Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Endocannabinoid System and Alcohol Dependence: Will Cannabinoid Receptor 2 Agonism be More Fruitful than Cannabinoid Receptor 1 Antagonism?

Author(s): Aboagyewaah Oppong-Damoah, Brenda Marie Gannon and Kevin Sean Murnane*

Volume 21, Issue 1, 2022

Published on: 10 February, 2021

Page: [3 - 13] Pages: 11

DOI: 10.2174/1871527320666210211115007

Price: $65

conference banner
Abstract

Alcohol-use disorder (AUD) remains a major public health concern. In recent years, there has been a heightened interest in components of the endocannabinoid system for the treatment of AUD. Cannabinoid type 1 (CB1) receptors have been shown to modulate the rewarding effects of alcohol, reduce the abuse-related effects of alcohol, improve cognition, exhibit anti-inflammatory, and neuroprotective effects, which are all favorable properties of potential therapeutic candidates for the treatment of AUD. However, CB1 agonists have not been investigated for the treatment of AUD because they stimulate the motivational properties of alcohol, increase alcohol intake, and have the tendency to be abused. Preclinical data suggest significant potential for the use of CB1 antagonists to treat AUD; however, a clinical phase I/II trial with SR14716A (rimonabant), a CB1 receptor antagonist/inverse agonist showed that it produced serious neuropsychiatric adverse events such as anxiety, depression, and even suicidal ideation. This has redirected the field to focus on alternative components of the endocannabinoid system, including cannabinoid type 2 (CB2) receptor agonists as a potential therapeutic target for AUD. CB2 receptor agonists are of particular interest because they can modulate the reward pathway, reduce abuse-related effects of alcohol, reverse neuroinflammation, improve cognition, and exhibit anti-inflammatory and neuroprotective effects, without exhibiting the psychiatric side effects seen with CB1 antagonists. Accordingly, this article presents an overview of the studies reported in the literature that have investigated CB2 receptor agonists with regards to AUD and provides commentary as to whether this receptor is a worthy target for continued investigation.

Keywords: Alcohol-use disorder (AUD), endocannabinoid system, CB1 receptor, CB2 receptor, ethanol, anti-inflammatory, neuroprotection.

Graphical Abstract

[1]
Mokdad AH, Marks JS, Stroup DF, Gerberding JL. Actual causes of death in the United States, 2000. JAMA 2004; 291(10): 1238-45.
[http://dx.doi.org/10.1001/jama.291.10.1238] [PMID: 15010446]
[2]
Sacks JJ, Gonzales KR, Bouchery EE, Tomedi LE, Brewer RD. 2010 national and state costs of excessive alcohol consumption. Am J Prev Med 2015; 49(5): e73-9.
[http://dx.doi.org/10.1016/j.amepre.2015.05.031] [PMID: 26477807]
[3]
Grant BF, Goldstein RB, Saha TD, et al. Epidemiology of DSM-5 alcohol use disorder: Results from the national epidemiologic survey on alcohol and related conditions III. JAMA Psychiatry 2015; 72(8): 757-66.
[http://dx.doi.org/10.1001/jamapsychiatry.2015.0584] [PMID: 26039070]
[4]
Lipari RN, Van Horn SL. Children living with parents who have a substance use disorder. CBHSQ Report 2017.
[5]
Kranzler HR, Van Kirk J. Efficacy of naltrexone and acamprosate for alcoholism treatment: a meta-analysis. Alcohol Clin Exp Res 2001; 25(9): 1335-41.
[http://dx.doi.org/10.1111/j.1530-0277.2001.tb02356.x] [PMID: 11584154]
[6]
Fuller RK, Branchey L, Brightwell DR, et al. Disulfiram treatment of alcoholism. A Veterans Administration cooperative study. JAMA 1986; 256(11): 1449-55.
[http://dx.doi.org/10.1001/jama.1986.03380110055026] [PMID: 3528541]
[7]
Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 2006; 29(4): 225-32.
[http://dx.doi.org/10.1016/j.tins.2006.01.008] [PMID: 16483675]
[8]
Hungund BL, Szakall I, Adam A, Basavarajappa BS, Vadasz C. Cannabinoid CB1 receptor knockout mice exhibit markedly reduced voluntary alcohol consumption and lack alcohol-induced dopamine release in the nucleus accumbens. J Neurochem 2003; 84(4): 698-704.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01576.x] [PMID: 12562514]
[9]
de Fonseca Rodríguez F, Roberts AJ, Bilbao A, Koob GF, Navarro M. Cannabinoid receptor antagonist SR141716A decreases operant ethanol self administration in rats exposed to ethanol-vapor chambers. Zhongguo yao li xue bao=. Acta Pharmacol Sin 1999; 20(12): 1109-14.
[10]
Wang L, Liu J, Harvey-White J, Zimmer A, Kunos G. Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc Natl Acad Sci USA 2003; 100(3): 1393-8.
[http://dx.doi.org/10.1073/pnas.0336351100] [PMID: 12538878]
[11]
Houchi H, Babovic D, Pierrefiche O, Ledent C, Daoust M, Naassila M. CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology 2005; 30(2): 339-49.
[http://dx.doi.org/10.1038/sj.npp.1300568] [PMID: 15383833]
[12]
Sloan ME, Gowin JL, Ramchandani VA, Hurd YL, Le Foll B. The endocannabinoid system as a target for addiction treatment: Trials and tribulations. Neuropharmacology 2017; 124: 73-83.
[http://dx.doi.org/10.1016/j.neuropharm.2017.05.031] [PMID: 28564576]
[13]
Henderson-Redmond AN, Guindon J, Morgan DJ. Roles for the endocannabinoid system in ethanol-motivated behavior. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65: 330-9.
[http://dx.doi.org/10.1016/j.pnpbp.2015.06.011] [PMID: 26123153]
[14]
Hungund BL, Basavarajappa BS. Role of endocannabinoids and cannabinoid CB1 receptors in alcohol-related behaviors. Ann N Y Acad Sci 2004; 1025: 515-27.
[http://dx.doi.org/10.1196/annals.1316.064] [PMID: 15542757]
[15]
Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci 2015; 16(10): 579-94.
[http://dx.doi.org/10.1038/nrn4004] [PMID: 26373473]
[16]
Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990; 346(6284): 561-4.
[http://dx.doi.org/10.1038/346561a0] [PMID: 2165569]
[17]
Howlett AC, Barth F, Bonner TI, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002; 54(2): 161-202.
[http://dx.doi.org/10.1124/pr.54.2.161] [PMID: 12037135]
[18]
Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258(5090): 1946-9.
[http://dx.doi.org/10.1126/science.1470919] [PMID: 1470919]
[19]
Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995; 215(1): 89-97.
[http://dx.doi.org/10.1006/bbrc.1995.2437] [PMID: 7575630]
[20]
Sugiura T, Kondo S, Kishimoto S, et al. Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem 2000; 275(1): 605-12.
[http://dx.doi.org/10.1074/jbc.275.1.605] [PMID: 10617657]
[21]
Schmid PC, Reddy PV, Natarajan V, Schmid HH. Metabolism of N-acylethanolamine phospholipids by a mammalian phosphodiesterase of the phospholipase D type. J Biol Chem 1983; 258(15): 9302-6.
[PMID: 6308001]
[22]
Basavarajappa BS. Critical enzymes involved in endocannabinoid metabolism. Protein Pept Lett 2007; 14(3): 237-46.
[http://dx.doi.org/10.2174/092986607780090829] [PMID: 17346227]
[23]
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006; 58(3): 389-462.
[http://dx.doi.org/10.1124/pr.58.3.2] [PMID: 16968947]
[24]
Bayewitch M, Avidor-Reiss T, Levy R, Barg J, Mechoulam R, Vogel Z. The peripheral cannabinoid receptor: adenylate cyclase inhibition and G protein coupling. FEBS Lett 1995; 375(1-2): 143-7.
[http://dx.doi.org/10.1016/0014-5793(95)01207-U] [PMID: 7498464]
[25]
Bonhaus DW, Chang LK, Kwan J, Martin GR. Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther 1998; 287(3): 884-8.
[PMID: 9864268]
[26]
Calandra B, Portier M, Kernéis A, et al. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor. Eur J Pharmacol 1999; 374(3): 445-55.
[http://dx.doi.org/10.1016/S0014-2999(99)00349-0] [PMID: 10422789]
[27]
Pertwee RG. The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes 2006; 30(30)(Suppl. 1): S13-8.
[http://dx.doi.org/10.1038/sj.ijo.0803272] [PMID: 16570099]
[28]
Ye L, Cao Z, Wang W, Zhou N. New insights in cannabinoid receptor structure and signaling. Curr Mol Pharmacol 2019; 12(3): 239-48.
[http://dx.doi.org/10.2174/1874467212666190215112036] [PMID: 30767756]
[29]
Khurana L, Ali HI, Olszewska T, et al. Optimization of chemical functionalities of indole-2-carboxamides to improve allosteric parameters for the cannabinoid receptor 1 (CB1). J Med Chem 2014; 57(7): 3040-52.
[http://dx.doi.org/10.1021/jm5000112] [PMID: 24635495]
[30]
Ledent C, Valverde O, Cossu G, et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 1999; 283(5400): 401-4.
[http://dx.doi.org/10.1126/science.283.5400.401] [PMID: 9888857]
[31]
Lichtman AH, Martin BR. The selective cannabinoid antagonist SR 141716A blocks cannabinoid-induced antinociception in rats. Pharmacol Biochem Behav 1997; 57(1-2): 7-12.
[http://dx.doi.org/10.1016/S0091-3057(96)00121-9] [PMID: 9164547]
[32]
Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O. Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl) 2002; 159(4): 379-87.
[http://dx.doi.org/10.1007/s00213-001-0946-5] [PMID: 11823890]
[33]
Riegel AC, Lupica CR. Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J Neurosci 2004; 24(49): 11070-8.
[http://dx.doi.org/10.1523/JNEUROSCI.3695-04.2004] [PMID: 15590923]
[34]
Howlett AC, Abood ME. CB1 and CB2 receptor pharmacology Advances in Pharmacology 80. Elsevier 2017; pp. 169-206.
[35]
Osei-Hyiaman D, DePetrillo M, Pacher P, et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115(5): 1298-305.
[http://dx.doi.org/10.1172/JCI200523057] [PMID: 15864349]
[36]
Cota D, Marsicano G, Tschöp M, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 2003; 112(3): 423-31.
[http://dx.doi.org/10.1172/JCI17725] [PMID: 12897210]
[37]
Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365(6441): 61-5.
[http://dx.doi.org/10.1038/365061a0] [PMID: 7689702]
[38]
Bab I, Ofek O, Tam J, Rehnelt J, Zimmer A. Endocannabinoids and the regulation of bone metabolism. J Neuroendocrinol 2008; 20(Suppl. 1): 69-74.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01675.x] [PMID: 18426503]
[39]
Cabral G, Griffin-Thomas L. Emerging Role of the CB2 Cannabinoid Receptor in Immune Regulation: Therapeutic prospects for neuroinflammation. Expert Rev Mol Med 2009; 11: e3.
[40]
Anand P, Whiteside G, Fowler CJ, Hohmann AG. Targeting CB2 receptors and the endocannabinoid system for the treatment of pain. Brain Res Brain Res Rev 2009; 60(1): 255-66.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.003] [PMID: 19150370]
[41]
Gong J-P, Onaivi ES, Ishiguro H, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 2006; 1071(1): 10-23.
[http://dx.doi.org/10.1016/j.brainres.2005.11.035] [PMID: 16472786]
[42]
Van Sickle MD, Duncan M, Kingsley PJ, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005; 310(5746): 329-32.
[http://dx.doi.org/10.1126/science.1115740] [PMID: 16224028]
[43]
Stempel AV, Stumpf A, Zhang H-Y, et al. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron 2016; 90(4): 795-809.
[http://dx.doi.org/10.1016/j.neuron.2016.03.034] [PMID: 27133464]
[44]
García-Gutiérrez MS, Ortega-Álvaro A, Busquets-García A, et al. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology 2013; 73: 388-96.
[http://dx.doi.org/10.1016/j.neuropharm.2013.05.034] [PMID: 23796670]
[45]
Ashton JC, Rahman RM, Nair SM, Sutherland BA, Glass M, Appleton I. Cerebral hypoxia-ischemia and middle cerebral artery occlusion induce expression of the cannabinoid CB2 receptor in the brain. Neurosci Lett 2007; 412(2): 114-7.
[http://dx.doi.org/10.1016/j.neulet.2006.10.053] [PMID: 17123706]
[46]
Benito C, Kim W-K, Chavarría I, et al. A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J Neurosci 2005; 25(10): 2530-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3923-04.2005] [PMID: 15758162]
[47]
Benito C, Núñez E, Tolón RM, et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 2003; 23(35): 11136-41.
[http://dx.doi.org/10.1523/JNEUROSCI.23-35-11136.2003] [PMID: 14657172]
[48]
Ramírez-Orozco RE, García-Ruiz R, Morales P, Villalón CM, Villafán-Bernal JR, Marichal-Cancino BA. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr Neuropharmacol 2019; 17(10): 947-60.
[http://dx.doi.org/10.2174/1570159X17666190118143014] [PMID: 31146657]
[49]
Ryberg E, Larsson N, Sjögren S, et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 2007; 152(7): 1092-101.
[http://dx.doi.org/10.1038/sj.bjp.0707460] [PMID: 17876302]
[50]
Hansson AC, Bermúdez-Silva FJ, Malinen H, et al. Genetic impairment of frontocortical endocannabinoid degradation and high alcohol preference. Neuropsychopharmacology 2007; 32(1): 117-26.
[http://dx.doi.org/10.1038/sj.npp.1301034] [PMID: 16482090]
[51]
Galiègue S, Mary S, Marchand J, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 1995; 232(1): 54-61.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20780.x] [PMID: 7556170]
[52]
Nong L, Newton C, Friedman H, Klein TW. CB1 and CB2 receptor mRNA expression in human peripheral blood mononuclear cells (PBMC) from various donor types Neuroimmune circuits, drugs of abuse, and infectious diseases. Springer 2002; pp. 229-33.
[53]
Sinha D, Bonner TI, Bhat NR, Matsuda LA. Expression of the CB1 cannabinoid receptor in macrophage-like cells from brain tissue: immunochemical characterization by fusion protein antibodies. J Neuroimmunol 1998; 82(1): 13-21.
[http://dx.doi.org/10.1016/S0165-5728(97)00181-1] [PMID: 9526841]
[54]
Fakhfouri G, Ahmadiani A, Rahimian R, Grolla AA, Moradi F, Haeri A. WIN55212-2 attenuates amyloid-beta-induced neuroinflammation in rats through activation of cannabinoid receptors and PPAR-γ pathway. Neuropharmacology 2012; 63(4): 653-66.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.013] [PMID: 22634229]
[55]
Chung YC, Bok E, Huh SH, et al. Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J Immunol 2011; 187(12): 6508-17.
[http://dx.doi.org/10.4049/jimmunol.1102435] [PMID: 22079984]
[56]
Cabral GA, Harmon KN, Carlisle SJ. Cannabinoid-mediated inhibition of inducible nitric oxide production by rat microglial cells: evidence for CB 1 receptor participation Neuroimmune Circuits, Drugs of Abuse, and Infectious Diseases. Springer 2002; pp. 207-14.
[57]
Waksman Y, Olson JM, Carlisle SJ, Cabral GA. The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells. J Pharmacol Exp Ther 1999; 288(3): 1357-66.
[PMID: 10027878]
[58]
Parmentier-Batteur S, Jin K, Mao XO, Xie L, Greenberg DA. Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J Neurosci 2002; 22(22): 9771-5.
[http://dx.doi.org/10.1523/JNEUROSCI.22-22-09771.2002] [PMID: 12427832]
[59]
Panikashvili D, Simeonidou C, Ben-Shabat S, et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 2001; 413(6855): 527-31.
[http://dx.doi.org/10.1038/35097089] [PMID: 11586361]
[60]
Chiarlone A, Bellocchio L, Blázquez C, et al. A restricted population of CB1 cannabinoid receptors with neuroprotective activity. Proc Natl Acad Sci USA 2014; 111(22): 8257-62.
[http://dx.doi.org/10.1073/pnas.1400988111] [PMID: 24843137]
[61]
Costa B, Trovato AE, Colleoni M, Giagnoni G, Zarini E, Croci T. Effect of the cannabinoid CB1 receptor antagonist, SR141716, on nociceptive response and nerve demyelination in rodents with chronic constriction injury of the sciatic nerve. Pain 2005; 116(1-2): 52-61.
[http://dx.doi.org/10.1016/j.pain.2005.03.043] [PMID: 15936882]
[62]
Rossi B, Zenaro E, Angiari S, et al. Inverse agonism of cannabinoid CB1 receptor blocks the adhesion of encephalitogenic T cells in inflamed brain venules by a protein kinase A-dependent mechanism. J Neuroimmunol 2011; 233(1-2): 97-105.
[http://dx.doi.org/10.1016/j.jneuroim.2010.12.005] [PMID: 21216016]
[63]
Cerri S, Levandis G, Ambrosi G, et al. Neuroprotective potential of adenosine A2A and cannabinoid CB1 receptor antagonists in an animal model of Parkinson disease. J Neuropathol Exp Neurol 2014; 73(5): 414-24.
[http://dx.doi.org/10.1097/NEN.0000000000000064] [PMID: 24709676]
[64]
Varvel SA, Hamm RJ, Martin BR, Lichtman AH. Differential effects of delta 9-THC on spatial reference and working memory in mice. Psychopharmacology (Berl) 2001; 157(2): 142-50.
[http://dx.doi.org/10.1007/s002130100780] [PMID: 11594438]
[65]
Varvel SA, Lichtman AH. Evaluation of CB1 receptor knockout mice in the Morris water maze. J Pharmacol Exp Ther 2002; 301(3): 915-24.
[http://dx.doi.org/10.1124/jpet.301.3.915] [PMID: 12023519]
[66]
Pamplona FA, Takahashi RN. WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors. Neurosci Lett 2006; 397(1-2): 88-92.
[http://dx.doi.org/10.1016/j.neulet.2005.12.026] [PMID: 16406322]
[67]
Ferrari F, Ottani A, Vivoli R, Giuliani D. Learning impairment produced in rats by the cannabinoid agonist HU 210 in a water- maze task. Pharmacol Biochem Behav 1999; 64(3): 555-61.
[http://dx.doi.org/10.1016/S0091-3057(99)00106-9] [PMID: 10548271]
[68]
Suenaga T, Kaku M, Ichitani Y. Effects of intrahippocampal cannabinoid receptor agonist and antagonist on radial maze and T- maze delayed alternation performance in rats. Pharmacol Biochem Behav 2008; 91(1): 91-6.
[http://dx.doi.org/10.1016/j.pbb.2008.06.015] [PMID: 18639576]
[69]
Heishman SJ, Arasteh K, Stitzer ML. Comparative effects of alcohol and marijuana on mood, memory, and performance. Pharmacol Biochem Behav 1997; 58(1): 93-101.
[http://dx.doi.org/10.1016/S0091-3057(96)00456-X] [PMID: 9264076]
[70]
O’Leary DS, Block RI, Koeppel JA, et al. Effects of smoking marijuana on brain perfusion and cognition. Neuropsychopharmacology 2002; 26(6): 802-16.
[http://dx.doi.org/10.1016/S0893-133X(01)00425-0] [PMID: 12007751]
[71]
Kruk-Slomka M, Biala G. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice. Behav Brain Res 2016; 301: 84-95.
[http://dx.doi.org/10.1016/j.bbr.2015.12.023] [PMID: 26711911]
[72]
Terranova J-P, Storme J-J, Lafon N, et al. Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist, SR 141716. Psychopharmacology (Berl) 1996; 126(2): 165-72.
[http://dx.doi.org/10.1007/BF02246352] [PMID: 8856836]
[73]
Varvel SA, Anum EA, Lichtman AH. Disruption of CB(1) receptor signaling impairs extinction of spatial memory in mice. Psychopharmacology (Berl) 2005; 179(4): 863-72.
[http://dx.doi.org/10.1007/s00213-004-2121-2] [PMID: 15619104]
[74]
Mikics E, Dombi T, Barsvári B, et al. The effects of cannabinoids on contextual conditioned fear in CB1 knockout and CD1 mice. Behav Pharmacol 2006; 17(3): 223-30.
[http://dx.doi.org/10.1097/00008877-200605000-00003] [PMID: 16572000]
[75]
Marsicano G, Wotjak CT, Azad SC, et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002; 418(6897): 530-4.
[http://dx.doi.org/10.1038/nature00839] [PMID: 12152079]
[76]
Kaplan BL. The role of CB1 in immune modulation by cannabinoids. Pharmacol Ther 2013; 137(3): 365-74.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.004] [PMID: 23261520]
[77]
García-Ovejero D, Arévalo-Martín Á, Navarro-Galve B, Pinteaux E, Molina-Holgado E, Molina-Holgado F. Neuroimmmune interactions of cannabinoids in neurogenesis: focus on interleukin-1β (IL-1β) signalling. Portland Press Ltd. 2013.
[78]
Rosenberg EC, Patra PH, Whalley BJ. Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. Epilepsy Behav 2017; 70(Pt B): 319-27.
[http://dx.doi.org/10.1016/j.yebeh.2016.11.006] [PMID: 28190698]
[79]
van der Stelt M, Di Marzo V. Cannabinoid receptors and their role in neuroprotection. Neuromolecular Med 2005; 7(1-2): 37-50.
[http://dx.doi.org/10.1385/NMM:7:1-2:037] [PMID: 16052037]
[80]
Valverde O, Karsak M, Zimmer A. Analysis of the endocannabinoid system by using CB 1 cannabinoid receptor knockout mice Cannabinoids. Springer 2005; pp. 117-45.
[81]
Gessa GL, Melis M, Muntoni AL, Diana M. Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur J Pharmacol 1998; 341(1): 39-44.
[http://dx.doi.org/10.1016/S0014-2999(97)01442-8] [PMID: 9489854]
[82]
Colombo G, Orrù A, Lai P, et al. The cannabinoid CB1 receptor antagonist, rimonabant, as a promising pharmacotherapy for alcohol dependence: preclinical evidence. Mol Neurobiol 2007; 36(1): 102-12.
[http://dx.doi.org/10.1007/s12035-007-0017-y] [PMID: 17952655]
[83]
Colombo G, Serra S, Vacca G, Carai MA, Gessa GL. Endocannabinoid system and alcohol addiction: pharmacological studies. Pharmacol Biochem Behav 2005; 81(2): 369-80.
[http://dx.doi.org/10.1016/j.pbb.2005.01.022] [PMID: 15939463]
[84]
Thanos PK, Dimitrakakis ES, Rice O, Gifford A, Volkow ND. Ethanol self-administration and ethanol conditioned place preference are reduced in mice lacking cannabinoid CB1 receptors. Behav Brain Res 2005; 164(2): 206-13.
[http://dx.doi.org/10.1016/j.bbr.2005.06.021] [PMID: 16140402]
[85]
Hirvonen J, Zanotti-Fregonara P, Umhau JC, et al. Reduced cannabinoid CB1 receptor binding in alcohol dependence measured with positron emission tomography. Mol Psychiatry 2013; 18(8): 916-21.
[http://dx.doi.org/10.1038/mp.2012.100] [PMID: 22776901]
[86]
Vinod KY, Kassir SA, Hungund BL, Cooper TB, Mann JJ, Arango V. Selective alterations of the CB1 receptors and the fatty acid amide hydrolase in the ventral striatum of alcoholics and suicides. J Psychiatr Res 2010; 44(9): 591-7.
[http://dx.doi.org/10.1016/j.jpsychires.2009.11.013] [PMID: 20015515]
[87]
Le Boisselier R, Alexandre J, Lelong-Boulouard V, Debruyne D. Focus on cannabinoids and synthetic cannabinoids. Clin Pharmacol Ther 2017; 101(2): 220-9.
[http://dx.doi.org/10.1002/cpt.563] [PMID: 27861784]
[88]
Tai S, Fantegrossi WE. Synthetic cannabinoids: pharmacology, behavioral effects, and abuse potential. Curr Addict Rep 2014; 1(2): 129-36.
[http://dx.doi.org/10.1007/s40429-014-0014-y] [PMID: 26413452]
[89]
Balla A, Dong B, Shilpa BM, et al. Cannabinoid-1 receptor neutral antagonist reduces binge-like alcohol consumption and alcohol-induced accumbal dopaminergic signaling. Neuropharmacology 2018; 131: 200-8.
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.040] [PMID: 29109060]
[90]
Agoglia AE, Holstein SE, Eastman VR, Hodge CW. Cannabinoid CB1 receptor inhibition blunts adolescent-typical increased binge alcohol and sucrose consumption in male C57BL/6J mice. Pharmacol Biochem Behav 2016; 143: 11-7.
[http://dx.doi.org/10.1016/j.pbb.2016.01.009] [PMID: 26800788]
[91]
Arnone M, Maruani J, Chaperon F, et al. Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology (Berl) 1997; 132(1): 104-6.
[http://dx.doi.org/10.1007/s002130050326] [PMID: 9272766]
[92]
Gessa GL, Serra S, Vacca G, Carai MA, Colombo G. Suppressing effect of the cannabinoid CB1 receptor antagonist, SR147778, on alcohol intake and motivational properties of alcohol in alcohol-preferring sP rats. Alcohol Alcohol 2005; 40(1): 46-53.
[http://dx.doi.org/10.1093/alcalc/agh114] [PMID: 15582988]
[93]
Cippitelli A, Bilbao A, Hansson AC, et al. European TARGALC Consortium. Cannabinoid CB1 receptor antagonism reduces conditioned reinstatement of ethanol-seeking behavior in rats. Eur J Neurosci 2005; 21(8): 2243-51.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04056.x] [PMID: 15869521]
[94]
Getachew B, Hauser SR, Dhaher R, et al. CB1 receptors regulate alcohol-seeking behavior and alcohol self-administration of alcohol-preferring (P) rats. Pharmacol Biochem Behav 2011; 97(4): 669-75.
[http://dx.doi.org/10.1016/j.pbb.2010.11.006] [PMID: 21110997]
[95]
Lallemand F, De Witte P. SR147778, a CB1 cannabinoid receptor antagonist, suppresses ethanol preference in chronically alcoholized Wistar rats. Alcohol 2006; 39(3): 125-34.
[http://dx.doi.org/10.1016/j.alcohol.2006.08.001] [PMID: 17127132]
[96]
Pina MM, Cunningham CL. Effects of the novel cannabinoid CB1 receptor antagonist PF 514273 on the acquisition and expression of ethanol conditioned place preference. Alcohol 2014; 48(5): 427-31.
[http://dx.doi.org/10.1016/j.alcohol.2014.01.013] [PMID: 24954022]
[97]
George DT, Herion DW, Jones CL, et al. Rimonabant (SR141716) has no effect on alcohol self-administration or endocrine measures in nontreatment-seeking heavy alcohol drinkers. Psychopharmacology (Berl) 2010; 208(1): 37-44.
[http://dx.doi.org/10.1007/s00213-009-1704-3] [PMID: 19902183]
[98]
Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 2007; 370(9600): 1706-13.
[http://dx.doi.org/10.1016/S0140-6736(07)61721-8] [PMID: 18022033]
[99]
Moreira FA, Crippa JAS. The psychiatric side-effects of rimonabant. Br J Psychiatry 2009; 31(2): 145-53.
[http://dx.doi.org/10.1590/S1516-44462009000200012] [PMID: 19578688]
[100]
Di Marzo V, Stella N, Zimmer A. Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci 2015; 16(1): 30-42.
[http://dx.doi.org/10.1038/nrn3876] [PMID: 25524120]
[101]
Nguyen T, Thomas BF, Zhang Y. Overcoming the psychiatric side effects of the cannabinoid CB1 receptor antagonists: current approaches for therapeutics development. Curr Top Med Chem 2019; 19(16): 1418-35.
[http://dx.doi.org/10.2174/1568026619666190708164841] [PMID: 31284863]
[102]
Fidyt K, Fiedorowicz A, Strządała L, Szumny A. β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med 2016; 5(10): 3007-17.
[http://dx.doi.org/10.1002/cam4.816] [PMID: 27696789]
[103]
Zhang H-Y, Gao M, Liu Q-R, et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci USA 2014; 111(46): E5007-15.
[http://dx.doi.org/10.1073/pnas.1413210111] [PMID: 25368177]
[104]
Ortega-Álvaro A, Ternianov A, Aracil-Fernández A, Navarrete F, García-Gutiérrez MS, Manzanares J. Role of cannabinoid CB2 receptor in the reinforcing actions of ethanol. Addict Biol 2015; 20(1): 43-55.
[http://dx.doi.org/10.1111/adb.12076] [PMID: 23855434]
[105]
Sharma C, Al Kaabi JM, Nurulain SM, Goyal SN, Kamal MA, Ojha S. Polypharmacological properties and therapeutic potential of β-caryophyllene: A dietary phytocannabinoid of pharmaceutical promise. Curr Pharm Des 2016; 22(21): 3237-64.
[http://dx.doi.org/10.2174/1381612822666160311115226] [PMID: 26965491]
[106]
CFR F. code of federal regulations title 21. US Food and Drug Administration 2012.
[107]
Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 2010; 30(24): 8285-95.
[http://dx.doi.org/10.1523/JNEUROSCI.0976-10.2010] [PMID: 20554880]
[108]
He J, Crews FT. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 2008; 210(2): 349-58.
[http://dx.doi.org/10.1016/j.expneurol.2007.11.017] [PMID: 18190912]
[109]
Qin L, He J, Hanes RN, Pluzarev O, Hong J-S, Crews FT. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 2008; 5(1): 10.
[http://dx.doi.org/10.1186/1742-2094-5-10] [PMID: 18348728]
[110]
Carlisle SJ, Marciano-Cabral F, Staab A, Ludwick C, Cabral GA. Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. Int Immunopharmacol 2002; 2(1): 69-82.
[http://dx.doi.org/10.1016/S1567-5769(01)00147-3] [PMID: 11789671]
[111]
Ramírez BG, Blázquez C, Gómez del Pulgar T, Guzmán M, de Ceballos ML. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 2005; 25(8): 1904-13.
[http://dx.doi.org/10.1523/JNEUROSCI.4540-04.2005] [PMID: 15728830]
[112]
Klegeris A, Bissonnette CJ, McGeer PL. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol 2003; 139(4): 775-86.
[http://dx.doi.org/10.1038/sj.bjp.0705304] [PMID: 12813001]
[113]
Lindsey LP, Daphney CM, Oppong-Damoah A, et al. The cannabinoid receptor 2 agonist, β-caryophyllene, improves working memory and reduces circulating levels of specific proinflammatory cytokines in aged male mice. Behav Brain Res 2019; 372: 112012.
[http://dx.doi.org/10.1016/j.bbr.2019.112012] [PMID: 31173795]
[114]
Szabo G, Saha B. Alcohol’s effect on host defense. Alcohol Res 2015; 37(2): 159-70.
[PMID: 26695755]
[115]
Louvet A, Teixeira-Clerc F, Chobert MN, et al. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology 2011; 54(4): 1217-26.
[http://dx.doi.org/10.1002/hep.24524] [PMID: 21735467]
[116]
Palazuelos J, Aguado T, Egia A, Mechoulam R, Guzmán M, Galve-Roperh I. Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J 2006; 20(13): 2405-7.
[http://dx.doi.org/10.1096/fj.06-6164fje] [PMID: 17015409]
[117]
Molina-Holgado F, Rubio-Araiz A, García-Ovejero D, et al. CB2 cannabinoid receptors promote mouse neural stem cell proliferation. Eur J Neurosci 2007; 25(3): 629-34.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05322.x] [PMID: 17328768]
[118]
Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006; 1(3): 223-36.
[http://dx.doi.org/10.1007/s11481-006-9025-3] [PMID: 18040800]
[119]
Haorah J, Knipe B, Leibhart J, Ghorpade A, Persidsky Y. Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. J Leukoc Biol 2005; 78(6): 1223-32.
[http://dx.doi.org/10.1189/jlb.0605340] [PMID: 16204625]
[120]
Vendel E, de Lange EC. Functions of the CB1 and CB 2 receptors in neuroprotection at the level of the blood-brain barrier. Neuromolecular Med 2014; 16(3): 620-42.
[http://dx.doi.org/10.1007/s12017-014-8314-x] [PMID: 24929655]
[121]
Coriale G, Fiorentino D, Porrari R, et al. Interdisciplinary Study Group CRARL - SITAC - SIPaD - SITD - SIPDip. Diagnosis of alcohol use disorder from a psychological point of view. Riv Psichiatr 2018; 53(3): 128-40.
[PMID: 29912215]
[122]
Lovinger DM, Abrahao KP. Synaptic plasticity mechanisms common to learning and alcohol use disorder. Learn Mem 2018; 25(9): 425-34.
[http://dx.doi.org/10.1101/lm.046722.117] [PMID: 30115764]
[123]
Iwamura H, Suzuki H, Ueda Y, Kaya T, Inaba T. In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J Pharmacol Exp Ther 2001; 296(2): 420-5.
[PMID: 11160626]
[124]
Ratano P, Palmery M, Trezza V, Campolongo P. Cannabinoid modulation of memory consolidation in rats: beyond the role of cannabinoid receptor subtype 1. Front Pharmacol 2017; 8: 200.
[http://dx.doi.org/10.3389/fphar.2017.00200] [PMID: 28446875]
[125]
Ratano P, Petrella C, Forti F, et al. Pharmacological inhibition of 2-arachidonoilglycerol hydrolysis enhances memory consolidation in rats through CB2 receptor activation and mTOR signaling modulation. Neuropharmacology 2018; 138: 210-8.
[http://dx.doi.org/10.1016/j.neuropharm.2018.05.030] [PMID: 29842858]
[126]
Li Y, Kim J. CB2 cannabinoid receptor knockout in mice impairs contextual long-term memory and enhances spatial working memory. Neural Plas 2016; 9817089.
[http://dx.doi.org/10.1155/2016/9817089]
[127]
Ortega-Alvaro A, Aracil-Fernández A, García-Gutiérrez MS, Navarrete F, Manzanares J. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice. Neuropsychopharmacology 2011; 36(7): 1489-504.
[http://dx.doi.org/10.1038/npp.2011.34] [PMID: 21430651]
[128]
Ishiguro H, Iwasaki S, Teasenfitz L, et al. Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans. Pharmacogenomics J 2007; 7(6): 380-5.
[http://dx.doi.org/10.1038/sj.tpj.6500431] [PMID: 17189959]
[129]
Martín-Sánchez A, Warnault V, Montagud-Romero S, et al. Alcohol-induced conditioned place preference is modulated by CB2 cannabinoid receptors and modifies levels of endocannabinoids in the mesocorticolimbic system. Pharmacol Biochem Behav 2019; 183: 22-31.
[http://dx.doi.org/10.1016/j.pbb.2019.06.007] [PMID: 31220547]
[130]
Navarrete F, García-Gutiérrez MS, Manzanares J. Pharmacological regulation of cannabinoid CB2 receptor modulates the reinforcing and motivational actions of ethanol. Biochem Pharmacol 2018; 157: 227-34.
[http://dx.doi.org/10.1016/j.bcp.2018.07.041] [PMID: 30063884]
[131]
Morales P, Hernandez-Folgado L, Goya P, Jagerovic N. Cannabinoid receptor 2 (CB2) agonists and antagonists: a patent update. Expert Opin Ther Pat 2016; 26(7): 843-56.
[http://dx.doi.org/10.1080/13543776.2016.1193157] [PMID: 27215781]
[132]
Gertsch J, Leonti M, Raduner S, et al. Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 2008; 105(26): 9099-104.
[http://dx.doi.org/10.1073/pnas.0803601105] [PMID: 18574142]
[133]
Al Mansouri S, Ojha S, Al Maamari E, Al Ameri M, Nurulain SM, Bahi A. The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice. Pharmacol Biochem Behav 2014; 124: 260-8.
[http://dx.doi.org/10.1016/j.pbb.2014.06.025] [PMID: 24999220]
[134]
Oppong-Damoah A, Blough BE, Makriyannis A, Murnane KS. The sesquiterpene beta-caryophyllene oxide attenuates ethanol drinking and place conditioning in mice. Heliyon 2019; 5(6): e01915.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01915] [PMID: 31245644]
[135]
Powers MS, Breit KR, Chester JA. Genetic versus pharmacological assessment of the role of cannabinoid type 2 receptors in alcohol reward-related behaviors. Alcohol Clin Exp Res 2015; 39(12): 2438-46.
[http://dx.doi.org/10.1111/acer.12894] [PMID: 26756798]
[136]
Brown SM, Wager-Miller J, Mackie K. Cloning and molecular characterization of the rat CB2 cannabinoid receptor. Biochim Biophys Acta 2002; 1576(3): 255-64.
[http://dx.doi.org/10.1016/S0167-4781(02)00341-X] [PMID: 12084572]
[137]
Giblin GM, O’Shaughnessy CT, Naylor A, et al. Discovery of 2-[(2,4-dichlorophenyl)amino]-N-[(tetrahydro- 2H-pyran-4-yl)methyl]-4-(trifluoromethyl)- 5-pyrimidinecarboxamide, a selective CB2 receptor agonist for the treatment of inflammatory pain. J Med Chem 2007; 50(11): 2597-600.
[http://dx.doi.org/10.1021/jm061195+] [PMID: 17477516]
[138]
Ostenfeld T, Price J, Albanese M, et al. A randomized, controlled study to investigate the analgesic efficacy of single doses of the cannabinoid receptor-2 agonist GW842166, ibuprofen or placebo in patients with acute pain following third molar tooth extraction. Clin J Pain 2011; 27(8): 668-76.
[http://dx.doi.org/10.1097/AJP.0b013e318219799a] [PMID: 21540741]
[139]
Bie B, Wu J, Foss JF, Naguib M. An overview of the cannabinoid type 2 receptor system and its therapeutic potential. Curr Opin Anaesthesiol 2018; 31(4): 407-14.
[http://dx.doi.org/10.1097/ACO.0000000000000616] [PMID: 29794855]
[140]
Santos NA, Martins NM, Sisti FM, et al. The cannabinoid beta- caryophyllene (BCP) induces neuritogenesis in PC12 cells by a cannabinoid-receptor-independent mechanism. Chem Biol Interact 2017; 261: 86-95.
[http://dx.doi.org/10.1016/j.cbi.2016.11.015] [PMID: 27871898]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy