.
[http://dx.doi.org/10.1097/ALN.0b013e3181c81319] [PMID: 20098133]
[127]
Morquette, P.; Verdier, D.; Kadala, A.; Féthière, J.; Philippe, A.G.; Robitaille, R.; Kolta, A. An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat. Neurosci., 2015, 18(6), 844-854.
[http://dx.doi.org/10.1038/nn.4013] [PMID: 25938883]
[128]
Broadhead, M.J.; Miles, G.B. Bi-directional communication between neurons and astrocytes modulates spinal motor circuits. Front. Cell. Neurosci., 2020, 14, 30.
[http://dx.doi.org/10.3389/fncel.2020.00030] [PMID: 32180706]
[129]
Wenker, I.C.; Abe, C.; Viar, K.E.; Stornetta, D.S.; Stornetta, R.L.; Guyenet, P.G. Blood pressure regulation by the rostral ventrolateral medulla in conscious rats: effects of hypoxia, hypercapnia, baroreceptor denervation, and anesthesia. J. Neurosci., 2017, 37(17), 4565-4583.
[http://dx.doi.org/10.1523/JNEUROSCI.3922-16.2017] [PMID: 28363984]
[130]
Marina, N.; Christie, I.N.; Korsak, A.; Doronin, M.; Brazhe, A.; Hosford, P.S.; Wells, J.A.; Sheikhbahaei, S.; Humoud, I.; Paton, J.F.R.; Lythgoe, M.F.; Semyanov, A.; Kasparov, S.; Gourine, A.V. Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow. Nat. Commun., 2020, 11(1), 131.
[http://dx.doi.org/10.1038/s41467-019-13956-y] [PMID: 31919423]
[131]
Turovsky, E.A.; Braga, A.; Yu, Y.; Esteras, N.; Korsak, A.; Theparambil, S.M.; Hadjihambi, A.; Hosford, P.S.; Teschemacher, A.G.; Marina, N.; Lythgoe, M.F.; Haydon, P.G.; Gourine, A.V. Mechanosensory signaling in astrocytes. J. Neurosci., 2020, 40(49), 9364-9371.
[http://dx.doi.org/10.1523/JNEUROSCI.1249-20.2020] [PMID: 33122390]
[132]
Wang, B.; Wu, Q.; Liao, J.; Zhang, S.; Liu, H.; Yang, C.; Dong, Q.; Zhao, N.; Huang, Z.; Guo, K.; Du, Y. Propofol induces cardioprotection against ischemia-reperfusion injury via suppression of transient receptor potential vanilloid 4 channel. Front. Pharmacol., 2019, 10, 1150.
[http://dx.doi.org/10.3389/fphar.2019.01150] [PMID: 31636563]
[133]
Lazarenko, R.M.; Fortuna, M.G.; Shi, Y.; Mulkey, D.K.; Takakura, A.C.; Moreira, T.S.; Guyenet, P.G.; Bayliss, D.A. Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K(+) current. J. Neurosci., 2010, 30(27), 9324-9334.
[http://dx.doi.org/10.1523/JNEUROSCI.1956-10.2010] [PMID: 20610767]
[134]
Yang, Y.; Ou, M.; Liu, J.; Zhao, W.; Zhuoma, L.; Liang, Y.; Zhu, T.; Mulkey, D.K.; Zhou, C. Volatile anesthetics activate a leak sodium conductance in retrotrapezoid nucleus neurons to maintain breathing during anesthesia in mice. Anesthesiology, 2020, 133(4), 824-838.
[http://dx.doi.org/10.1097/ALN.0000000000003493] [PMID: 32773689]
[135]
Nwaobi, S.E.; Lin, E.; Peramsetty, S.R.; Olsen, M.L. DNA methylation functions as a critical regulator of Kir4.1 expression during CNS development. Glia, 2014, 62(3), 411-427.
[http://dx.doi.org/10.1002/glia.22613] [PMID: 24415225]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy