Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Dioclea Altissima Seed Lectin (DAL) Prevents Anxiety-like Behavioral Responses in Adult Zebrafish (Danio Rerio): Involvement of GABAergic and 5-HT Systems

Author(s): João Ronielly Campêlo Araújo, Adriana Rolim Campos, Maria Kueirislene Amâncio Ferreira, Sacha Aubrey Alves Rodrigues Santos, Marina de Barros Mamede Vidal Damasceno, Francisco Ernani Alves Magalhães, Renato de Azevedo Moreira and Ana Cristina de Oliveira Monteiro-Moreira*

Volume 21, Issue 1, 2022

Published on: 11 February, 2021

Page: [95 - 103] Pages: 9

DOI: 10.2174/1871527320666210212112651

Price: $65

Abstract

Background: Plant lectins have shown promising neuropharmacological activities in animal models.

Objective: This study evaluated the effect of Dioclea altissima seed lectin (DAL) on adult zebrafish behavior.

Method: Zebrafish (n=6/group) were treated (i.p.; 20 μL) with DAL (0.025; 0.05 or 0.1 mg/mL), vehicle or diazepam (DZP) and submitted to several tests (open field, light/dark preference or novel tank). Flumazenil, pizotifen or granisetron were administered 15 min before DAL (0.05 mg/mL), and the animals were evaluated on light/dark preference test. It was also verified whether the DAL effect depended on its structural integrity and ability to interact with carbohydrates.

Results: DAL decreased the locomotor activity of adult zebrafish (0.025; 0.05 or 0.1 mg/mL), increased the time spent in the upper region of the aquarium (0.025 mg/mL), and decreased the latency time of adult zebrafish to enter the upper region on the novel tank test. DAL (0.05 mg/mL) also increased their permanence in the light zone of the light/dark preference test. The effect of DAL was dependent on carbohydrate interaction and protein structure integrity and was prevented by pizotifen, granizetron and flumazenil.

Conclusion: DAL was found to have an anxiolytic-like effect mediated by the 5-HT and GABAergic receptors.

Keywords: Dioclea altissima, lectin, neurobehavioral, anxiolytic-like, 5-HT receptors, GABAergic receptors.

Graphical Abstract

[1]
Taylor S, Koch WJ, Crockett DJ. Anxiety sensitivity, trait anxiety, and the anxiety disorders. J Anxiety Disord 1991; 5: 293-311.
[http://dx.doi.org/10.1016/0887-6185(91)90030-W]
[2]
Ennaceur A. Tests of unconditioned anxiety - pitfalls and disappointments. Physiol Behav 2014; 135: 55-71.
[http://dx.doi.org/10.1016/j.physbeh.2014.05.032] [PMID: 24910138]
[3]
Allen AJ, Leonard H, Swedo SE. Current knowledge of medications for the treatment of childhood anxiety disorders. J Am Acad Child Adolesc Psychiatry 1995; 34(8): 976-86.
[http://dx.doi.org/10.1097/00004583-199508000-00007] [PMID: 7665455]
[4]
Kulesskaya N, Voikar V. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure. Physiol Behav 2014; 133: 30-8.
[http://dx.doi.org/10.1016/j.physbeh.2014.05.006] [PMID: 24832050]
[5]
Halfin A. Depression: the benefits of early and appropriate treatment. Am J Manag Care 2007; 13(4)(Suppl.): S92-7.
[PMID: 18041868]
[6]
Braga JEF, Pordeus LC, Da Silva ATMC, Pimenta FCF, Diniz MFFM, De Almeida RN. Pathological Anxiety: Neural Bases and Advances in Psychopharmacological Approach. Rev. Bras. Ciênc Saúde (Porto Alegre) 2011; 14: 93-100.
[http://dx.doi.org/10.4034/RBCS.2010.14.02.13]
[7]
Guo S. Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 2004; 3(2): 63-74.
[http://dx.doi.org/10.1046/j.1601-183X.2003.00053.x] [PMID: 15005714]
[8]
Miklósi A, Andrew RJ. The zebrafish as a model for behavioral studies. Zebrafish 2006; 3(2): 227-34.
[http://dx.doi.org/10.1089/zeb.2006.3.227] [PMID: 18248263]
[9]
Collier AD, Kalueff AV, Echevarria DJ. Zebrafish Models of Anxiety-Like Behaviors.The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish; Kalueff, A, Ed. Springer: Cham 2017; 1: pp. 45-72.
[10]
Soares MC, Cardoso SC, Carvalho TDS, Maximino C. Using model fish to study the biological mechanisms of cooperative behaviour: A future for translational research concerning social anxiety disorders? Prog Neuropsychopharmacol Biol Psychiatry 2018; 82: 205-15.
[http://dx.doi.org/10.1016/j.pnpbp.2017.11.014] [PMID: 29154800]
[11]
Barbazuk WB, Korf I, Kadavi C, et al. The syntenic relationship of the zebrafish and human genomes. Genome Res 2000; 10(9): 1351-8.http://www.genome.org/cgi/doi/10.1101/gr.144700
[http://dx.doi.org/10.1101/gr.144700] [PMID: 10984453]
[12]
Gheno EM, Rosemberg DB, Souza DO, Calabró L. Zebrafish in brazilian science: scientific production, impact, and collaboration. Zebrafish 2016; 13(3): 217-25.
[http://dx.doi.org/10.1089/zeb.2015.1183] [PMID: 27045850]
[13]
Gebauer DL, Pagnussat N, Piato ÂL, Schaefer IC, Bonan CD, Lara DR. Effects of anxiolytics in zebrafish: similarities and differences between benzodiazepines, buspirone and ethanol. Pharmacol Biochem Behav 2011; 99(3): 480-6.
[http://dx.doi.org/10.1016/j.pbb.2011.04.021] [PMID: 21570997]
[14]
Maximino C, Puty B, Benzecry R, et al. Role of serotonin in zebrafish (Danio rerio) anxiety: relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 2013; 71: 83-97.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.006] [PMID: 23541719]
[15]
Mansur BM, Dos Santos BR, Gouveia A. Efeitos da substância de alarme no teste claro/escuro no Zebrafish, Danio rerio. Amazonian Biota 2014; 4: 87-93.
[http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v4n1p87-93]
[16]
Van Dammes EJ, Fouquaert E, Lannoo N, Vandenborre G, Schouppe D, Peumans WJ. Novel concepts about the role of lectins in the plant cell. Adv Exp Med Biol 2011; 705: 271-94.
[http://dx.doi.org/10.1007/978-1-4419-7877-6_13] [PMID: 21618113]
[17]
Cavada BS, Barbosa T, Arruda S, Grangeiro TB, Barral-Netto M. Revisiting proteus: do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the Diocleinae subtribe lectins. Curr Protein Pept Sci 2001; 2(2): 123-35.
[http://dx.doi.org/10.2174/1389203013381152] [PMID: 12370020]
[18]
Barauna SC, Kaster MP, Heckert BT, et al. Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmacol Biochem Behav 2006; 85(1): 160-9.
[http://dx.doi.org/10.1016/j.pbb.2006.07.030] [PMID: 16950503]
[19]
Araújo JRC, Júnior JMAM, Damasceno MBMV, et al. Neuropharmacological characterization of frutalin in mice: Evidence of an antidepressant-like effect mediated by the NMDA receptor/NO/cGMP pathway. Int J Biol Macromol 2018; 112: 548-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.180] [PMID: 29408007]
[20]
Gonçalves NGG. Ação da lectina de Dioclea altissima sobre células tumorais: Citotoxidade e Perfil Proteômico da Linhagem PC3M 2012. [Action of Dioclea altissima lectin on cells tumors: Cytotoxicity and Proteomic Lineage Profile PC3M].
[21]
Gonçalves NGG, Moreno FBMB, Costa MP, Moreira RA, Monteiro-Moreira ACO. Ação da lectina de Dioclea altissima sobre a linhagem PC3M de carcinoma de próstata - Análise Proteômica diferencial, XIV Encontro de Pós-graduação e Pesquisa da Universidade de Fortaleza, Fortaleza, BR. 2014; pp. 1-6. [Action of the Dioclea altissima lectin on the PC3M Prostate Carcinoma Lineage - Proteomic Analysis differential, XIV University Graduate and Research Meeting from Fortaleza]
[22]
Araújo JRC, Campos AR, de Barros M V Damasceno M, et al. Neuropharmacological characterization of Dioclea altissima seed lectin (DAL) in mice: evidence of anxiolytic-like effect mediated by serotonergic, GABAergic receptors and NO pathway. Curr Pharm Des 2020; 26(31): 3895-904.
[http://dx.doi.org/10.2174/1381612826666200331093207] [PMID: 32228418]
[23]
Moreira RA, Monteiro AC, Horta AC, Oliveira JT, Cavada BS. Isolation and characterization of Dioclea altissima var. megacarpa seed lectin. Phytochemistry 1997; 46: 139-44.
[http://dx.doi.org/10.1016/S0031-9422(97)00262-8]
[24]
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680-5.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[25]
Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV. Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology 2012; 62(1): 135-43.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.037] [PMID: 21843537]
[26]
Magalhães FEA, de Sousa CAPB, Santos SAAR, et al. Adult Zebrafish (Danio rerio): An Alternative Behavioral Model of Formalin-Induced Nociception. Zebrafish 2017; 14(5): 422-9.
[http://dx.doi.org/10.1089/zeb.2017.1436] [PMID: 28704145]
[27]
Blaser RE, Rosemberg DB. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS One 2012; 7(5): e36931.
[http://dx.doi.org/10.1371/journal.pone.0036931] [PMID: 22615849]
[28]
Ferreira MKA, da Silva AW, Silva FCO, et al. Anxiolytic-like effect of chalcone N-(4′-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one] acetamide on adult zebrafish (Danio rerio): Involvement of the GABAergic system. Behav Brain Res 2019; 374: 111871.
[http://dx.doi.org/10.1016/j.bbr.2019.03.040] [PMID: 30922939]
[29]
Benneh CK, Biney RP, Mante PK, Tandoh A, Adongo DW, Woode E. Maerua angolensis stem bark extract reverses anxiety and related behaviours in zebrafish-Involvement of GABAergic and 5-HT systems. J Ethnopharmacol 2017; 207: 129-45.
[http://dx.doi.org/10.1016/j.jep.2017.06.012] [PMID: 28645783]
[30]
Everts I, Petroski R, Kizelsztein P, Teichberg VI, Heinemann SF, Hollmann M. Lectin-induced inhibition of desensitization of the kainate receptor GluR6 depends on the activation state and can be mediated by a single native or ectopic N-linked carbohydrate side chain. J Neurosci 1999; 19(3): 916-27.
[http://dx.doi.org/10.1523/JNEUROSCI.19-03-00916.1999] [PMID: 9920655]
[31]
Araújo JRC, Coelho CB, Campos AR, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences. Curr Neuropharmacol 2020; 18(3): 202-15.
[http://dx.doi.org/10.2174/1570159X17666191016092221] [PMID: 31622208]
[32]
Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A Jr. Measuring anxiety in zebrafish: a critical review. Behav Brain Res 2010; 214(2): 157-71.
[http://dx.doi.org/10.1016/j.bbr.2010.05.031] [PMID: 20510300]
[33]
Gerlai R, Lahav M, Guo S, Rosenthal A. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 2000; 67(4): 773-82.
[http://dx.doi.org/10.1016/S0091-3057(00)00422-6] [PMID: 11166068]
[34]
Levin ED, Bencan Z, Cerutti DT. Anxiolytic effects of nicotine in zebrafish. Physiol Behav 2007; 90(1): 54-8.
[http://dx.doi.org/10.1016/j.physbeh.2006.08.026] [PMID: 17049956]
[35]
Bencan Z, Sledge D, Levin ED. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 2009; 94(1): 75-80.
[http://dx.doi.org/10.1016/j.pbb.2009.07.009] [PMID: 19643124]
[36]
Rosemberg DB, Rico EP, Mussulini BHM, et al. Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments. PLoS One 2011; 6(5): e19397.
[http://dx.doi.org/10.1371/journal.pone.0019397] [PMID: 21559304]
[37]
Blank M, Guerim LD, Cordeiro RF, Vianna MR. A one-trial inhibitory avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. Neurobiol Learn Mem 2009; 92(4): 529-34.
[http://dx.doi.org/10.1016/j.nlm.2009.07.001] [PMID: 19591953]
[38]
Magno LDP, Fontes A, Gonçalves BMN, Gouveia A Jr. Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration. Pharmacol Biochem Behav 2015; 135: 169-76.
[http://dx.doi.org/10.1016/j.pbb.2015.05.014] [PMID: 26026898]
[39]
López-Rubalcava C, Saldívar A, Fernández-Guasti A. Interaction of GABA and serotonin in the anxiolytic action of diazepam and serotonergic anxiolytics. Pharmacol Biochem Behav 1992; 43(2): 433-40.
[http://dx.doi.org/10.1016/0091-3057(92)90173-D] [PMID: 1359576]
[40]
Millan MJ. The neurobiology and control of anxious states. Prog Neurobiol 2003; 70(2): 83-244.
[http://dx.doi.org/10.1016/S0301-0082(03)00087-X] [PMID: 12927745]
[41]
Vasconcelos SMM, Lima SR, Soares PM, et al. Central action of Araucaria angustifolia seed lectin in mice. Epilepsy Behav 2009; 15(3): 291-3.
[http://dx.doi.org/10.1016/j.yebeh.2009.05.002] [PMID: 19446042]
[42]
Arvanov VL, Chou HC, Chen YH, Chen RC, Chang YC, Tsai MC. Effects of concanavalin A on desensitization kinetics of GABA responses in Achatina fulica neurons. Cell Biol Toxicol 1995; 11(2): 113-8.
[http://dx.doi.org/10.1007/BF00767496] [PMID: 7583871]
[43]
Mulligan KA, van Brederode JFM, Hendrickson AE. The lectin Vicia villosa labels a distinct subset of GABAergic cells in macaque visual cortex. Vis Neurosci 1989; 2(1): 63-72.
[http://dx.doi.org/10.1017/S0952523800004338] [PMID: 2487638]
[44]
Kosaka T, Heizmann CW. Selective staining of a population of parvalbumin-containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for terminal N-acetylgalactosamine. Brain Res 1989; 483(1): 158-63.
[http://dx.doi.org/10.1016/0006-8993(89)90048-6] [PMID: 2565147]
[45]
Charney DS, Woods SW, Goodman WK, Heninger GR. Serotonin function in anxiety. II. Effects of the serotonin agonist MCPP in panic disorder patients and healthy subjects. Psychopharmacology (Berl) 1987; 92(1): 14-24.
[http://dx.doi.org/10.1007/BF00215473] [PMID: 3110824]
[46]
Johnson PL, Molosh AI, Federici LM, et al. Assessment of fear and anxiety associated behaviors, physiology and neural circuits in rats with reduced serotonin transporter (SERT) levels. Transl Psychiatry 2019; 9(1): 33.
[http://dx.doi.org/10.1038/s41398-019-0368-y] [PMID: 30670681]
[47]
Nowicki M, Tran S, Muraleetharan A, Markovic S, Gerlai R. Serotonin antagonists induce anxiolytic and anxiogenic-like behavior in zebrafish in a receptor-subtype dependent manner. Pharmacol Biochem Behav 2014; 126: 170-80.
[http://dx.doi.org/10.1016/j.pbb.2014.09.022] [PMID: 25284132]
[48]
Cobb BA, Kasper DL. Coming of age: carbohydrates and immunity. Eur J Immunol 2005; 35(2): 352-6.
[http://dx.doi.org/10.1002/eji.200425889] [PMID: 15682450]
[49]
Kariya Y, Gu J. N-glycosylation of ß4 integrin controls the adhesion and motility of keratinocytes. PLoS One 2011; 6(11): e27084.
[http://dx.doi.org/10.1371/journal.pone.0027084] [PMID: 22073258]
[50]
Nowycky MC, Wu G, Ledeen RW. Glycobiology of ion transport in the nervous system.Glycobiology of the nervous system: Advances in Neurobiology. New York: Springer 2014; Vol. 9: pp. 321-42.
[http://dx.doi.org/10.1007/978-1-4939-1154-7_15]
[51]
Choi JY, Seo J, Park M, Kim MH, Kang K, Choi IS. Multiplexed metabolic labeling of glycoconjugates in polarized primary cerebral cortical neurons. Chem–An. Chem Asian J 2018; 13(22): 3480-4.
[http://dx.doi.org/10.1002/asia.201800996] [PMID: 30204301]
[52]
Gerlai R. High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 2010; 15(4): 2609-22.
[http://dx.doi.org/10.3390/molecules15042609] [PMID: 20428068]
[53]
Norton W, Bally-Cuif L. Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci 2010; 11(1): 90.
[http://dx.doi.org/10.1186/1471-2202-11-90] [PMID: 20678210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy