Mini-Review Article

Viral Vector Delivery of DREADDs for CNS Therapy

Author(s): Ceri A. Pickering and Nicholas D. Mazarakis*

Volume 21, Issue 3, 2021

Published on: 11 February, 2021

Page: [191 - 206] Pages: 16

DOI: 10.2174/1566523221666210211102435

Price: $65

Abstract

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are genetically modified G-protein-coupled receptors (GPCRs), that can be activated by a synthetic ligand which is otherwise inert at endogenous receptors. DREADDs can be expressed in cells in the central nervous system (CNS) and subsequently offer the opportunity for remote and reversible silencing or activation of the target cells when the synthetic ligand is systemically administered. In neuroscience, DREADDs have thus far shown to be useful tools for several areas of research and offer considerable potential for the development of gene therapy strategies for neurological disorders. However, in order to design a DREADD-based gene therapy, it is necessary to first evaluate the viral vector delivery methods utilised in the literature to deliver these chemogenetic tools. This review evaluates each of the prominent strategies currently utilised for DREADD delivery, discussing their respective advantages and limitations. We focus on adeno-associated virus (AAV)-based and lentivirus-based systems, and the manipulation of these through cell-type specific promoters and pseudotyping. Furthermore, we address how virally mediated DREADD delivery could be improved in order to make it a viable gene therapy strategy and thus expand its translational potential.

Keywords: DREADDs, chemogenetics, AAV, lentivirus, gene therapy, CNS, viral vectors.

Next »
Graphical Abstract

[1]
Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S. Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett 2002; 520(1-3): 97-101.
[http://dx.doi.org/10.1016/S0014-5793(02)02775-8] [PMID: 12044878]
[2]
Flower DR. Modelling G-protein-coupled receptors for drug design. Biochimica et Biophysica Acta (BBA) -. Reviews on Biomembranes 1999; 1422(3): 207-34.
[3]
Gilman AGG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987; 56(1): 615-49.
[http://dx.doi.org/10.1146/annurev.bi.56.070187.003151] [PMID: 3113327]
[4]
Rohrer DK, Kobilka BKG. G protein-coupled receptors: functional and mechanistic insights through altered gene expression. Physiol Rev 1998; 78(1): 35-52.
[http://dx.doi.org/10.1152/physrev.1998.78.1.35] [PMID: 9457168]
[5]
Sriram K, Insel PAG. G Protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol 2018; 93(4): 251-8.
[http://dx.doi.org/10.1124/mol.117.111062] [PMID: 29298813]
[6]
Allen JA, Roth BL. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 2011; 51(1): 117-44.
[http://dx.doi.org/10.1146/annurev-pharmtox-010510-100553] [PMID: 20868273]
[7]
Neer EJ. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 1995; 80(2): 249-57.
[http://dx.doi.org/10.1016/0092-8674(95)90407-7] [PMID: 7834744]
[8]
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 2007; 104(12): 5163-8.
[http://dx.doi.org/10.1073/pnas.0700293104] [PMID: 17360345]
[9]
Zhu H, Roth BL. DREADD: a chemogenetic GPCR signaling platform. Int J Neuropsychopharmacol 2014; 18(1): pyu007.
[http://dx.doi.org/10.1093/ijnp/pyu007] [PMID: 25522378]
[10]
Roth BL. DREADDs for Neuroscientists. Neuron 2016; 89(4): 683-94.
[http://dx.doi.org/10.1016/j.neuron.2016.01.040] [PMID: 26889809]
[11]
Wess J, Nakajima K, Jain S. Novel designer receptors to probe GPCR signaling and physiology. Trends Pharmacol Sci 2013; 34(7): 385-92.
[http://dx.doi.org/10.1016/j.tips.2013.04.006] [PMID: 23769625]
[12]
Nichols CD, Roth BL. Engineered G-protein Coupled Receptors are Powerful Tools to Investigate Biological Processes and Behaviors. Front Mol Neurosci 2009; 2: 16.
[http://dx.doi.org/10.3389/neuro.02.016.2009] [PMID: 19893765]
[13]
Alexander GM, Rogan SC, Abbas AI, et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 2009; 63(1): 27-39.
[http://dx.doi.org/10.1016/j.neuron.2009.06.014] [PMID: 19607790]
[14]
Farrell MS, Pei Y, Wan Y, et al. A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2013; 38(5): 854-62.
[http://dx.doi.org/10.1038/npp.2012.251]
[15]
Vardy E, Robinson JE, Li C, et al. A New DREADD Facilitates the Multiplexed Chemogenetic Interrogation of Behavior. Neuron 2015; 86(4): 936-46.
[http://dx.doi.org/10.1016/j.neuron.2015.03.065] [PMID: 25937170]
[16]
Marchant NJ, Whitaker LR, Bossert JM, et al. Behavioral and Physiological Effects of a Novel Kappa-Opioid Receptor-Based DREADD in Rats. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2016; 41(2): 402-9.
[http://dx.doi.org/10.1038/npp.2015.149]
[17]
Urban DJ, Roth BL. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 2015; 55: 399-417.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124803] [PMID: 25292433]
[18]
Campbell EJ, Marchant NJ. The use of chemogenetics in behavioural neuroscience: receptor variants, targeting approaches and caveats. Br J Pharmacol 2018; 175(7): 994-1003.
[http://dx.doi.org/10.1111/bph.14146] [PMID: 29338070]
[19]
Farrell MS, Roth BL. Pharmacosynthetics: Reimagining the pharmacogenetic approach. Brain Res 2013; 1511: 6-20.
[http://dx.doi.org/10.1016/j.brainres.2012.09.043] [PMID: 23063887]
[20]
Wiegert JS, Mahn M, Prigge M, Printz Y, Yizhar O. Silencing Neurons: Tools, Applications, and Experimental Constraints. Neuron 2017; 95(3): 504-29.
[http://dx.doi.org/10.1016/j.neuron.2017.06.050] [PMID: 28772120]
[21]
MacLaren DAA, Browne RW, Shaw JK, et al. Clozapine N-Oxide Administration Produces Behavioral Effects in Long-Evans Rats: Implications for Designing DREADD Experiments. eNeuro 2016; 3(5) ENEURO.0219-16. Available from: https://www.eneuro.org/content/eneuro/6/5/ENEURO.0171-19.2019.full.pdf
[22]
Smith KS, Bucci DJ, Luikart BW, Mahler SV. DREADDS: Use and application in behavioral neuroscience. Behav Neurosci 2016; 130(2): 137-55.
[http://dx.doi.org/10.1037/bne0000135] [PMID: 26913540]
[23]
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol 2019; 10: 724.
[http://dx.doi.org/10.3389/fphar.2019.00724] [PMID: 31312139]
[24]
Fleury Curado T, Pho H, Freire C, et al. Designer Receptors Exclusively Activated by Designer Drugs Approach to Treatment of Sleep-disordered Breathing. Am J Respir Crit Care Med 2021; 203(1): 102-10.
[http://dx.doi.org/10.1164/rccm.202002-0321OC] [PMID: 32673075]
[25]
Lieb A, Weston M, Kullmann DM. Designer receptor technology for the treatment of epilepsy. EBioMedicine 2019; 43: 641-9.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.059] [PMID: 31078519]
[26]
Guettier J-M, Gautam D, Scarselli M, et al. A chemical-genetic approach to study G protein regulation of β cell function in vivo. Proc Natl Acad Sci USA 2009; 106(45): 19197-202.
[http://dx.doi.org/10.1073/pnas.0906593106] [PMID: 19858481]
[27]
Eldridge MAG, Lerchner W, Saunders RC, et al. Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nat Neurosci 2016; 19(1): 37-9.
[http://dx.doi.org/10.1038/nn.4192] [PMID: 26656645]
[28]
Deffains M, Nguyen TH, Orignac H, et al. In vivo electrophysiological validation of DREADD-based modulation of pallidal neurons in the non-human primate. The European journal of neuroscience 2020; 53(7): 2192-204.
[http://dx.doi.org/10.1111/ejn.14746]]
[29]
Hayashi T, Akikawa R, Kawasaki K, et al. Macaques Exhibit Implicit Gaze Bias Anticipating Others’ False-Belief-Driven Actions via Medial Prefrontal Cortex. Cell Rep 2020; 30(13): 4433-44.
[http://dx.doi.org/10.1016/j.celrep.2020.03.013] [PMID: 32234478]
[30]
Raper J, Murphy L, Richardson R, et al. Chemogenetic Inhibition of the Amygdala Modulates Emotional Behavior Expression in Infant Rhesus Monkeys. eneuro 2019; 6(5): ENEURO.0360-.
[http://dx.doi.org/10.1523/ENEURO.0360-19.2019]
[31]
Galvan A, Raper J, Hu X, et al. Ultrastructural localization of DREADDs in monkeys. Eur J Neurosci 2019; 50(5): 2801-13.
[http://dx.doi.org/10.1111/ejn.14429] [PMID: 31063250]
[32]
Upright NA, Brookshire SW, Schnebelen W, et al. Behavioral Effect of Chemogenetic Inhibition Is Directly Related to Receptor Transduction Levels in Rhesus Monkeys. J Neurosci 2018; 38(37): 7969-75.
[http://dx.doi.org/10.1523/JNEUROSCI.1422-18.2018] [PMID: 30082415]
[33]
Panthi S, Leitch B. The impact of silencing feed-forward parvalbumin-expressing inhibitory interneurons in the corticothalamocortical network on seizure generation and behaviour. Neurobiol Dis 2019; 132: 104610.
[http://dx.doi.org/10.1016/j.nbd.2019.104610] [PMID: 31494287]
[34]
Avaliani N, Andersson M, Runegaard AH, Woldbye D, Kokaia M. DREADDs suppress seizure-like activity in a mouse model of pharmacoresistant epileptic brain tissue. Gene Ther 2016; 23(10): 760-6.
[http://dx.doi.org/10.1038/gt.2016.56] [PMID: 27416078]
[35]
Wicker E, Forcelli PA. Chemogenetic silencing of the midline and intralaminar thalamus blocks amygdala-kindled seizures. Experimental neurology 2016; 283(Pt A): 404-12.
[http://dx.doi.org/10.1016/j.expneurol.2016.07.003]
[36]
Berglind F, Andersson M, Kokaia M. Dynamic interaction of local and transhemispheric networks is necessary for progressive intensification of hippocampal seizures. Sci Rep 2018; 8(1): 5669.
[http://dx.doi.org/10.1038/s41598-018-23659-x] [PMID: 29618778]
[37]
Desloovere J, Boon P, Larsen LE, et al. Long-term chemogenetic suppression of spontaneous seizures in a mouse model for temporal lobe epilepsy. Epilepsia 2019; 60(11): 2314-24.
[http://dx.doi.org/10.1111/epi.16368] [PMID: 31608439]
[38]
Cǎlin A, Stancu M, Zagrean A-M, Jefferys JGR, Ilie AS, Akerman CJ. Chemogenetic Recruitment of Specific Interneurons Suppresses Seizure Activity. Front Cell Neurosci 2018; 12: 293.
[http://dx.doi.org/10.3389/fncel.2018.00293] [PMID: 30233328]
[39]
Wang Y, Liang J, Chen L, et al. Pharmaco-genetic therapeutics targeting parvalbumin neurons attenuate temporal lobe epilepsy. Neurobiol Dis 2018; 117: 149-60.
[http://dx.doi.org/10.1016/j.nbd.2018.06.006] [PMID: 29894753]
[40]
Alexander GM, Brown LY, Farris S, et al. CA2 neuronal activity controls hippocampal low gamma and ripple oscillations. eLife 2018; 7: e38052.
[http://dx.doi.org/10.7554/eLife.38052] [PMID: 30387713]
[41]
Kätzel D, Nicholson E, Schorge S, Walker MC, Kullmann DM. Chemical-genetic attenuation of focal neocortical seizures. Nat Commun 2014; 5(1): 3847.
[http://dx.doi.org/10.1038/ncomms4847] [PMID: 24866701]
[42]
Zhou Q-G, Nemes AD, Lee D, et al. Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. J Clin Invest 2019; 129(1): 310-23.
[http://dx.doi.org/10.1172/JCI95731] [PMID: 30507615]
[43]
Weston M, Kaserer T, Wu A, et al. Olanzapine: A potent agonist at the hM4D(Gi) DREADD amenable to clinical translation of chemogenetics. Science Advances 2019; 5(4): eaaw1567.
[http://dx.doi.org/10.1126/sciadv.aaw1567]
[44]
Fortress AM, Hamlett ED, Vazey EM, et al. Designer receptors enhance memory in a mouse model of Down syndrome. J Neurosci 2015; 35(4): 1343-53.
[http://dx.doi.org/10.1523/JNEUROSCI.2658-14.2015] [PMID: 25632113]
[45]
Assaf F, Schiller Y. A chemogenetic approach for treating experimental Parkinson’s disease. Movement Disorders 2018; mds.27554.
[http://dx.doi.org/10.1002/mds.27554]
[46]
Yuan P, Grutzendler J. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity. J Neurosci 2016; 36(2): 632-41.
[http://dx.doi.org/10.1523/JNEUROSCI.2531-15.2016] [PMID: 26758850]
[47]
Pienaar IS, Gartside SE, Sharma P, et al. Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson’s disease. Mol Neurodegener 2015; 10(1): 47.
[http://dx.doi.org/10.1186/s13024-015-0044-5] [PMID: 26394842]
[48]
Dell’Anno MT, Caiazzo M, Leo D, et al. Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 2014; 124(7): 3215-29.
[http://dx.doi.org/10.1172/JCI74664] [PMID: 24937431]
[49]
Guarino S, Conrad SE, Papini MR. Frustrative nonreward: Chemogenetic inactivation of the central amygdala abolishes the effect of reward downshift without affecting alcohol intake. Neurobiol Learn Mem 2020; 169: 107173.
[http://dx.doi.org/10.1016/j.nlm.2020.107173] [PMID: 32001338]
[50]
Shipman ML, Johnson GC, Bouton ME, et al. Chemogenetic Silencing of Prelimbic Cortex to Anterior Dorsomedial Striatum Projection Attenuates Operant Responding. eNeuro 2019; 6(5) ENEURO.0125-19.
[51]
Chang SE, Todd TP, Bucci DJ, Smith KS. Chemogenetic manipulation of ventral pallidal neurons impairs acquisition of sign-tracking in rats. Eur J Neurosci 2015; 42(12): 3105-16.
[http://dx.doi.org/10.1111/ejn.13103] [PMID: 26469930]
[52]
Campbell EJ, Mitchell CS, Adams CD, et al. Chemogenetic activation of the lateral hypothalamus reverses early life stress-induced deficits in motivational drive. Eur J Neurosci 2017; 46(7): 2285-96.
[http://dx.doi.org/10.1111/ejn.13674] [PMID: 28858406]
[53]
Pati S, Sood A, Mukhopadhyay S, Vaidya VA. Acute pharmacogenetic activation of medial prefrontal cortex excitatory neurons regulates anxiety-like behaviour. J Biosci 2018; 43(1): 85-95.
[http://dx.doi.org/10.1007/s12038-018-9732-y] [PMID: 29485117]
[54]
Qin L, Ma K, Yan Z. Chemogenetic Activation of Prefrontal Cortex in Shank3-Deficient Mice Ameliorates Social Deficits, NMDAR Hypofunction, and Sgk2 Downregulation. iScience 2019; 17: 24-35.
[http://dx.doi.org/10.1016/j.isci.2019.06.014]
[55]
Saund J, Dautan D, Rostron C, Urcelay GP, Gerdjikov TV. Thalamic inputs to dorsomedial striatum are involved in inhibitory control: evidence from the five-choice serial reaction time task in rats. Psychopharmacology (Berl) 2017; 234(16): 2399-407.
[http://dx.doi.org/10.1007/s00213-017-4627-4] [PMID: 28451710]
[56]
Chiou C-S, Chen C-C, Tsai T-C, Huang CC, Chou D, Hsu KS. Alleviating Bone Cancer-induced Mechanical Hypersensitivity by Inhibiting Neuronal Activity in the Anterior Cingulate Cortex. Anesthesiology 2016; 125(4): 779-92.
[http://dx.doi.org/10.1097/ALN.0000000000001237] [PMID: 27428822]
[57]
Gao A, Xia F, Guskjolen AJ, et al. Elevation of Hippocampal Neurogenesis Induces a Temporally Graded Pattern of Forgetting of Contextual Fear Memories. J Neurosci 2018; 38(13): 3190-8.
[http://dx.doi.org/10.1523/JNEUROSCI.3126-17.2018] [PMID: 29453206]
[58]
Caracciolo L, Marosi M, Mazzitelli J, et al. CREB controls cortical circuit plasticity and functional recovery after stroke. Nat Commun 2018; 9(1): 2250.
[http://dx.doi.org/10.1038/s41467-018-04445-9] [PMID: 29884780]
[59]
Nam M-H, Han K-S, Lee J, et al. Activation of Astrocytic μ-Opioid Receptor Causes Conditioned Place Preference. Cell Rep 2019; 28(5): 1154-1166.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.06.071] [PMID: 31365861]
[60]
Adamsky A, Kol A, Kreisel T, et al. Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement. Cell 2018; 174(1): 59-71.e14.
[http://dx.doi.org/10.1016/j.cell.2018.05.002] [PMID: 29804835]
[61]
Jones ME, Paniccia JE, Lebonville CL, Reissner KJ, Lysle DT. Chemogenetic Manipulation of Dorsal Hippocampal Astrocytes Protects Against the Development of Stress-enhanced Fear Learning. Neuroscience 2018; 388: 45-56.
[http://dx.doi.org/10.1016/j.neuroscience.2018.07.015] [PMID: 30030056]
[62]
Bull C, Freitas KCC, Zou S, et al. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2014; 39(12): 2835-45.
[http://dx.doi.org/10.1038/npp.2014.135]
[63]
Hwang D-Y, Carlezon WA Jr, Isacson O, Kim KS. A high-efficiency synthetic promoter that drives transgene expression selectively in noradrenergic neurons. Hum Gene Ther 2001; 12(14): 1731-40.
[http://dx.doi.org/10.1089/104303401750476230] [PMID: 11560767]
[64]
Moreira TS, Antunes VR, Falquetto B, Marina N. Long-term stimulation of cardiac vagal preganglionic neurons reduces blood pressure in the spontaneously hypertensive rat. J Hypertens 2018; 36(12): 2444-52.
[http://dx.doi.org/10.1097/HJH.0000000000001871] [PMID: 30045362]
[65]
Atasoy D, Aponte Y, Su HH, Sternson SM. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 2008; 28(28): 7025-30.
[http://dx.doi.org/10.1523/JNEUROSCI.1954-08.2008] [PMID: 18614669]
[66]
Ferguson SM, Eskenazi D, Ishikawa M, et al. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 2011; 14(1): 22-4.
[http://dx.doi.org/10.1038/nn.2703] [PMID: 21131952]
[67]
Scofield MD, Boger HA, Smith RJ, Li H, Haydon PG, Kalivas PW. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking. Biol Psychiatry 2015; 78(7): 441-51.
[http://dx.doi.org/10.1016/j.biopsych.2015.02.016] [PMID: 25861696]
[68]
Boender AJ, de Jong JW, Boekhoudt L, Luijendijk MC, van der Plasse G, Adan RA. Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS One 2014; 9(4): e95392.
[http://dx.doi.org/10.1371/journal.pone.0095392] [PMID: 24736748]
[69]
Zhu H, Aryal DK, Olsen RHJ, et al. Cre-dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice. Genesis (New York, NY: 2000) 2016; 54(8): 439-46.
[http://dx.doi.org/10.1152/physrev.00009.2017]
[70]
Akhmedov D, Kirkby NS, Mitchell JA, Berdeaux R. Imaging of Tissue-Specific and Temporal Activation of GPCR Signaling Using DREADD Knock-In Mice. Methods Mol Biol 2019; 1947: 361-76.
[http://dx.doi.org/10.1007/978-1-4939-9121-1_21] [PMID: 30969428]
[71]
Garner AR, Rowland DC, Hwang SY, et al. Generation of a synthetic memory trace. Science 2012; 335(6075): 1513-6.
[http://dx.doi.org/10.1126/science.1214985] [PMID: 22442487]
[72]
Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 1984; 81(20): 6466-70.
[http://dx.doi.org/10.1073/pnas.81.20.6466] [PMID: 6093102]
[73]
Tratschin JD, West MH, Sandbank T, Carter BJ. A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol 1984; 4(10): 2072-81.
[http://dx.doi.org/10.1128/MCB.4.10.2072] [PMID: 6095038]
[74]
Castle MJ, Turunen HT, Vandenberghe LH, et al. Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids. Gene Therapy for Neurological Disorders 2016; 1382: 133-49.
[http://dx.doi.org/10.1007/978-1-4939-3271-9_10]
[75]
Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16(6): 1073-80.
[http://dx.doi.org/10.1038/mt.2008.76] [PMID: 18414476]
[76]
Chang WC, Ng JK, Nguyen T, et al. Modifying ligand-induced and constitutive signaling of the human 5-HT4 receptor. PLoS One 2007; 2(12): e1317.
[http://dx.doi.org/10.1371/journal.pone.0001317] [PMID: 18338032]
[77]
Shevtsova Z, Malik JMI, Michel U, Bähr M, Kügler S. Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 2005; 90(1): 53-9.
[http://dx.doi.org/10.1113/expphysiol.2004.028159] [PMID: 15542619]
[78]
Zheng C, Baum BJ. Evaluation of promoters for use in tissue-specific gene delivery. Methods Mol Biol 2008; 434: 205-19.
[http://dx.doi.org/10.1007/978-1-60327-248-3_13] [PMID: 18470647]
[79]
Stevens D, Claborn MK, Gildon BL, Kessler TL, Walker C. Onasemnogene Abeparvovec-xioi: Gene Therapy for Spinal Muscular Atrophy. Ann Pharmacother 2020; 54(10): 1001-9.
[http://dx.doi.org/10.1177/1060028020914274] [PMID: 32204605]
[80]
Kügler S, Kilic E, Bähr M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 2003; 10(4): 337-47.
[http://dx.doi.org/10.1038/sj.gt.3301905] [PMID: 12595892]
[81]
Nathanson JL, Yanagawa Y, Obata K, Callaway EM. Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 2009; 161(2): 441-50.
[http://dx.doi.org/10.1016/j.neuroscience.2009.03.032] [PMID: 19318117]
[82]
Sciolino NR, Plummer NW, Chen Y-W, et al. Recombinase-Dependent Mouse Lines for Chemogenetic Activation of Genetically Defined Cell Types. Cell Rep 2016; 15(11): 2563-73.
[http://dx.doi.org/10.1016/j.celrep.2016.05.034] [PMID: 27264177]
[83]
Holt MK, Richards JE, Cook DR, et al. Preproglucagon Neurons in the Nucleus of the Solitary Tract Are the Main Source of Brain GLP-1, Mediate Stress-Induced Hypophagia, and Limit Unusually Large Intakes of Food. Diabetes 2019; 68(1): 21-33.
[http://dx.doi.org/10.2337/db18-0729] [PMID: 30279161]
[84]
Parfitt GM, Nguyen R, Bang JY, et al. Bidirectional Control of Anxiety-Related Behaviors in Mice: Role of Inputs Arising from the Ventral Hippocampus to the Lateral Septum and Medial Prefrontal Cortex. Neuropsychopharmacology 2017; 42(8): 1715-28.
[http://dx.doi.org/10.1038/npp.2017.56] [PMID: 28294135]
[85]
Nguyen R, Morrissey MD, Mahadevan V, et al. Parvalbumin and GAD65 interneuron inhibition in the ventral hippocampus induces distinct behavioral deficits relevant to schizophrenia. J Neurosci 2014; 34(45): 14948-60.
[http://dx.doi.org/10.1523/JNEUROSCI.2204-14.2014] [PMID: 25378161]
[86]
Wichmann T, DeLong MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 1996; 6(6): 751-8.
[http://dx.doi.org/10.1016/S0959-4388(96)80024-9] [PMID: 9000030]
[87]
Kordower JH, Bloch J, Ma SY, et al. Lentiviral gene transfer to the nonhuman primate brain. Exp Neurol 1999; 160(1): 1-16.
[http://dx.doi.org/10.1006/exnr.1999.7178] [PMID: 10630186]
[88]
Kaplitt MG, Feigin A, Tang C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 2007; 369(9579): 2097-105.
[http://dx.doi.org/10.1016/S0140-6736(07)60982-9] [PMID: 17586305]
[89]
Coune PG, Schneider BL, Aebischer P. Parkinson’s disease: gene therapies. Cold Spring Harb Perspect Med 2012; 2(4): a009431.
[http://dx.doi.org/10.1101/cshperspect.a009431] [PMID: 22474617]
[90]
Wang X, Zhang C, Szábo G, Sun QQ. Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res 2013; 1518: 9-25.
[http://dx.doi.org/10.1016/j.brainres.2013.04.042] [PMID: 23632380]
[91]
Choi EA, McNally GP. Paraventricular Thalamus Balances Danger and Reward. J Neurosci 2017; 37(11): 3018-29.
[http://dx.doi.org/10.1523/JNEUROSCI.3320-16.2017] [PMID: 28193686]
[92]
Derman RC, Bass CE, Ferrario CR. Effects of hM4Di activation in CamKII basolateral amygdala neurons and CNO treatment on sensory-specific vs. general PIT: refining PIT circuits and considerations for using CNO. Psychopharmacology (Berl) 2020; 237(5): 1249-66.
[http://dx.doi.org/10.1007/s00213-020-05453-8] [PMID: 31980843]
[93]
Wei J, Zhong P, Qin L, Tan T, Yan Z. Chemicogenetic Restoration of the Prefrontal Cortex to Amygdala Pathway Ameliorates Stress-Induced Deficits. Cereb Cortex 2018; 28(6): 1980-90.
[http://dx.doi.org/10.1093/cercor/bhx104] [PMID: 28498919]
[94]
Dong J-Y, Fan P-D, Frizzell RA. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 1996; 7(17): 2101-12.
[http://dx.doi.org/10.1089/hum.1996.7.17-2101] [PMID: 8934224]
[95]
Hermonat PL, Quirk JG, Bishop BM, Han L. The packaging capacity of adeno-associated virus (AAV) and the potential for wild-type-plus AAV gene therapy vectors. FEBS Lett 1997; 407(1): 78-84.
[http://dx.doi.org/10.1016/S0014-5793(97)00311-6] [PMID: 9141485]
[96]
Taschenberger G, Tereshchenko J, Kügler S. A MicroRNA124 Target Sequence Restores Astrocyte Specificity of gfaABC1D-Driven Transgene Expression in AAV-Mediated Gene Transfer. Mol Ther Nucleic Acids 2017; 8: 13-25.
[http://dx.doi.org/10.1016/j.omtn.2017.03.009] [PMID: 28918015]
[97]
Erickson EK, DaCosta AJ, Mason SC, et al. Cortical astrocytes regulate ethanol consumption and intoxication in mice. Neuropsychopharmacology 2020; 46: 500-8.
[http://dx.doi.org/10.1038/s41386-020-0721-0] [PMID: 32464636]
[98]
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27(7): 478-96.
[http://dx.doi.org/10.1089/hum.2016.087] [PMID: 27267688]
[99]
Lykken EA, Shyng C, Edwards RJ, Rozenberg A, Gray SJ. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J Neurodev Disord 2018; 10(1): 16.
[http://dx.doi.org/10.1186/s11689-018-9234-0] [PMID: 29776328]
[100]
Haery L, Deverman BE, Matho KS, et al. Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation. Front Neuroanat 2019; 13: 93.
[http://dx.doi.org/10.3389/fnana.2019.00093] [PMID: 31849618]
[101]
Cearley CN, Wolfe JH. Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 2006; 13(3): 528-37.
[http://dx.doi.org/10.1016/j.ymthe.2005.11.015] [PMID: 16413228]
[102]
Dayton RD, Wang DB, Klein RL. The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin Biol Ther 2012; 12(6): 757-66.
[http://dx.doi.org/10.1517/14712598.2012.681463] [PMID: 22519910]
[103]
Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009; 199(3): 381-90.
[http://dx.doi.org/10.1086/595830] [PMID: 19133809]
[104]
Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010; 21(6): 704-12.
[http://dx.doi.org/10.1089/hum.2009.182] [PMID: 20095819]
[105]
Wang M, Crosby A, Hastie E, et al. Prediction of adeno-associated virus neutralizing antibody activity for clinical application. Gene Ther 2015; 22(12): 984-92.
[http://dx.doi.org/10.1038/gt.2015.69] [PMID: 26125606]
[106]
Fitzpatrick Z, Leborgne C, Barbon E, et al. Influence of Pre-existing Anti-capsid Neutralizing and Binding Antibodies on AAV Vector Transduction. Mol Ther Methods Clin Dev 2018; 9: 119-29.
[http://dx.doi.org/10.1016/j.omtm.2018.02.003] [PMID: 29766022]
[107]
Scallan CD, Jiang H, Liu T, et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 2006; 107(5): 1810-7.
[http://dx.doi.org/10.1182/blood-2005-08-3229] [PMID: 16249376]
[108]
Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12(3): 342-7.
[http://dx.doi.org/10.1038/nm1358] [PMID: 16474400]
[109]
Büning H, Srivastava A. Capsid Modifications for Targeting and Improving the Efficacy of AAV Vectors. Mol Ther Methods Clin Dev 2019; 12: 248-65.
[http://dx.doi.org/10.1016/j.omtm.2019.01.008] [PMID: 30815511]
[110]
Haggerty DL, Grecco GG, Reeves KC, Atwood B. Adeno-Associated Viral Vectors in Neuroscience Research. Mol Ther Methods Clin Dev 2019; 17: 69-82.
[http://dx.doi.org/10.1016/j.omtm.2019.11.012] [PMID: 31890742]
[111]
Hildinger M, Auricchio A, Gao G, Wang L, Chirmule N, Wilson JM. Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J Virol 2001; 75(13): 6199-203.
[http://dx.doi.org/10.1128/JVI.75.13.6199-6203.2001] [PMID: 11390622]
[112]
Cassataro D, Bergfeldt D, Malekian C, et al. Reverse pharmacogenetic modulation of the nucleus accumbens reduces ethanol consumption in a limited access paradigm. Neuropsychopharmacology 2014; 39(2): 283-90.
[http://dx.doi.org/10.1038/npp.2013.184] [PMID: 23903031]
[113]
Gaykema RP, Newmyer BA, Ottolini M, et al. Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight. J Clin Invest 2017; 127(3): 1031-45.
[http://dx.doi.org/10.1172/JCI81335] [PMID: 28218622]
[114]
Huckstepp RTR, Cardoza KP, Henderson LE, Feldman JL. Role of parafacial nuclei in control of breathing in adult rats. J Neurosci 2015; 35(3): 1052-67.
[http://dx.doi.org/10.1523/JNEUROSCI.2953-14.2015] [PMID: 25609622]
[115]
Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 2016; 34(2): 204-9.
[http://dx.doi.org/10.1038/nbt.3440] [PMID: 26829320]
[116]
Morabito G, Giannelli SG, Ordazzo G, et al. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy. Mol Ther 2017; 25(12): 2727-42.
[http://dx.doi.org/10.1016/j.ymthe.2017.08.004] [PMID: 28882452]
[117]
Chan KY, Jang MJ, Yoo BB, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 2017; 20(8): 1172-9.
[http://dx.doi.org/10.1038/nn.4593] [PMID: 28671695]
[118]
Dayton RD, Grames MS, Klein RL. More expansive gene transfer to the rat CNS: AAV PHP.EB vector dose-response and comparison to AAV PHP. B Gene Ther 2018; 25(5): 392-400.
[http://dx.doi.org/10.1038/s41434-018-0028-5] [PMID: 30013186]
[119]
Huang Q, Chan KY, Tobey IG, et al. Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS One 2019; 14(11): e0225206.
[http://dx.doi.org/10.1371/journal.pone.0225206] [PMID: 31725765]
[120]
Matsuzaki Y, Tanaka M, Hakoda S, et al. Neurotropic Properties of AAV-PHP.B Are Shared among Diverse Inbred Strains of Mice. Mol Ther 2019; 27(4): 700-4.
[http://dx.doi.org/10.1016/j.ymthe.2019.02.016] [PMID: 30842039]
[121]
Liguore WA, Domire JS, Button D, et al. AAV-PHP.B Administration Results in a Differential Pattern of CNS Biodistribution in Non-human Primates Compared with Mice. Mol Ther 2019; 27(11): 2018-37.
[http://dx.doi.org/10.1016/j.ymthe.2019.07.017] [PMID: 31420242]
[122]
Ravindra Kumar S, Miles TF, Chen X, et al. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat Methods 2020; 17(5): 541-50.
[http://dx.doi.org/10.1038/s41592-020-0799-7] [PMID: 32313222]
[123]
Craigie R, Bushman FD. Host Factors in Retroviral Integration and the Selection of Integration Target Sites.Mobile DNA III American Society of Microbiology. 2015; bk. 2: pp. 1035-50.
[http://dx.doi.org/10.1128/9781555819217.ch45]
[124]
Williams DA, Lemischka IR, Nathan DG, Mulligan RC. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 1984; 310(5977): 476-80.
[http://dx.doi.org/10.1038/310476a0] [PMID: 6087158]
[125]
Schambach A, Zychlinski D, Ehrnstroem B, Baum C. Biosafety features of lentiviral vectors. Hum Gene Ther 2013; 24(2): 132-42.
[http://dx.doi.org/10.1089/hum.2012.229] [PMID: 23311447]
[126]
Sinn PL, Sauter SL, McCray PB Jr. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors--design, biosafety, and production. Gene Ther 2005; 12(14): 1089-98.
[http://dx.doi.org/10.1038/sj.gt.3302570] [PMID: 16003340]
[127]
Blömer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71(9): 6641-9.
[http://dx.doi.org/10.1128/JVI.71.9.6641-6649.1997] [PMID: 9261386]
[128]
Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72(11): 8463-71.
[http://dx.doi.org/10.1128/JVI.72.11.8463-8471.1998] [PMID: 9765382]
[129]
Naldini L, Blömer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272(5259): 263-7.
[http://dx.doi.org/10.1126/science.272.5259.263] [PMID: 8602510]
[130]
Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15(9): 871-5.
[http://dx.doi.org/10.1038/nbt0997-871] [PMID: 9306402]
[131]
Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72(12): 9873-80.
[http://dx.doi.org/10.1128/JVI.72.12.9873-9880.1998] [PMID: 9811723]
[132]
Yu SF, von Rüden T, Kantoff PW, et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci USA 1986; 83(10): 3194-8.
[http://dx.doi.org/10.1073/pnas.83.10.3194] [PMID: 3458176]
[133]
Jarraya B, Boulet S, Ralph GS, et al. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 2009; 1(2): 2ra4.
[http://dx.doi.org/10.1126/scitranslmed.3000130] [PMID: 20368163]
[134]
Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 2014; 383(9923): 1138-46.
[http://dx.doi.org/10.1016/S0140-6736(13)61939-X] [PMID: 24412048]
[135]
Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 2011; 12(5): 301-15.
[http://dx.doi.org/10.1038/nrg2985] [PMID: 21445084]
[136]
Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia 2018; 32(7): 1529-41.
[http://dx.doi.org/10.1038/s41375-018-0106-0] [PMID: 29654266]
[137]
Kumar M, Keller B, Makalou N, Sutton RE. Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 2001; 12(15): 1893-905.
[http://dx.doi.org/10.1089/104303401753153947] [PMID: 11589831]
[138]
Akkina RK, Walton RM, Chen ML, Li QX, Planelles V, Chen IS. High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 1996; 70(4): 2581-5.
[http://dx.doi.org/10.1128/JVI.70.4.2581-2585.1996] [PMID: 8642689]
[139]
Reiser J, Harmison G, Kluepfel-Stahl S, Brady RO, Karlsson S, Schubert M. Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc Natl Acad Sci USA 1996; 93(26): 15266-71.
[http://dx.doi.org/10.1073/pnas.93.26.15266] [PMID: 8986799]
[140]
Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 1993; 90(17): 8033-7.
[http://dx.doi.org/10.1073/pnas.90.17.8033] [PMID: 8396259]
[141]
Mahler SV, Vazey EM, Beckley JT, et al. Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 2014; 17(4): 577-85.
[http://dx.doi.org/10.1038/nn.3664] [PMID: 24584054]
[142]
Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci USA 2013; 110(18): 7306-11.
[http://dx.doi.org/10.1073/pnas.1214441110] [PMID: 23589850]
[143]
Mazarakis ND, Azzouz M, Rohll JB, et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001; 10(19): 2109-21.
[http://dx.doi.org/10.1093/hmg/10.19.2109] [PMID: 11590128]
[144]
Cronin J, Zhang X-Y, Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 2005; 5(4): 387-98.
[http://dx.doi.org/10.2174/1566523054546224] [PMID: 16101513]
[145]
Kato S, Kobayashi K, Inoue K, et al. A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 2011; 22(2): 197-206.
[http://dx.doi.org/10.1089/hum.2009.179] [PMID: 20954846]
[146]
Joglekar AV, Sandoval S. Pseudotyped Lentiviral Vectors: One Vector, Many Guises. Hum Gene Ther Methods 2017; 28(6): 291-301.
[http://dx.doi.org/10.1089/hgtb.2017.084] [PMID: 28870117]
[147]
Kato S, Kuramochi M, Kobayashi K, et al. Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination. J Neurosci 2011; 31(47): 17169-79.
[http://dx.doi.org/10.1523/JNEUROSCI.4005-11.2011] [PMID: 22114284]
[148]
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. Mol Ther Methods Clin Dev 2019; 12: 223-32.
[http://dx.doi.org/10.1016/j.omtm.2018.12.013] [PMID: 30775404]
[149]
Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med 2016; 6(2): 37-54.
[http://dx.doi.org/10.5493/wjem.v6.i2.37] [PMID: 27226955]
[150]
Åkerblom M, Sachdeva R, Quintino L, et al. Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nat Commun 2013; 4(1): 1770.
[http://dx.doi.org/10.1038/ncomms2801] [PMID: 23612311]
[151]
Yang L, Bailey L, Baltimore D, Wang P. Targeting lentiviral vectors to specific cell types in vivo. Proc Natl Acad Sci USA 2006; 103(31): 11479-84.
[http://dx.doi.org/10.1073/pnas.0604993103] [PMID: 16864770]
[152]
Yang H, Joo K-I, Ziegler L, Wang P. Cell type-specific targeting with surface-engineered lentiviral vectors co-displaying OKT3 antibody and fusogenic molecule. Pharm Res 2009; 26(6): 1432-45.
[http://dx.doi.org/10.1007/s11095-009-9853-y] [PMID: 19259792]
[153]
Eleftheriadou I, Trabalza A, Ellison SM, Gharun K, Mazarakis ND. Specific retrograde transduction of spinal motor neurons using lentiviral vectors targeted to presynaptic NMJ receptors. Mol Ther 2014; 22(7): 1285-98.
[http://dx.doi.org/10.1038/mt.2014.49] [PMID: 24670531]
[154]
Gray SJ, Foti SB, Schwartz JW, et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 2011; 22(9): 1143-53.
[http://dx.doi.org/10.1089/hum.2010.245] [PMID: 21476867]
[155]
Paterna J-C, Moccetti T, Mura A, Feldon J, Büeler H. Influence of promoter and WHV post-transcriptional regulatory element on AAV-mediated transgene expression in the rat brain. Gene Ther 2000; 7(15): 1304-11.
[http://dx.doi.org/10.1038/sj.gt.3301221] [PMID: 10918501]
[156]
Grace PM, Strand KA, Galer EL, et al. Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proc Natl Acad Sci USA 2016; 113(24): E3441-50.
[http://dx.doi.org/10.1073/pnas.1602070113] [PMID: 27247388]
[157]
Zhang H, Yang B, Mu X, et al. Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 2011; 19(8): 1440-8.
[http://dx.doi.org/10.1038/mt.2011.98] [PMID: 21610699]
[158]
Maes ME, Colombo G, Schulz R, Siegert S. Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges. Neurosci Lett 2019; 707: 134310.
[http://dx.doi.org/10.1016/j.neulet.2019.134310] [PMID: 31158432]
[159]
Rosario AM, Cruz PE, Ceballos-Diaz C, et al. Microglia-specific targeting by novel capsid-modified AAV6 vectors. Mol Ther Methods Clin Dev 2016; 3: 16026.
[http://dx.doi.org/10.1038/mtm.2016.26] [PMID: 27308302]
[160]
Colella P, Ronzitti G, Mingozzi F. Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol Ther Methods Clin Dev 2017; 8: 87-104.
[http://dx.doi.org/10.1016/j.omtm.2017.11.007] [PMID: 29326962]
[161]
Robinson S, Todd TP, Pasternak AR, et al. Chemogenetic silencing of neurons in retrosplenial cortex disrupts sensory preconditioning. J Neurosci 2014; 34(33): 10982-8.
[http://dx.doi.org/10.1523/JNEUROSCI.1349-14.2014] [PMID: 25122898]
[162]
Balcaitis S, Weinstein JR, Li S, Chamberlain JS, Möller T. Lentiviral transduction of microglial cells. Glia 2005; 50(1): 48-55.
[http://dx.doi.org/10.1002/glia.20146] [PMID: 15625717]
[163]
Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci 2018; 21(10): 1359-69.
[http://dx.doi.org/10.1038/s41593-018-0242-x] [PMID: 30258234]
[164]
Song WM, Colonna M. The identity and function of microglia in neurodegeneration. Nat Immunol 2018; 19(10): 1048-58.
[http://dx.doi.org/10.1038/s41590-018-0212-1] [PMID: 30250185]
[165]
Möller T, Bard F, Bhattacharya A, et al. Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor. Glia 2016; 64(10): 1788-94.
[http://dx.doi.org/10.1002/glia.23007] [PMID: 27246804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy