Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Exploring the Potential of Aromatherapy as an Adjuvant Therapy in Cancer and its Complications: A Comprehensive Update

Author(s): Madhuri Grover, Tapan Behl*, Mohit Sanduja, Md. Habibur Rahman and Amirhossein Ahmadi

Volume 22, Issue 4, 2022

Published on: 04 February, 2021

Page: [629 - 653] Pages: 25

DOI: 10.2174/1871520621666210204201937

Price: $65

Abstract

Background: Aromatherapy is a traditional practice of employing essential oils for therapeutic purposes, which is currently headed under the category of complementary and adjuvant medicine.

Objective: The aim of this review is to summarize the potential health benefits of aromatic essential oil from old times till the present. Moreover, some mechanisms which can be utilized as a basis for aromatherapy in cancer and cancer-linked complications have been proposed.

Methods: To find out the relevant and authentic data, several search engines like Science direct, Pubmed, research gate, etc. were thoroughly checked by inserting keywords like aromatherapy, complementary, and adjuvant therapy in the context of the review.

Results: The results depicted the anti-cancer potential of chemical constituents of essential oil against different types of cancer. Moreover, the essential oils showed the promising anti-inflammatory, anti-microbial, antioxidant, and anti-mutagenic properties in several studies, which collectively can form the basis for initiation of its anti-cancer use.

Conclusion: Aromatherapy can serve as an adjuvant economic therapy in cancer after the standardization of protocol.

Keywords: Aromatherapy, essential oil, inhalation, cancer, anxiety, adjuvant therapy.

Graphical Abstract

[1]
Aebersold, R.; Auffray, C.; Baney, E.; Barillot, E.; Brazma, A.; Brett, C.; Brunak, S.; Butte, A.; Califano, A.; Celis, J.; Cufer, T.; Ferrell, J.; Galas, D.; Gallahan, D.; Gatenby, R.; Goldbeter, A.; Hace, N.; Henney, A.; Hood, L.; Iyengar, R.; Jackson, V.; Kallioniemi, O.; Klingmüller, U.; Kolar, P.; Kolch, W.; Kyriakopoulou, C.; Laplace, F.; Lehrach, H.; Marcus, F.; Matrisian, L.; Nolan, G.; Pelkmans, L.; Potti, A.; Sander, C.; Seljak, M.; Singer, D.; Sorger, P.; Stunnenberg, H.; Superti-Furga, G.; Uhlen, M.; Vidal, M.; Weinstein, J.; Wigle, D.; Williams, M.; Wolkenhauer, O.; Zhivotovsky, B.; Zinovyev, A.; Zupan, B. Report on EU-USA workshop: how systems biology can advance cancer research (27 October 2008). Mol. Oncol., 2009, 3(1), 9-17.
[http://dx.doi.org/10.1016/j.molonc.2008.11.003] [PMID: 19383362]
[2]
Case, R.A.M. Cancer Statistics. BMJ, 2007, 2(5466), 866.
[http://dx.doi.org/10.1136/bmj.2.5466.866-a] [PMID: 20763382]
[3]
Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis., 2017, 9(3), 448-451.
[http://dx.doi.org/10.21037/jtd.2017.02.75] [PMID: 28449441]
[4]
World Health Organization. Latest global cancer data: cancer burden rises to 18.1 million new cases and 9.6 million deaths in 2018 Int. Agency Res. Cancer, 2018, 13-15.
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Cancer rate doubles in India: Facts, stats, cure and treatment of the most deadly disease in the world - Education Today News.”, https://www. indiatoday.in/education-today/gk-current-affairs/story/cancer-rate-india-stats-cure-treatment-1386739-2018-11-12
[7]
Kaur, R.; Kaur, P.; Sharma, S.; Singh, G.; Mehndiratta, S.; Bedi, P.M.S.; Nepali, K. Anti-cancer pyrimidines in diverse scaffolds: a review of patent literature. Recent Patents Anticancer Drug Discov., 2015, 10(1), 23-71.
[http://dx.doi.org/10.2174/1574892809666140917104502] [PMID: 25230072]
[8]
Sharma, S.; Mehndiratta, S.; Kumar, S.; Singh, J.; Bedi, P.M.; Nepali, K. Purine analogues as kinase inhibitors: a review. Recent Patents Anticancer Drug Discov., 2015, 10(3), 308-341.
[http://dx.doi.org/10.2174/1574892810666150617112230] [PMID: 26081925]
[9]
Singh, H.; Singh, H.; Sharma, S.; Bedi, P.M.S. Chemotherapeutic potential of acridine analogs: an ample review. Heterocycles, 2015, 91(11), 2043-2085.
[http://dx.doi.org/10.3987/REV-15-826]
[10]
Issa, S.; Prandina, A.; Bedel, N.; Rongved, P.; Yous, S.; Le Borgne, M.; Bouaziz, Z. Carbazole scaffolds in cancer therapy: a review from 2012 to 2018. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1321-1346.
[http://dx.doi.org/10.1080/14756366.2019.1640692] [PMID: 31328585]
[11]
Tisserand, R. The Art of Aromatherapy; CW Daniels: Saffron Walden, UK, 1979.
[12]
Swerdlow, J. Nature’s Medicine: Plants That Heal; National Geographic Society: Washington, DC, 2000.
[13]
Ray, P.; Gupta, H. Charaka Samhita: A Scientific Synopsis; Indian National Science Academy: New Delhi, 1965.
[14]
Chopra, D. Perfect Health: The Complete Mind/Body Guide; Harmony Books: New York, 1991.
[15]
Steele, J. Anthropology of smell and scent in fragrance.Fragrance: The Psychology and Biology of Perfume; Van Toller, S.; Dodd, G., Eds.; Elsevier Applied Science: London, 1992, pp. 287-302.
[16]
Keller, H. The Evolution of Aromatherapy.Clinical Aroma Therapy; Buckle, J., Ed.; Churchill Livingstone: UK, 1990, pp. 1-14.
[17]
Tisserand, R. Aspects of aromatherapy. 1993.
[19]
Schiller, C.; Schiller, D. 500 Formulas for Aromatherapy: Mixing Essential Oils for Every Use; Sterling Publications: USA, 1994.
[20]
Wildwood, C. The Encyclopedia of Aromatherapy; Healing Arts Press: Rochester, 1996.
[21]
Krishna, A.; Tiwari, R.; Kumar, S. Aromatherapy-an alternative health care through essential oils. Curr. Res. Med. Aromat. Plants, 2000, 22, 798-804.
[22]
Perry, N.; Perry, E. Aromatherapy in the management of psychiatric disorders: clinical and neuropharmacological perspectives. CNS Drugs, 2006, 20(4), 257-280.
[http://dx.doi.org/10.2165/00023210-200620040-00001] [PMID: 16599645]
[23]
Jimbo, D.; Kimura, Y.; Taniguchi, M.; Inoue, M.; Urakami, K. Effect of aromatherapy on patients with Alzheimer’s disease. Psychogeriatrics, 2009, 9(4), 173-179.
[http://dx.doi.org/10.1111/j.1479-8301.2009.00299.x] [PMID: 20377818]
[24]
Smith, C.A.; Collins, C.T.; Crowther, C.A. Aromatherapy for pain management in labour. Cochrane Database Syst. Rev., 2011, 7(7)CD009215
[25]
Shiina, Y.; Funabashi, N.; Lee, K.; Toyoda, T.; Sekine, T.; Honjo, S.; Hasegawa, R.; Kawata, T.; Wakatsuki, Y.; Hayashi, S.; Murakami, S.; Koike, K.; Daimon, M.; Komuro, I. Relaxation effects of lavender aromatherapy improve coronary flow velocity reserve in healthy men evaluated by transthoracic Doppler echocardiography. Int. J. Cardiol., 2008, 129(2), 193-197.
[http://dx.doi.org/10.1016/j.ijcard.2007.06.064] [PMID: 17689755]
[26]
Lai, T.K.; Cheung, M.C.; Lo, C.K.; Ng, K.L.; Fung, Y.H.; Tong, M.; Yau, C.C. Effectiveness of aroma massage on advanced cancer patients with constipation: a pilot study. Complement. Ther. Clin. Pract., 2011, 17(1), 37-43.
[http://dx.doi.org/10.1016/j.ctcp.2010.02.004] [PMID: 21168113]
[27]
Yang, Z.; Hu, X.; Zhang, S.; Zhang, W.; Tam, K.Y. Pharmacological synergism of 2,2-dichloroacetophenone and EGFR-TKi to overcome TKi-induced resistance in NSCLC cells. Eur. J. Pharmacol., 2017, 815(15), 80-87.
[http://dx.doi.org/10.1016/j.ejphar.2017.08.037] [PMID: 28870456]
[28]
Rolim, T.L.; Meireles, D.R.P.; Batista, T.M.; de Sousa, T.K.G.; Mangueira, V.M.; de Abrantes, R.A.; Pita, J.C.L.R.; Xavier, A.L.; Costa, V.C.O.; Batista, L.M.; de Silva, M.S.; Sobral, M.V. Toxicity and antitumor potential of Mesosphaerum sidifolium (Lamiaceae) oil and fenchone, its major component. BMC Complement. Altern. Med., 2017, 17(1), 1-12.
[29]
Yassin, M.T.; Mostafa, A.A.; Al-Askar, A.A. Anticandidal and anti-carcinogenic activities of Mentha longifolia (Wild Mint) extracts in vitro. J. King Saud Univ. -. Sci., 2020, 32(3), 2046-2052.
[30]
Paek, S.H.; Kim, G.J.; Jeong, M.S.; Yum, S.K. Ar-Turmerone and beta-atlantone induce internucleosomal DNA fragmentation associated with programmed cell death in human myeloid leukemia HL-60 cells. Arch. Pharm. Res., 1996, 19(2), 91-94.
[http://dx.doi.org/10.1007/BF02976840]
[31]
Banerjee, S.; Welsch, C.W.; Rao, A.R. Modulatory influence of camphor on the activities of hepatic carcinogen metabolizing enzymes and the levels of hepatic and extrahepatic reduced glutathione in mice. Cancer Lett., 1995, 88(2), 163-169.
[http://dx.doi.org/10.1016/0304-3835(94)03633-T] [PMID: 7874689]
[32]
Bhat, M.A.; Iqbal, M.; Al-Dhfyan, A.; Shakeel, F. Carvone schiff base of isoniazid as a novel antitumor agent: nanoemulsion development and pharmacokinetic evaluation. J. Mol. Liq., 2015, 203, 111-119.
[http://dx.doi.org/10.1016/j.molliq.2014.12.037]
[33]
Raviv, Z.; Cohen, S.; Reischer-Pelech, D. The anti-cancer activities of jasmonates. Cancer Chemother. Pharmacol., 2013, 71(2), 275-285.
[http://dx.doi.org/10.1007/s00280-012-2039-z] [PMID: 23196641]
[34]
Zhu, X.; Li, X.; Chen, Z. Inhibition of anticancer growth in Retinoblastoma cells by naturally occurring sesquiterpene nootkatone is mediated via autophagy, endogenous ROS production, cell cycle arrest and inhibition of NF-κB signalling pathway. J. BUON, 2020, 25(1), 427-431.
[35]
Mander, S.; Kim, D.H.; Thi Nguyen, H.; Yong, H.J.; Pahk, K.; Kim, E.Y.; Lee, K.; Seong, J.Y.; Kim, W.K.; Hwang, J.I. SP-8356, a (1S)-(–)-verbenone derivative, exerts in vitro and in vivo anti-breast cancer effects by inhibiting NF-KB signaling. Sci. Rep., 2019, 9(1), 1-11.
[http://dx.doi.org/10.1038/s41598-019-41224-y] [PMID: 30626917]
[36]
Srinivasan, R.; Aruna, A.; Lee, J.S.; Kim, M.; Shivakumar, M.S.; Natarajan, D. Antioxidant and antiproliferative potential of bioactive molecules ursolic acid and thujone isolated from Memecylon edule and Elaeagnus indica and their inhibitory effect on topoisomerase II by molecular docking approach. BioMed Res. Int., 2020, 20208716927
[http://dx.doi.org/10.1155/2020/8716927] [PMID: 32149143]
[37]
Tsai, K.D.; Liu, Y.H.; Chen, T.W.; Yang, S.M.; Wong, H.Y.; Cherng, J.; Chou, K.S.; Cherng, J.M. Cuminaldehyde from Cinnamomum verum induces cell death through targeting topoisomerase 1 and 2 in human colorectal adenocarcinoma COLO 205 cells. Nutrients, 2016, 8(6), 1-17.
[http://dx.doi.org/10.3390/nu8060318] [PMID: 27231935]
[38]
Arulvasu, C.; Sivaranjani, S.; Revathi, M.; Hemavathi, M. Free radical scavenging activity and cytotoxic effect of anisaldehyde on human cancer cell lines. Int. J. Innov. Res. Sci. Eng., 2014, 2(4), 1-10.
[39]
Ariyoshi-Kishino, K.; Hashimoto, K.; Amano, O.; Saitoh, J.; Kochi, M.; Sakagami, H. Tumor-specific cytotoxicity and type of cell death induced by benzaldehyde. Anticancer Res., 2010, 30(12), 5069-5076.
[40]
Martins, B.X.; Arruda, R.F.; Costa, G.A.; Jerdy, H.; de Souza, S.B.; Santos, J.M.; de Freitas, W.R.; Kanashiro, M.M.; de Carvalho, E.C.Q.; Sant’Anna, N.F.; Antunes, F.; Martinez-Zaguilan, R.; Souad, S.; Okorokova-Façanha, A.L.; Façanha, A.R. Myrtenal-induced V-ATPase inhibition - A toxicity mechanism behind tumor cell death and suppressed migration and invasion in melanoma. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 1-12.
[http://dx.doi.org/10.1016/j.bbagen.2018.09.006] [PMID: 30279148]
[41]
Hong, S.H.; Ismail, I.A.; Kang, S.M.; Han, D.C.; Kwon, B.M. Cinnamaldehydes in cancer chemotherapy. Phytother. Res., 2016, 30(5), 754-767.
[http://dx.doi.org/10.1002/ptr.5592] [PMID: 26890810]
[42]
Balusamy, S.R.; Perumalsamy, H.; Veerappan, K.; Huq, M.A.; Rajeshkumar, S.; Lakshmi, T.; Kim, Y.J. Citral induced apoptosis through modulation of key genes involved in fatty acid biosynthesis in human prostate cancer cells: in silico and in vitro study. BioMed Res. Int., 2020, 20206040727
[http://dx.doi.org/10.1155/2020/6040727] [PMID: 32258129]
[43]
Andrade, L.N.; Amaral, R.G.; Dória, G.A.A.; Fonseca, C.S.; da Silva, T.K.M.; Albuquerque Júnior, R.L.C.; Thomazzi, S.M.; do Nascimento, L.G.; Carvalho, A.A.; de Sousa, D.P. In vivo anti-tumor activity and toxicological evaluations of perillaldehyde 8,9-epoxide, a derivative of perillyl alcohol. Int. J. Mol. Sci., 2016, 17(1), 2-11.
[http://dx.doi.org/10.3390/ijms17010032] [PMID: 26742032]
[44]
Liu, W.J.; Yin, Y.B.; Sun, J.Y.; Feng, S.; Ma, J.K.; Fu, X.Y.; Hou, Y.J.; Yang, M.F.; Sun, B.L.; Fan, C.D. Natural borneol is a novel chemosensitizer that enhances temozolomide-induced anticancer efficiency against human glioma by triggering mitochondrial dysfunction and reactive oxide species-mediated oxidative damage. OncoTargets Ther., 2018, 11, 5429-5439.
[http://dx.doi.org/10.2147/OTT.S174498] [PMID: 30233204]
[45]
Dias, L.D.; Batista de Carvalho, A.L.M.; Pinto, S.M.A.; Aquino, G.L.B.; Calvete, M.J.F.; Rossi, L.M.; Marques, M.P.M.; Pereira, M.M. Bioinspired-Metalloporphyrin magnetic nanocomposite as a reusable catalyst for synthesis of diastereomeric (-)-isopulegol epoxide: anticancer activity against human osteosarcoma cells (MG-63). Molecules, 2018, 24(1), 1-16.
[http://dx.doi.org/10.3390/molecules24010052] [PMID: 30586854]
[46]
Teixeira, R.R.; Da Silva, A.M.; Siqueira, R.P.; Gonçalves, V.H.S.; Pereira, H.S.; Ferreira, R.S.; Costa, A.V.; de Melo, E.B.; Paula, F.R.; Ferreira, M.M.C.; Bressan, G.C. Synthesis of nerol derivatives containing a 1,2,3-triazole moiety and evaluation of their activities against cancer cell lines. J. Braz. Chem. Soc., 2019, 30(3), 541-561.
[47]
Yu, W.N.; Lai, Y.J.; Ma, J.W.; Ho, C.T.; Hung, S.W.; Chen, Y.H.; Chen, C.T.; Kao, J.Y. Der Way, T. Citronellol induces necroptosis of human lung cancer cells via TNF-α pathway and reactive oxygen species accumulation. In Vivo, 2019, 33(4), 1193-1201.
[48]
Hassan, S.B.; Gali-Muhtasib, H.; Göransson, H.; Larsson, R. Alpha terpineol: a potential anticancer agent which acts through suppressing NF-kappaB signalling. Anticancer Res., 2010, 30(6), 1911-1919.
[49]
Iwasaki, K.; Zheng, Y.W.; Murata, S.; Ito, H.; Nakayama, K.; Kurokawa, T.; Sano, N.; Nowatari, T.; Villareal, M.O.; Nagano, Y.N.; Isoda, H.; Matsui, H.; Ohkohchi, N. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J. Gastroenterol., 2016, 22(44), 9765-9774.
[http://dx.doi.org/10.3748/wjg.v22.i44.9765] [PMID: 27956800]
[50]
Nakayama, K.; Murata, S.; Ito, H.; Iwasaki, K.; Villareal, M.O.; Zheng, Y.W.; Matsui, H.; Isoda, H.; Ohkohchi, N. Terpinen-4-ol inhibits colorectal cancer growth via reactive oxygen species. Oncol. Lett., 2017, 14(2), 2015-2024.
[http://dx.doi.org/10.3892/ol.2017.6370] [PMID: 28781645]
[51]
Qi, F.; Yan, Q.; Zheng, Z.; Liu, J.; Chen, Y.; Zhang, G. Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest. J. BUON, 2018, 23(2), 346-352.
[52]
Murata, Y.; Kokuryo, T.; Yokoyama, Y.; Yamaguchi, J.; Miwa, T.; Shibuya, M.; Yamamoto, Y.; Nagino, M. The anticancer effects of novel α-bisabolol derivatives against pancreatic cancer. Anticancer Res., 2017, 37(2), 589-598.
[http://dx.doi.org/10.21873/anticanres.11352] [PMID: 28179305]
[53]
Kotawong, K.; Chaijaroenkul, W.; Muhamad, P.; Na-Bangchang, K. Cytotoxic activities and effects of atractylodin and β-eudesmol on the cell cycle arrest and apoptosis on cholangiocarcinoma cell line. J. Pharmacol. Sci., 2018, 136(2), 51-56.
[http://dx.doi.org/10.1016/j.jphs.2017.09.033] [PMID: 29525035]
[54]
Bommareddy, A.; Rule, B.; VanWert, A.L.; Santha, S.; Dwivedi, C. α-Santalol, a derivative of sandalwood oil, induces apoptosis in human prostate cancer cells by causing caspase-3 activation. Phytomedicine, 2012, 19(8-9), 804-811.
[http://dx.doi.org/10.1016/j.phymed.2012.04.003] [PMID: 22571975]
[55]
Zhang, S.Y.; Li, X.B.; Hou, S.G.; Sun, Y.; Shi, Y.R.; Lin, S.S. Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS. Int. J. Mol. Med., 2016, 38(1), 291-299.
[http://dx.doi.org/10.3892/ijmm.2016.2585] [PMID: 27177023]
[56]
Jung, Y.Y.; Hwang, S.T.; Sethi, G.; Fan, L.; Arfuso, F.; Ahn, K.S. Potential anti-inflammatory and anti-cancer properties of farnesol. Molecules, 2018, 23(11), 1-15.
[http://dx.doi.org/10.3390/molecules23112827] [PMID: 30384444]
[57]
Loizzo, M.R.; Tundis, R.; Menichini, F.; Saab, A.M.; Statti, G.A.; Menichini, F. Cytotoxic activity of essential oils from labiatae and Lauraceae families against in vitro human tumor models., 2007.
[58]
Zhang, T.; Wang, T.; Cai, P. Sclareol inhibits cell proliferation and sensitizes cells to the antiproliferative effect of bortezomib via upregulating the tumor suppressor caveolin-1 in cervical cancer cells. Mol. Med. Rep., 2017, 15(6), 3566-3574.
[http://dx.doi.org/10.3892/mmr.2017.6480] [PMID: 28440485]
[59]
Girola, N.; Figueiredo, C.R.; Farias, C.F.; Azevedo, R.A.; Ferreira, A.K.; Teixeira, S.F.; Capello, T.M.; Martins, E.G.A.; Matsuo, A.L.; Travassos, L.R.; Lago, J.H.G. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem. Biophys. Res. Commun., 2015, 467(4), 928-934.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.041] [PMID: 26471302]
[60]
Chen, W.; Liu, Y.; Li, M.; Mao, J.; Zhang, L.; Huang, R.; Jin, X.; Ye, L. Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharmacol. Sci., 2015, 127(3), 332-338.
[http://dx.doi.org/10.1016/j.jphs.2015.01.008] [PMID: 25837931]
[61]
Bordoloi, M.; Saikia, S.; Kolita, B.; Sarmah, R.; Roy, S.; Narzary, B. Volatile inhibitors of phosphatidylinositol-3-kinase (PI3K) pathway: anticancer potential of aroma compounds of plant essential oils. Anticancer. Agents Med. Chem., 2018, 18(1), 87-109.
[http://dx.doi.org/10.2174/1871520617666170327105706] [PMID: 28356026]
[62]
El-Abid, H.; Amaral, C.; Cunha, S.C.; Augusto, T.V.; Fernandes, J.O.; Correia-da-Silva, G.; Teixeira, N.; Moumni, M. Chemical composition and anti-cancer properties of Juniperus oxycedrus L. essential oils on estrogen receptor-positive breast cancer cells. J. Funct. Foods, 2019, 59(5), 261-271.
[http://dx.doi.org/10.1016/j.jff.2019.05.042]
[63]
Namiecińska, E.; Sadowska, B.; Wiȩckowska-Szakiel, M.; Dołȩga, A.; Pasternak, B.; Grazul, M.; Budzisz, E. Anticancer and antimicrobial properties of novel H6-: P-cymene ruthenium(Ii) complexes containing a N,S-type ligand, their structural and theoretical characterization. RSC Advances, 2019, 9(66), 38629-38645.
[http://dx.doi.org/10.1039/C9RA08736B]
[64]
Fitsiou, E.; Anestopoulos, I.; Chlichlia, K.; Galanis, A.; Kourkoutas, I.; Panayiotidis, M.I.; Pappa, A. Antioxidant and antiproliferative properties of the essential oils of Satureja thymbra and Satureja parnassica and their major constituents. Anticancer Res., 2016, 36(11), 5757-5763.
[http://dx.doi.org/10.21873/anticanres.11159] [PMID: 27793897]
[65]
Lin, J.J.; Yu, C.C.; Lu, K.W.; Chang, S.J.; Yu, F.S.; Liao, C.L.; Lin, J.G.; Chung, J.G. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells. Anticancer Res., 2014, 34(8), 4161-4180.
[66]
Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer properties of essential oils and other natural products. Evid.-based Complem. Altern. Med., 2018, 2018(3), 1-12.
[67]
Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, X.; Feng, N.; Yu, H.; Qian, B. d-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. OncoTargets Ther., 2018, 11, 1833-1847.
[http://dx.doi.org/10.2147/OTT.S155716] [PMID: 29670359]
[68]
Pavithra, P.S.; Mehta, A.; Verma, R.S. Aromadendrene oxide 2, induces apoptosis in skin epidermoid cancer cells through ROS mediated mitochondrial pathway. Life Sci., 2018, 197, 19-29.
[http://dx.doi.org/10.1016/j.lfs.2018.01.029] [PMID: 29407546]
[69]
Zhu, X.P.; Lin, G.S.; Duan, W.G.; Li, Q.M.; Li, F.Y.; Lu, S.Z. Synthesis and antiproliferative evaluation of novel longifolene-derived tetralone derivatives bearing 1,2,4-triazole moiety. Molecules, 2020, 25(4), 1-13.
[http://dx.doi.org/10.3390/molecules25040986] [PMID: 32098438]
[70]
Turkez, H.; Togar, B.; Tatar, A.; Geyıkoglu, F.; Hacımuftuoglu, A. Cytotoxic and cytogenetic effects of α-copaene on rat neuron and N2a neuroblastoma cell lines. Biol., 2014, 69(7), 936-942.
[http://dx.doi.org/10.2478/s11756-014-0393-5]
[71]
Wang, Z.; Liu, F.; Yu, J.J.; Jin, J.Z. β-Bourbonene attenuates proliferation and induces apoptosis of prostate cancer cells. Oncol. Lett., 2018, 16(4), 4519-4525.
[http://dx.doi.org/10.3892/ol.2018.9183] [PMID: 30197674]
[72]
Jou, Y.J.; Hua, C.H.; Lin, C.S.; Wang, C.Y.; Wan, L.; Lin, Y.J.; Huang, S.H.; Lin, C.W. Anticancer activity of γ-bisabolene in human neuroblastoma cells via induction of p53-mediated mitochondrial apoptosis. Molecules, 2016, 21(5), 1-11.
[http://dx.doi.org/10.3390/molecules21050601] [PMID: 27164076]
[73]
Jiang, Z.; Jacob, J.A.; Loganathachetti, D.S.; Nainangu, P.; Chen, B. β-Elemene: mechanistic studies on cancer cell interaction and its chemosensitization effect. Front. Pharmacol., 2017, 8(3), 105.
[http://dx.doi.org/10.3389/fphar.2017.00105] [PMID: 28337141]
[74]
Afoulous, S.; Ferhout, H.; Raoelison, E.G.; Valentin, A.; Moukarzel, B.; Couderc, F.; Bouajila, J. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food Chem. Toxicol., 2013, 56, 352-362.
[http://dx.doi.org/10.1016/j.fct.2013.02.008] [PMID: 23459148]
[75]
Aydin, E.; Türkez, H.; Taşdemir, S. Anticancer and antioxidant properties of terpinolene in rat brain cells. Arh. Hig. Rada Toksikol., 2013, 64(3), 415-424.
[http://dx.doi.org/10.2478/10004-1254-64-2013-2365] [PMID: 24084350]
[76]
Hui, L.M.; Zhao, G.D.; Zhao, J.J. δ-Cadinene inhibits the growth of ovarian cancer cells via caspase-dependent apoptosis and cell cycle arrest. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6046-6056.
[77]
Cao, H.; Li, Z.; Li, R.; Mao, B.; Liu, C.; Li, Y.; Zhang, G. Study on anticancer effect of synthetic biogenic source of germacrene A. J. Drug Deliv. Ther., 2018, 8(5), 421-429.
[http://dx.doi.org/10.22270/jddt.v8i5.1896]
[78]
Legault, J.; Pichette, A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol., 2007, 59(12), 1643-1647.
[http://dx.doi.org/10.1211/jpp.59.12.0005] [PMID: 18053325]
[79]
Ambrož, M.; Šmatová, M.; Šadibolová, M.; Pospíšilová, E.; Hadravská, P.; Kašparová, M.; Skarková, V.H.; Králová, V.; Skálová, L. Sesquiterpenes α-humulene and β-caryophyllene oxide enhance the efficacy of 5-fluorouracil and oxaliplatin in colon cancer cells. Acta Pharm., 2019, 69(1), 121-128.
[http://dx.doi.org/10.2478/acph-2019-0003] [PMID: 31259712]
[80]
Czarnecka, M.; Świtalska, M.; Wietrzyk, J.; Maciejewska, G.; Gliszczyńska, A. Synthesis, characterization, and in vitro cancer cell growth inhibition evaluation of novel phosphatidylcholines with anisic and veratric acids. Molecules, 2018, 23(8), 1-15.
[http://dx.doi.org/10.3390/molecules23082022] [PMID: 30104549]
[81]
Samid, D.; Shack, S.; Sherman, L.T. Phenylacetate: a novel nontoxic inducer of tumor cell differentiation. Cancer Res., 1992, 52(7), 1988-1992.
[82]
Harada, H.; Yamashita, U.; Kurihara, H.; Fukushi, E.; Kawabata, J.; Kamei, Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res., 2002, 22(5), 2587-2590.
[83]
Niero, E.L.D.O.; Machado-Santelli, G.M. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. J. Exp. Clin. Cancer Res., 2013, 32(1), 31.
[http://dx.doi.org/10.1186/1756-9966-32-31] [PMID: 23701745]
[84]
Anantharaju, P.G.; Reddy, B.D.; Padukudru, M.A.; Kumari Chitturi, C.M.; Vimalambike, M.G.; Madhunapantula, S.V. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting Histone Deacetylases (HDAC). Cancer Biol. Ther., 2017, 18(7), 492-504.
[http://dx.doi.org/10.1080/15384047.2017.1324374] [PMID: 28506198]
[85]
Bos, R.; Hendriks, H.; Scheffer, J.J.C.; Woerdenbag, H.J. Cytotoxic potential of valerian constituents and valerian tinctures. Phytomedicine, 1998, 5(3), 219-225.
[http://dx.doi.org/10.1016/S0944-7113(98)80032-9] [PMID: 23195845]
[86]
Charles, A.K.; Darbre, P.D. Oestrogenic activity of benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) in MCF7 human breast cancer cells in vitro. J. Appl. Toxicol., 2009, 29(5), 422-434.
[http://dx.doi.org/10.1002/jat.1429] [PMID: 19338011]
[87]
Widiyarti, G.; Megawati, M.; Hanafi, M. The potential use of geraniol esters from citronella oil as anticancer agents. Orient. J. Chem., 2019, 35(3), 987-996.
[http://dx.doi.org/10.13005/ojc/350310]
[88]
Li, J.; Wang, S.X. Synergistic enhancement of the antitumor activity of 5-fluorouracil by bornyl acetate in SGC-7901 human gastric cancer cells and the determination of the underlying mechanism of action. J. BUON, 2016, 21(1), 108-117.
[89]
Glaser, J.; Schultheis, M.; Moll, H.; Hazra, B.; Holzgrabe, U. Antileishmanial and cytotoxic compounds from Valeriana wallichii and identification of a novel nepetolactone derivative. Molecules, 2015, 20(4), 5740-5753.
[http://dx.doi.org/10.3390/molecules20045740] [PMID: 25834987]
[90]
Tabatabaei, S.M.; Kianinodeh, F.; Nasiri, M.; Tightiz, N.; Asadipour, M.; Gohari, M. In vitro inhibition of MCF-7 human breast cancer cells by essential oils of Rosmarinus officinalis, Thymus vulgaris L., and Lavender x Intermedia. Arch. Breast Cancer, 2018, 5(2), 81-89.
[91]
Zhao, Y.; Chen, R.; Wang, Y.; Qing, C.; Wang, W.; Yang, Y. In vitro and in vivo efficacy studies of lavender angustifolia essential oil and its active constituents on the proliferation of human prostate cancer. Integr. Cancer Ther., 2017, 16(2), 215-226.
[http://dx.doi.org/10.1177/1534735416645408] [PMID: 27151584]
[92]
Chen, C.H.; deGraffenried, L.A. Anethole suppressed cell survival and induced apoptosis in human breast cancer cells independent of estrogen receptor status. Phytomedicine, 2012, 19(8-9), 763-767.
[http://dx.doi.org/10.1016/j.phymed.2012.02.017] [PMID: 22464689]
[93]
Carrasco, A.H.; Espinoza, C.L.; Cardile, V.; Gallardo, C.; Cardona, W.; Lombardo, L.; Catalán, M.K.; Cuellar, F.M.; Russo, A. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I). J. Braz. Chem. Soc., 2008, 19(3), 543-548.
[http://dx.doi.org/10.1590/S0103-50532008000300024]
[94]
Khan, M.A.; Ahmad, R.; Srivastava, A.N. Effect of methyl butyrate aroma on the survival and viability of human breast cancer cells in vitro. J. Egypt. Natl. Canc. Inst., 2016, 28(2), 81-88.
[http://dx.doi.org/10.1016/j.jnci.2016.02.005] [PMID: 27106628]
[95]
Sanchez-Carranza, J.N.; González-Maya, L.; Razo-Hernández, R.S.; Salas-Vidal, E.; Nolasco-Quintana, N.Y.; Clemente-Soto, A.F.; García-Arizmendi, L.; Sánchez-Ramos, M.; Marquina, S.; Alvarez, L. Achillin increases chemosensitivity to paclitaxel, overcoming resistance and enhancing apoptosis in human hepatocellular carcinoma cell line resistant to paclitaxel (Hep3B/PTX). Pharmaceutics, 2019, 11(10), 1-25.
[http://dx.doi.org/10.3390/pharmaceutics11100512] [PMID: 31590262]
[96]
Choi, E.J.; Kim, G.H. Evaluation of anticancer activity of dehydrocos-tuslactone in vitro. Mol. Med. Rep., 2010, 3(1), 185-188.
[97]
Liu, J.; Liu, M.; Wang, S.; He, Y.; Huo, Y.; Yang, Z.; Cao, X. Alantolactone induces apoptosis and suppresses migration in MCF 7 human breast cancer cells via the p38 MAPK, NF κB and Nrf2 signaling pathways. Int. J. Mol. Med., 2018, 42(4), 1847-1856.
[http://dx.doi.org/10.3892/ijmm.2018.3751] [PMID: 30015828]
[98]
Menichini, F.; Tundis, R.; Loizzo, M.R.; Bonesi, M.; Provenzano, E.; de Cindio, B.; Menichini, F. In vitro photo-induced cytotoxic activity of Citrus bergamia and C. medica L. cv. Diamante peel essential oils and identified active coumarins. Pharm. Biol., 2010, 48(9), 1059-1065.
[http://dx.doi.org/10.3109/13880200903486636] [PMID: 20690896]
[99]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.010] [PMID: 26188907]
[100]
Ernawati, T.; Fairusi, D.; Hanafi, M. Synthesis of dihydrocoumarin derivatives from methyl trans-cinnamate and evaluation of their bioactivity as potent anticancer agents. Asian J. Appl. Sci., 2014, 02(03), 291-309.
[101]
Yu, S.M.; Hu, D.H.; Zhang, J.J. Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells. Mol. Med. Rep., 2015, 12(3), 3869-3873.
[http://dx.doi.org/10.3892/mmr.2015.3797] [PMID: 25997538]
[102]
Santoro, M.; Guido, C.; De Amicis, F.; Sisci, D.; Cione, E.; Vincenza, D.; Donà, A.; Panno, M.L.; Aquila, S. Bergapten induces metabolic reprogramming in breast cancer cells. Oncol. Rep., 2016, 35(1), 568-576.
[http://dx.doi.org/10.3892/or.2015.4327] [PMID: 26459431]
[103]
Ge, Z.C.; Qu, X.; Yu, H.F.; Zhang, H.M.; Wang, Z.H.; Zhang, Z.T. Antitumor and apoptotic effects of bergaptol are mediated via mitochondrial death pathway and cell cycle arrest in human breast carcinoma cells. Bangladesh J. Pharmacol., 2016, 11(2), 489-494.
[http://dx.doi.org/10.3329/bjp.v11i2.24644]
[104]
Panno, M.L.; Giordano, F. Effects of psoralens as anti-tumoral agents in breast cancer cells. World J. Clin. Oncol., 2014, 5(3), 348-358.
[http://dx.doi.org/10.5306/wjco.v5.i3.348] [PMID: 25114850]
[105]
Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med., 2016, 5(10), 3007-3017.
[http://dx.doi.org/10.1002/cam4.816] [PMID: 27696789]
[106]
Murata, S.; Shiragami, R.; Kosugi, C.; Tezuka, T.; Yamazaki, M.; Hirano, A.; Yoshimura, Y.; Suzuki, M.; Shuto, K.; Ohkohchi, N.; Koda, K. Antitumor effect of 1, 8-cineole against colon cancer. Oncol. Rep., 2013, 30(6), 2647-2652.
[http://dx.doi.org/10.3892/or.2013.2763] [PMID: 24085263]
[107]
Zheng, G.Q.; Kenney, P.M.; Lam, L.K.T. Myristicin: a potential cancer chemopreventive agent from parsley leaf oil. J. Agric. Food Chem., 1992, 40(1), 107-110.
[http://dx.doi.org/10.1021/jf00013a020]
[108]
Yin, L.; Sun, Z.; Ren, Q.; Su, X.; Zhang, D. Methyl eugenol induces potent anticancer effects in RB355 human retinoblastoma cells by inducing autophagy, cell cycle arrest and inhibition of PI3K/mTOR/Akt signalling pathway. J. BUON, 2018, 23(4), 1174-1178.
[109]
Villarini, M.; Pagiotti, R.; Dominici, L.; Fatigoni, C.; Vannini, S.; Levorato, S.; Moretti, M. Investigation of the cytotoxic, genotoxic, and apoptosis-inducing effects of estragole isolated from fennel (Foeniculum vulgare). J. Nat. Prod., 2014, 77(4), 773-778.
[http://dx.doi.org/10.1021/np400653p] [PMID: 24617303]
[110]
Song, X.; Yin, Z.; Ye, K.; Wei, Q.; Jia, R.; Zhou, L.; Du, Y.; Xu, J.; Liang, X.; He, C.; Shu, G.; Yin, L.; Lv, C. Anti-hepatoma effect of safrole from Cinnamomum longepaniculatum leaf essential oil in vitro. Int. J. Clin. Exp. Pathol., 2014, 7(5), 2265-2272.
[111]
Khan, I.; Bahuguna, A.; Kumar, P.; Bajpai, V.K.; Kang, S.C. In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Sci. Rep., 2018, 8(1), 144.
[http://dx.doi.org/10.1038/s41598-017-18644-9] [PMID: 29317755]
[112]
Xu, L.; Zhang, P.P.; Fang, X.Q.; Liu, Y.; Wang, J.Q.; Zhou, H.Z.; Chen, S.T.; Chao, H. A ruthenium(II) complex containing a p-cresol group induces apoptosis in human cervical carcinoma cells through endoplasmic reticulum stress and reactive oxygen species production. J. Inorg. Biochem., 2019, 191(7), 126-134.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.11.015] [PMID: 30508750]
[113]
Jaganathan, S.K.; Supriyanto, E. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules, 2012, 17(6), 6290-6304.
[http://dx.doi.org/10.3390/molecules17066290] [PMID: 22634840]
[114]
Islam, M.T.; Khalipha, A.B.R.; Bagchi, R.; Mondal, M.; Smrity, S.Z.; Uddin, S.J.; Shilpi, J.A.; Rouf, R. Anticancer activity of thymol: a literature-based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life, 2019, 71(1), 9-19.
[http://dx.doi.org/10.1002/iub.1935] [PMID: 30308112]
[115]
Farooqi, A.H.A.; Sharma, S. Aromatherapy-a promising holistic system. Curr. Res. Med. Aromat. Plants, 2000, 22, 704-706.
[116]
Berwick, A. Holistic aromatherapy: balance the body and soul with essential oils; Llewellyn Publications: St. Paul, MN, 1994.
[117]
Silva-Néto, R.P.; Peres, M.F.; Valença, M.M. Odorant substances that trigger headaches in migraine patients. Cephalalgia, 2014, 34(1), 14-21.
[http://dx.doi.org/10.1177/0333102413495969] [PMID: 23832131]
[118]
Vethanayagam, D.; Vliagoftis, H.; Mah, D.; Beach, J.; Smith, L.; Moqbel, R. Fragrance materials in asthma: a pilot study using a surrogate aerosol product. J. Asthma, 2013, 50(9), 975-982.
[http://dx.doi.org/10.3109/02770903.2013.822079] [PMID: 23829679]
[119]
Celeiro, M.; Guerra, E.; Lamas, J.P.; Lores, M.; Garcia-Jares, C.; Llompart, M. Development of a multianalyte method based on micro-matrix-solid-phase dispersion for the analysis of fragrance allergens and preservatives in personal care products. J. Chromatogr. A, 2014, 1344, 1-14.
[http://dx.doi.org/10.1016/j.chroma.2014.03.070] [PMID: 24767833]
[120]
Dodd, G.H. The molecular dimension in perfumery. Perfumery; Toller, S.V; Dodd, G.H., Ed.; Springer: Netherlands, 1988, pp. 19-46.
[http://dx.doi.org/10.1007/978-94-009-1215-1_2]
[121]
Proust, M. The Nature of Aromatherapy,
[122]
Zatz, J. Factors affecting sorption of topically applied substances.Skin Permeation: Fundamentals and Applications; Zatz, J., Ed.; Allured Publishing: Wheaton, IL, 1993, pp. 11-32.
[123]
Moser, K.; Kriwet, K.; Froehlich, C.; Kalia, Y.N.; Guy, R.H. Supersaturation: enhancement of skin penetration and permeation of a lipophilic drug. Pharm. Res., 2001, 18(7), 1006-1011.
[http://dx.doi.org/10.1023/A:1010948630296] [PMID: 11496937]
[124]
Jager, W.; Buchbauer, G.; Jivrovetz, L. Percutaneous absorption of lavender oil form a massage oil. J. Soc. Cosmet. Chem., 1992, 43(1), 49-54.
[125]
Yu, Y.; Zhou, L.; Li, X. Studies of in vitro releasing properties on cyclovirobuxine D matrix-type patch. Zhongguo Zhongyao Zazhi, 2009, 34(7), 825-828.
[126]
Pratt, J.; Mason, A. The Caring Touch; Heyden: London, 1981.
[127]
Riviere, J. Biological factors in absorption and permeation.Skin Permeation: Fundamentals and Applications; Zatz, J., Ed.; Allured Publishing: Wheaton, IL, 1993, pp. 113-125.
[128]
Buchbauer, G. Biological effects of fragrances and essential oils. Perfum. Flavor., 1993, 18(19), 19-24.
[129]
Anthony, C.; Thibodeau, G. Nervous System Cells in Anatomy and Physiology; Mosby: St. Louis, 1983.
[130]
Balacs, T. 1993.
[131]
Moore, M.R.; Meredith, P.A.; Watson, W.S.; Sumner, D.J.; Taylor, M.K.; Goldberg, A. The percutaneous absorption of lead-203 in humans from cosmetic preparations containing lead acetate, as assessed by whole-body counting and other techniques. Food Cosmet. Toxicol., 1980, 18(4), 399-405.
[http://dx.doi.org/10.1016/0015-6264(80)90197-2] [PMID: 7461520]
[132]
Fuchs, N.; Lenhardt, A.; Buchbauer, I.; Buchbauer, G. Systemic absorption of topically applied carvone: influence of massage technique. J. Soc. Cosmet. Chem., 1997, 48(6), 277-282.
[133]
Tisserand, R. The Essential Oil Safety Data Manual; Tisser and Aromatherapy Institute: Brighton, UK, 1985.
[134]
Bronaugh, R.L.; Wester, R.C.; Bucks, D.; Maibach, H.I.; Sarason, R. In vivo percutaneous absorption of fragrance ingredients in rhesus monkeys and humans. Food Chem. Toxicol., 1990, 28(5), 369-373.
[http://dx.doi.org/10.1016/0278-6915(90)90111-Y] [PMID: 2379896]
[135]
Jackson, E. Toxicological aspects of percutaneous absorption.Skin Permeation: Fundamentals and Applications; Zatz, J., Ed.; Allured Publishing: Wheaton, IL, 1993, pp. 177-193.
[136]
Schultz, N. 2002.
[137]
Force, M.; Sparks, W.S.; Ronzio, R.A. Inhibition of enteric parasites by emulsified oil of oregano in vivo. Phytother. Res., 2000, 14(3), 213-214.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<213:AID-PTR583>3.0.CO;2-U] [PMID: 10815019]
[138]
Valnet, J. The Practice of Aromatherapy; CW Daniels: Saffron Walden, UK, 1990.
[139]
Price, S.; Price, L. Aromatherapy for Health Professionals; Churchill Livingstone: London, 1999, pp. 93-95.
[140]
Brinker, F. The Toxicology of Botanical Medicines, 3rd ed; Eclectic Medical Publications: Sandy, OR, 2000.
[141]
Tisserand, R.; Young, R. Essential Oils Safety, 2nd ed; Churchill Livingstone: London, 2013, pp. 40-47.
[142]
Jori, A.; Bianchetti, A.; Prestini, P.E. Effect of essential oils on drug metabolism. Biochem. Pharmacol., 1969, 18(9), 2081-2085.
[http://dx.doi.org/10.1016/0006-2952(69)90312-8] [PMID: 5345885]
[143]
Takaishi, M.; Fujita, F.; Uchida, K.; Yamamoto, S.; Sawada Shimizu, M.; Hatai Uotsu, C.; Shimizu, M.; Tominaga, M. 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Mol. Pain, 2012, 8(8), 86.
[http://dx.doi.org/10.1186/1744-8069-8-86] [PMID: 23192000]
[144]
Begrow, F.; Böckenholt, C.; Ehmen, M.; Wittig, T.; Verspohl, E.J. Effect of myrtol standardized and other substances on the respiratory tract: ciliary beat frequency and mucociliary clearance as parameters. Adv. Ther., 2012, 29(4), 350-358.
[http://dx.doi.org/10.1007/s12325-012-0014-z] [PMID: 22477544]
[145]
Alexander, M. How Aromatherapy Works: Principle Mechanisms in Olfaction; Whole Spectrum Arts and Publications: Odessa, FL, 2001.
[146]
Arisi, G.M.; Foresti, M.L.; Mukherjee, S.; Shapiro, L.A. The role of olfactory stimulus in adult mammalian neurogenesis. Behav. Brain Res., 2012, 227(2), 356-362.
[http://dx.doi.org/10.1016/j.bbr.2011.03.050] [PMID: 21453729]
[147]
LeDoux, J. The Emotional Brain; Simon & Schuster: New York, 1996, pp. 170-264.
[148]
Tisserand, R. Lavender beats benzodiazepines. Int. J. Aromather., 1988, 1(2), 1-2.
[149]
Van Toller, S.; Dodd, G. The pyschology and biology of fragrance.Perfumery; Van Toller, S.; Dodd, G., Eds.; Chapman & Hall: London, 1991.
[150]
Bardia, P.; Boecker, M.; Lammers, W. Some effects of different olfactory stimuli onsleep. Sleep Res., 1990, 19, 145.
[151]
Cosentino, S.; Tuberoso, C.I.C.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In vitro antimicrobial activity and chemical composition of Sardinian thymus essential oils. Lett. Appl. Microbiol., 1999, 29(2), 130-135.
[http://dx.doi.org/10.1046/j.1472-765X.1999.00605.x] [PMID: 10499301]
[152]
Dorman, H.J.; Deans, S.G. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x] [PMID: 10736000]
[153]
Kamatou, G.P.P.; Viljoen, A.M. A review of the application and pharmacological properties of α-bisabolol and α-bisabolol-rich oils. J. Am. Oil Chem. Soc., 2010, 87, 1-7.
[http://dx.doi.org/10.1007/s11746-009-1483-3]
[154]
Turina, A.V.; Nolan, M.V.; Zygadlo, J.A.; Perillo, M.A. Natural terpenes: self-assembly and membrane partitioning. Biophys. Chem., 2006, 122(2), 101-113.
[http://dx.doi.org/10.1016/j.bpc.2006.02.007] [PMID: 16563603]
[155]
Mann, C.M.; Cox, S.D.; Markham, J.L. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Lett. Appl. Microbiol., 2000, 30(4), 294-297.
[http://dx.doi.org/10.1046/j.1472-765x.2000.00712.x] [PMID: 10792649]
[156]
Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel), 2013, 6(12), 1451-1474.
[http://dx.doi.org/10.3390/ph6121451] [PMID: 24287491]
[157]
McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med., 2000, 108(8), 652-659.
[http://dx.doi.org/10.1016/S0002-9343(00)00412-5] [PMID: 10856414]
[158]
Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother. Res., 2007, 21(4), 308-323.
[http://dx.doi.org/10.1002/ptr.2072] [PMID: 17199238]
[159]
Frankel, E.N.; Neff, W.E. Formation of malonaldehyde from lipid oxidation products. Biochim. Biophys. Acta, 1983, 754, 264-270.
[http://dx.doi.org/10.1016/0005-2760(83)90141-8]
[160]
Basu, A.K.; Marnett, L.J.; Romano, L.J. Dissociation of malondialdehyde mutagenicity in Salmonella typhimurium from its ability to induce interstrand DNA cross-links. Mutat. Res., 1984, 129(1), 39-46.
[http://dx.doi.org/10.1016/0027-5107(84)90121-0] [PMID: 6387469]
[161]
Nair, V.; Cooper, C.S.; Vietti, D.E.; Turner, G.A. The chemistry of lipid peroxidation metabolites: crosslinking reactions of malondialdehyde. Lipids, 1986, 21(1), 6-10.
[http://dx.doi.org/10.1007/BF02534294] [PMID: 3959768]
[162]
Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med., 1991, 11(1), 81-128.
[http://dx.doi.org/10.1016/0891-5849(91)90192-6] [PMID: 1937131]
[163]
Ekanayake Mudiyanselage, S.; Hamburger, M.; Elsner, P.; Thiele, J.J. Ultraviolet a induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. J. Invest. Dermatol., 2003, 120(6), 915-922.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12233.x] [PMID: 12787115]
[164]
Picardo, M.; Zompetta, C.; De Luca, C.; Cirone, M.; Faggioni, A.; Nazzaro-Porro, M.; Passi, S.; Prota, G. Role of skin surface lipids in UV-induced epidermal cell changes. Arch. Dermatol. Res., 1991, 283(3), 191-197.
[http://dx.doi.org/10.1007/BF00372061] [PMID: 1867482]
[165]
Saint-Leger, D.; Bague, A.; Cohen, E.; Chivot, M. A possible role for squalene in the pathogenesis of acne. I. In vitro study of squalene oxidation. Br. J. Dermatol., 1986, 114(5), 535-542.
[http://dx.doi.org/10.1111/j.1365-2133.1986.tb04060.x] [PMID: 2941049]
[166]
Saint-Leger, D.; Bague, A.; Lefebvre, E.; Cohen, E.; Chivot, M. A possible role for squalene in the pathogenesis of acne. II. In vivo study of squalene oxides in skin surface and intra-comedonal lipids of acne patients. Br. J. Dermatol., 1986, 114(5), 543-552.
[http://dx.doi.org/10.1111/j.1365-2133.1986.tb04061.x] [PMID: 2941050]
[167]
Chiba, K.; Sone, T.; Kawakami, K.; Onoue, M. Skin roughness and wrinkle formation induced by repeated application of squalene-monohydroperoxide to the hairless mouse. Exp. Dermatol., 1999, 8(6), 471-479.
[http://dx.doi.org/10.1111/j.1600-0625.1999.tb00305.x] [PMID: 10597136]
[168]
Tomaino, A.; Cimino, F.; Zimbalatti, V.; Venuti, V.; Sulfaro, V.; De Pasquale, A.; Saija, A. Influence of heating on antioxidant activity and the chemical compositionof some spice essential oils. Food Chem., 2005, 89, 549-554.
[http://dx.doi.org/10.1016/j.foodchem.2004.03.011]
[169]
Ferguson, L.R.; Philpott, M. Nutrition and mutagenesis. Annu. Rev. Nutr., 2008, 28, 313-329.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155449] [PMID: 18399774]
[170]
Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules, 2010, 15(12), 9252-9287.
[http://dx.doi.org/10.3390/molecules15129252] [PMID: 21160452]
[171]
Cavar, S.; Maksimovic, M.; Vidic, D.; Paric, A. 2012.
[172]
Sanchez-Vioque, R.; Polissiou, M.; Astraka, K.; Mozos-Pascual, M.; Tarantilis, P.; Herraiz-Penalver, D.; Santana-Meridas, O. Polyphenol composition andantioxidant and metal chelating activities of the solid residues from the essentialoil industry. Ind. Crops Prod., 2013, 49, 150-159.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.053]
[173]
Rice-Evans, C.A.; Miller, N.T.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci., 1997, 4, 304-309.
[174]
Wei, A.; Shibamoto, T. Antioxidant activities and volatile constituents of various essential oils. J. Agric. Food Chem., 2007, 55(5), 1737-1742.
[http://dx.doi.org/10.1021/jf062959x] [PMID: 17295511]
[175]
Maestri, D.M.; Nepote, V.; Lamarque, A.L.; Zygadlo, J.A. Natural products asantioxidants.Phytochemistry: Advances in Research; Filippo, I., Ed.; Res.Signpost: Trivandrum, India, 2006, pp. 105-135.
[176]
Tripathi, R.; Mohan, H.; Kamat, J.P. Modulation of oxidative damage by naturalproducts. Food Chem., 2007, 100, 81-90.
[http://dx.doi.org/10.1016/j.foodchem.2005.09.012]
[177]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: a short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[178]
Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and antioxidant properties of theessential oils and methanol extract from Mentha longifolia L. sp. longifolia. Food Chem., 2007, 103, 1449-1456.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.061]
[179]
Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem., 2008, 108(3), 986-995.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.010] [PMID: 26065762]
[180]
Kim, E.Y.; Baik, I.H.; Kim, J.H.; Kim, S.R.; Rhyu, M.R. Screening of the antioxidantactivity of some medicinal plants. Korean J. Food Sci. Technol., 2004, 36, 333-338.
[181]
Mau, J.L.; Lai, E.Y.; Wang, N.P.; Chen, C.C.; Chang, C.H.; Chyau, C.C. Composition and antioxidant activity ofthe essential oil from Curcuma zedoaria. Food Chem., 2003, 82, 583-591.
[http://dx.doi.org/10.1016/S0308-8146(03)00014-1]
[182]
Politeo, O.; Jukic, M.; Milos, M. Chemical composition and antioxidant capacityof free volatile aglycones from basil (Ocimum basilicum L.) compared with itsessential oil. Food Chem., 2007, 101, 379-385.
[http://dx.doi.org/10.1016/j.foodchem.2006.01.045]
[183]
Tepe, B.; Donmez, E.; Unlu, M.; Candan, F.; Daferera, D.; Vardar-Unlu, G.; Polissiou, M.; Sokmen, A. Antimicrobial and antioxidative activities of the essentialoils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem., 2004, 84, 519-525.
[http://dx.doi.org/10.1016/S0308-8146(03)00267-X]
[184]
Romeilah, R.M.; Fayed, S.A.; Mahmoud, G.I. Chemical compositions, antiviral and antioxidant activities of seven essential oils. J. Appl. Sci. Res., 2010, 6, 60-62.
[185]
Lee, S.J.; Umano, K.; Shibamoto, T.; Lee, K.G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem., 2005, 91, 131-137.
[http://dx.doi.org/10.1016/j.foodchem.2004.05.056]
[186]
Jirovetz, L.; Buchbauer, G.; Stoilova, I.; Stoyanova, A.; Krastanov, A.; Schmidt, E. Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem., 2006, 54(17), 6303-6307.
[http://dx.doi.org/10.1021/jf060608c] [PMID: 16910723]
[187]
Wei, A.; Shibamoto, T. Antioxidant activities of essential oil mixtures toward skin lipid squalene oxidized by UV irradiation. Cutan. Ocul. Toxicol., 2007, 26(3), 227-233.
[http://dx.doi.org/10.1080/15569520701224501] [PMID: 17687687]
[188]
Hotamisligil, G.S. Inflammation and metabolic disorders. Nature, 2006, 444(7121), 860-867.
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[189]
Umano, K.; Nakahara, K.; Shoji, A.; Shibamoto, T. Aroma chemicals isolated and identified from leaves of Aloe arborescens Mill. Var. Natalensis Berger. J. Agric. Food Chem., 1999, 47(9), 3702-3705.
[http://dx.doi.org/10.1021/jf990116i] [PMID: 10552708]
[190]
Vázquez, B.; Avila, G.; Segura, D.; Escalante, B. Antiinflammatory activity of extracts from Aloe vera gel. J. Ethnopharmacol., 1996, 55(1), 69-75.
[http://dx.doi.org/10.1016/S0378-8741(96)01476-6] [PMID: 9121170]
[191]
Chao, L.K.; Hua, K.F.; Hsu, H.Y.; Cheng, S.S.; Liu, J.Y.; Chang, S.T. Study on the antiinflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. J. Agric. Food Chem., 2005, 53(18), 7274-7278.
[http://dx.doi.org/10.1021/jf051151u] [PMID: 16131142]
[192]
Chao, L.K.; Hua, K.F.; Hsu, H.Y.; Cheng, S.S.; Lin, I.F.; Chen, C.J.; Chen, S.T.; Chang, S.T. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food Chem. Toxicol., 2008, 46(1), 220-231.
[http://dx.doi.org/10.1016/j.fct.2007.07.016] [PMID: 17868967]
[193]
Santos, F.A.; Rao, V.S. Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother. Res., 2000, 14(4), 240-244.
[http://dx.doi.org/10.1002/1099-1573(200006)14:4<240:AID-PTR573>3.0.CO;2-X] [PMID: 10861965]
[194]
Singh, S.; Majumdar, D.K. Evaluation of antiinflammatory activity of fatty acids of Ocimum sanctum fixed oil. Indian J. Exp. Biol., 1997, 35(4), 380-383.
[195]
Onwukaeme, N.D. Anti-inflammatory activities of flavonoids of Baphia nitida Lodd. (Leguminosae) on mice and rats. J. Ethnopharmacol., 1995, 46(2), 121-124.
[http://dx.doi.org/10.1016/0378-8741(94)01221-K] [PMID: 7650950]
[196]
Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. sp. longifolia. Food Chem., 2007, 103, 1449-1456.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.061]
[197]
Hajhashemi, V.; Ghannadi, A.; Sharif, B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J. Ethnopharmacol., 2003, 89(1), 67-71.
[http://dx.doi.org/10.1016/S0378-8741(03)00234-4] [PMID: 14522434]
[198]
Moreno, L.; Bello, R.; Primo-Yúfera, E.; Esplugues, J. Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytother. Res., 2002, 16(Suppl. 1), S10-S13.
[http://dx.doi.org/10.1002/ptr.744] [PMID: 11933132]
[199]
Silva, J.; Abebe, W.; Sousa, S.M.; Duarte, V.G.; Machado, M.I.L.; Matos, F.J.A. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J. Ethnopharmacol., 2003, 89(2-3), 277-283.
[http://dx.doi.org/10.1016/j.jep.2003.09.007] [PMID: 14611892]
[200]
Darshan, S.; Doreswamy, R. Patented antiinflammatory plant drug development from traditional medicine. Phytother. Res., 2004, 18(5), 343-357.
[http://dx.doi.org/10.1002/ptr.1475] [PMID: 15173991]
[201]
Barbieri Xavier, V.; Vargas, R.M.F.; Minteguiaga, M.; Umpierrez, N.; Dellacassa, E.; Cassel, E. Evaluation of the key odorants of Baccharis anomala DC essential oil: new applications for known products. Ind. Crops Prod., 2013, 49, 492-496.
[http://dx.doi.org/10.1016/j.indcrop.2013.05.011]
[202]
Salud, P.G.; Miguel, Z.S.; Lucina, A.G.; Miguel, R.L. Anti-inflammatory activity of some essential oils. J. Essent. Oil Res., 2011, 23, 38-44.
[http://dx.doi.org/10.1080/10412905.2011.9700480]
[203]
De Flora, S.; Bagnasco, M.; Vainio, H. Modulation of genotoxic and related effects by carotenoids and vitamin A in experimental models: mechanistic issues. Mutagenesis, 1999, 14(2), 153-172.
[http://dx.doi.org/10.1093/mutage/14.2.153] [PMID: 10229917]
[204]
Dahanukar, S.A.; Kulkarni, R.A.; Rege, N.N. Pharmacology of medicinal plants and natural products. Int. J. Pharmacol., 2000, 32, 81-118.
[205]
Jeena, K.; Liju, V.B.; Viswanathan, R.; Kuttan, R. Antimutagenic potential and modulation of carcinogen-metabolizing enzymes by ginger essential oil. Phytother. Res., 2014, 28(6), 849-855.
[http://dx.doi.org/10.1002/ptr.5064] [PMID: 24023002]
[206]
Varona, S.; Rodriguez, R.S.; Martín, A.; Cocero, M.J.; Serra, A.T.; Crespo, T.; Duarte, C.M. Antimicrobial activity of lavandin essential oil formulations against three pathogenic food-borne bacteria. Ind. Crops Prod., 2013, 42, 243-250.
[http://dx.doi.org/10.1016/j.indcrop.2012.05.020]
[207]
Hernández-Ceruelos, A.; Madrigal-Bujaidar, E.; de la Cruz, C. Inhibitory effect of chamomile essential oil on the sister chromatid exchanges induced by daunorubicin and methyl methanesulfonate in mouse bone marrow. Toxicol. Lett., 2002, 135(1-2), 103-110.
[http://dx.doi.org/10.1016/S0378-4274(02)00253-9] [PMID: 12243869]
[208]
Evandri, M.G.; Battinelli, L.; Daniele, C.; Mastrangelo, S.; Bolle, P.; Mazzanti, G. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay. Food Chem. Toxicol., 2005, 43(9), 1381-1387.
[http://dx.doi.org/10.1016/j.fct.2005.03.013] [PMID: 15907354]
[209]
Gomes-Carneiro, M.R.; Dias, D.M.; De-Oliveira, A.C.A.X.; Paumgartten, F.J. Evaluation of mutagenic and antimutagenic activities of alpha-bisabolol in the Salmonella/microsome assay. Mutat. Res., 2005, 585(1-2), 105-112.
[http://dx.doi.org/10.1016/j.mrgentox.2005.04.007] [PMID: 15936245]
[210]
Vuković-Gacić, B.; Nikcević, S.; Berić-Bjedov, T.; Knezević-Vukcević, J.; Simić, D. Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae. Food Chem. Toxicol., 2006, 44(10), 1730-1738.
[http://dx.doi.org/10.1016/j.fct.2006.05.011] [PMID: 16814443]
[211]
Sharma, M.; Kishore, K.; Gupta, S.K.; Joshi, S.; Arya, D.S. Cardioprotective potential of Ocimum sanctum in isoproterenol induced myocardial infarction in rats., 2001.
[212]
Ipek, E.; Zeytinoglu, H.; Okay, S.; Tuylu, B.A.; Kurkcuoglu, M.; Baser, K. Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem., 2005, 93, 551-556.
[http://dx.doi.org/10.1016/j.foodchem.2004.12.034]
[213]
Wilkinson, S.M.; Love, S.B.; Westcombe, A.M.; Gambles, M.A.; Burgess, C.C.; Cargill, A.; Young, T.; Maher, E.J.; Ramirez, A.J. Effectiveness of aromatherapy massage in the management of anxiety and depression in patients with cancer: a multicenter randomized controlled trial. J. Clin. Oncol., 2007, 25(5), 532-539.
[http://dx.doi.org/10.1200/JCO.2006.08.9987] [PMID: 17290062]
[214]
Clark, D.L.; Boutros, N.N. The Brain and Behaviour: An Introduction to Behavioural Neuroanatomy; Blackwell Science: Oxford, 1999.
[215]
Yamada, K.; Mimaki, Y.; Sashida, Y. Anticonvulsive effects of inhaling lavender oil vapour. Biol. Pharm. Bull., 1994, 17(2), 359-360.
[http://dx.doi.org/10.1248/bpb.17.359] [PMID: 8205140]
[216]
Elisabetsky, E.; Marschner, J.; Souza, D.O. Effects of Linalool on glutamatergic system in the rat cerebral cortex. Neurochem. Res., 1995, 20(4), 461-465.
[http://dx.doi.org/10.1007/BF00973103] [PMID: 7651584]
[217]
Aoshima, H.; Hossain, S.J.; Hamamoto, K.; Yokoyama, T.; Yamada, M.; Shingai, R. Kinetic analyses of alcohol-induced potentiation of the response of GABA(A) receptors composed of alpha(1) and beta(1) subunits. J. Biochem., 2001, 130(5), 703-709.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003037] [PMID: 11686934]
[218]
Ozkaraman, A.; Dügüm, Ö.; Özen Yılmaz, H.; Usta Yesilbalkan, Ö. Aromatherapy: the effect of lavender on anxiety and sleep quality in patients treated with chemotherapy. Clin. J. Oncol. Nurs., 2018, 22(2), 203-210.
[http://dx.doi.org/10.1188/18.CJON.203-210] [PMID: 29547610]
[219]
Ahmadi, F.; Memarian, R. The effect of Lavender aromatherapy program on the pain intensity of patients with AML undergoing chemotherapy. J. Urmia Nurs. Midwifery Fac., 2013, 11(3), 180-186.
[220]
Jibb, L.A.; Nathan, P.C.; Stevens, B.J.; Seto, E.; Cafazzo, J.A.; Stephens, N.; Yohannes, L.; Stinson, J.N. Psychological and physical interventions for the management of cancer-related pain in pediatric and young adult patients: an integrative review. Oncol. Nurs. Forum, 2015, 42(6), E339-E357.
[http://dx.doi.org/10.1188/15.ONF.E339-E357] [PMID: 26488841]
[221]
Chen, T-H.; Tung, T-H.; Chen, P-S.; Wang, S-H.; Chao, C-M.; Hsiung, N-H.; Chi, C-C. The clinical effects of aromatherapy massage on reducing pain for the cancer patients: meta‐analysis of randomized controlled trials. Evid. Based Complement. Alternat. Med., 2016, 20169147974
[http://dx.doi.org/10.1155/2016/9147974] [PMID: 26884799]
[222]
Zorba, P.; Ozdemir, L. The preliminary effects of massage and inhalation aromatherapy on chemotherapy-induced acute nausea and vomiting: a quasi-randomized controlled pilot trial. Cancer Nurs., 2018, 41(5), 359-366.
[http://dx.doi.org/10.1097/NCC.0000000000000496] [PMID: 28426542]
[223]
Lua, P.L.; Salihah, N.; Mazlan, N. Effects of inhaled ginger aromatherapy on chemotherapy-induced nausea and vomiting and health-related quality of life in women with breast cancer. Complement. Ther. Med., 2015, 23(3), 396-404.
[http://dx.doi.org/10.1016/j.ctim.2015.03.009] [PMID: 26051575]
[224]
Lua, P.L.; Zakaria, N.S. A brief review of current scientific evidence involving aromatherapy use for nausea and vomiting. J. Altern. Complement. Med., 2012, 18(6), 534-540.
[http://dx.doi.org/10.1089/acm.2010.0862] [PMID: 22784340]
[225]
Khalili, Z.; Khatiban, M.; Faradmal, J.; Abbasi, M.; Zeraati, F.; Khazaei, A. Effect of cardamom aromas on the chemotherapy‐induced nausea and vomiting in cancer patients; , 2014.
[226]
Khiewkhern, S.; Promthet, S.; Sukprasert, A.; Eunhpinitpong, W.; Bradshaw, P. Effectiveness of aromatherapy with light Thai massage for cellular immunity improvement in colorectal cancer patients receiving chemotherapy. Asian Pac. J. Cancer Prev., 2013, 14(6), 3903-3907.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3903] [PMID: 23886205]
[227]
Lee, M-K.; Lim, S.; Song, J-A.; Kim, M-E.; Hur, M-H. The effects of aromatherapy essential oil inhalation on stress, sleep quality and immunity in healthy adults: randomized controlled trial. Eur. J. Integr. Med., 2017, 12, 79-86.
[http://dx.doi.org/10.1016/j.eujim.2017.04.009]
[228]
D’Angelo, R. Aromatherapy.Handbook of Complementary and Alternative Therapies in Mental Health; Acedemic Press: USA, 2002, pp. 71-92.
[229]
Klafke, N.; Mahler, C.; von Hagens, C.; Blaser, G.; Bentner, M.; Joos, S. Developing and implementing a complex complementary and alternative (CAM) nursing intervention for breast and gynecologic cancer patients undergoing chemotherapy-report from the CONGO (complementary nursing in gynecologic oncology) study. Support. Care Cancer, 2016, 24(5), 2341-2350.
[http://dx.doi.org/10.1007/s00520-015-3038-5] [PMID: 26630949]
[230]
Joswiak, D.; Kinney, M.E.; Johnson, J.R.; Kolste, A.K.; Griffin, K.H.; Rivard, R.L.; Dusek, J.A. Development of a health system-based nurse‐delivered aromatherapy program. J. Nurs. Adm., 2016, 46(4), 221-225.
[http://dx.doi.org/10.1097/NNA.0000000000000327] [PMID: 27011157]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy