Abstract
A member of cathepsin enzymes called Cathepsin B is a cysteine-protease enzyme that plays significant role in metalloproteinase regulation. Cathepsin B stands out amidst other members of cathepsin because of its role in both normal body physiology and pathophysiology. Being an antiapoptotic and a pro-apoptotic agent, Cathepsin B has been reported to have deleterious effects, especially when its expression, activities, and distribution are outrageous. The over-expression of cathepsin B is traceable to dysregulation of one or more regulated steps involved in its synthesis. Consequently, the over-expression of cathepsin B contributes to the pathogenesis of different types of cancers - a global menace. Interestingly, the synthesis of this enzyme has been reported to be inhibited by several metal compounds, thus, curbing its involvement in carcinogenesis. In this review, the synthesis, structure, localization, and roles of cathepsin B in carcinogenesis were explored. Likewise, we also discussed the capacity of metallic compounds to inhibit this enzyme. Metals such as gold, ruthenium, palladium, Iridium, and Tellurium demonstrated remarkable activity toward cathepsin B of different modes. A relationship between cytotoxicity and inhibition constants was observed.
Keywords: Cathepsin B, cancer, metallodrug, metallic inhibition, anticancer agents, enzyme inhibition.
Graphical Abstract