Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Endocrine-Disrupting Compounds in Fish Physiology, with Emphasis on their Effects on the Arginine Vasotocin/Isotocin System

Author(s): Hanna Kalamarz-Kubiak*

Volume 22, Issue 7, 2022

Published on: 12 January, 2022

Page: [738 - 747] Pages: 10

DOI: 10.2174/1871530321666210202150947

Price: $65

Abstract

Background and Objectives: The purposes of this review are to promote better use of existing knowledge of marine pollutants, especially endocrine-disrupting compounds (EDCs), and to draw attention to the slow progression of the research on the influence of those compounds on arginine vasotocin/isotocin system (AVT/IT) in fish. EDCs are leading to the degradation of fish habitats, reducing their spawning potential and possibly their population parameters (e.g. growth, maturation), by preventing fish from breeding and rebuilding their populations. Therefore, searching for new welfare indicators such as AVT and IT and developing research procedures mimicking environmental conditions using a versatile fish model is extremely important.

Discussion: Fish species such as zebrafish (Danio rerio) and round goby (Neogobius melanostomus) can be recommended as very suitable models for studying estrogenic EDCs on the AVT/IT system and other hormones involved in the neuroendocrine regulation of physiological processes in fish.

Conclusion: These studies would not only improve our understanding of the effects of EDCs on vertebrates but could also help safeguard the well-being of aquatic and terrestrial organisms from the harmful effects of these compounds.

Keywords: Endocrine disruptors, AVT/IT system, fish model, welfare indicators, aquatic environment, anthropogenic chemical pollutants.

Graphical Abstract

[1]
Burkhardt-Holm, P. Endocrine disruptors and water quality: a state-of-the-art. Review. Inter. J. Water Res. Develop, 2010, 26(3), 477-493.
[http://dx.doi.org/10.1080/07900627.2010.489298]
[2]
Vos, J.G.; Dybing, E.; Greim, H.A.; Ladefoged, O.; Lambré, C.; Tarazona, J.V.; Brandt, I.; Vethaak, A.D. Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit. Rev. Toxicol., 2000, 30(1), 71-133.
[http://dx.doi.org/10.1080/10408440091159176] [PMID: 10680769]
[3]
Gonsioroski, A.; Mourikes, V.E.; Flaws, J.A. Endocrine disruptors in water and their effects on the reproductive system. Int. J. Mol. Sci., 2020, 21(6), 1929.
[http://dx.doi.org/10.3390/ijms21061929] [PMID: 32178293]
[4]
Massarsky, A.; Trudeau, V.L.; Moon, T.W. β-blockers as endocrine disruptors: the potential effects of human β-blockers on aquatic organisms. J. Exp. Zool. A Ecol. Genet. Physiol., 2011, 315(5), 251-265.
[http://dx.doi.org/10.1002/jez.672] [PMID: 21370487]
[5]
Perreault, H.A.; Semsar, K.; Godwin, J. Fluoxetine treatment decreases territorial aggression in a coral reef fish. Physiol. Behav., 2003, 79(4-5), 719-724.
[http://dx.doi.org/10.1016/S0031-9384(03)00211-7] [PMID: 12954414]
[6]
Flippin, J.L.; Huggett, D.; Foran, C.M. Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquat. Toxicol., 2007, 81(1), 73-78.
[http://dx.doi.org/10.1016/j.aquatox.2006.11.002] [PMID: 17166604]
[7]
Mennigen, J.A.; Lado, W.E.; Zamora, J.M.; Duarte-Guterman, P.; Langlois, V.S.; Metcalfe, C.D.; Chang, J.P.; Moon, T.W.; Trudeau, V.L. Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus. Aquat. Toxicol., 2010, 100(4), 354-364.
[http://dx.doi.org/10.1016/j.aquatox.2010.08.016] [PMID: 20864192]
[8]
Brander, S.M. Thinking Outside the Box: Assessing Endocrine Disruption in Aquatic Life. Monitoring Water Quality: Pollution Assessment, Analysis, and Remediation. ; Ahuja, S., Ed.; Elsevier Science B.V: Amsterdam, 2013, pp. 103-147.
[http://dx.doi.org/10.1016/B978-0-444-59395-5.00005-4]
[9]
Pait, A.S.; Nelson, J.O. Endocrine disruption in fish. An assessment of recent research and results. NOAA Technical Memorandum NOS NCCOS CCMA 149; Silver Spring, 2020, p. 55.
[10]
Mills, L.J.; Chichester, C. Review of evidence: are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Sci. Total Environ., 2005, 343(1-3), 1-34.
[http://dx.doi.org/10.1016/j.scitotenv.2004.12.070] [PMID: 15862833]
[11]
Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Int., 2017, 99, 107-119.
[http://dx.doi.org/10.1016/j.envint.2016.12.010] [PMID: 28040262]
[12]
Okkerman, P.C.; Groshart, C.P.; Pijnenburg, A.M.C.M. Chemical study on estrogens. Rijksinstituut voor Kust en Zee, Directoraat-Generaal Rijkswaterstaat, Ministerie van Verkeer en Waterstaat Report RIKZ/2001.028, 2001.
[13]
Zhang, H.; Shi, J.; Liu, X.; Zhan, X.; Chen, Q. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China. Water Res., 2014, 58, 248-257.
[http://dx.doi.org/10.1016/j.watres.2014.03.074] [PMID: 24768704]
[14]
Rocha, M.J.; Rocha, E. Estrogenic compounds in estuarine and coastal water environments of the iberian western atlantic coast and selected locations worldwide — Relevancy, trends and challenges in view of the eu water framework directive. In: Toxicology Studies - Cells, Drugs and Environment; Andreazza, A.C.; Scola, G., Eds.; IntechOpen: London, 2015, pp. 153-193.
[http://dx.doi.org/10.5772/59885]
[15]
Afifi, R.; Elnwishy, N.; Hannora, A.; Hedström, M.; Mattiasson, B.; Omran, H.; Alharbi, O.M.L.; Ali, I. SPE and HPLC monitoring of 17-β-estradiol in Egyptian aquatic ecosystems. J. Liq. Chromatogr. Relat. Technol., 2016, 39(8), 428-434.
[http://dx.doi.org/10.1080/10826076.2016.1174712]
[16]
Pusceddu, F.H.; Sugauara, L.E.; de Marchi, M.R.; Choueri, R.B.; Castro, Í.B. Estrogen levels in surface sediments from a multi-impacted Brazilian estuarine system. Mar. Pollut. Bull., 2019, 142, 576-580.
[http://dx.doi.org/10.1016/j.marpolbul.2019.03.052] [PMID: 31232341]
[17]
Elnwish, N.; Hanora, A.; Hedström, M.; Afifi, R.; Mattiasson, B.; Omran, H. Monitoring of 17 β-estradiol residues in the Suez Canal Region. Egypt J. Aquat. Biol. Fish., 2012, 16(2), 73-81.
[http://dx.doi.org/10.21608/ejabf.2012.2126]
[18]
National Research Council. Transport and fate of pollutants in the coastal marine environment. In: Managing wastewater in coastal urban areas; Washington, 1993, 231-294.
[19]
Thomas, P.; Rahman, M.S.; Khan, I.A.; Kummer, J.A. Widespread endocrine disruption and reproductive impairment in an estuarine fish population exposed to seasonal hypoxia. Proc. Biol. Sci., 2007, 274(1626), 2693-2701.
[http://dx.doi.org/10.1098/rspb.2007.0921] [PMID: 17725976]
[20]
Jin, Y.; Chen, R.; Sun, L.; Liu, W.; Fu, Z. Photoperiod and temperature influence endocrine disruptive chemical-mediated effects in male adult zebrafish. Aquat. Toxicol., 2009, 92(1), 38-43.
[http://dx.doi.org/10.1016/j.aquatox.2009.01.003] [PMID: 19223081]
[21]
Thomas, P.; Rahman, M.S. Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic croaker in the northern Gulf of Mexico hypoxic zone. Proc. Biol. Sci., 2012, 279(1726), 28-38.
[http://dx.doi.org/10.1098/rspb.2011.0529] [PMID: 21613294]
[22]
Thorpe, K.L.; Cummings, R.I.; Hutchinson, T.H.; Scholze, M.; Brighty, G.; Sumpter, J.P.; Tyler, C.R. Relative potencies and combination effects of steroidal estrogens in fish. Environ. Sci. Technol., 2003, 37(6), 1142-1149.
[http://dx.doi.org/10.1021/es0201348] [PMID: 12680667]
[23]
Brian, J.V.; Harris, C.A.; Scholze, M.; Backhaus, T.; Booy, P.; Lamoree, M.; Pojana, G.; Jonkers, N.; Runnalls, T.; Bonfà, A.; Marcomini, A.; Sumpter, J.P. Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals. Environ. Health Perspect., 2005, 113(6), 721-728.
[http://dx.doi.org/10.1289/ehp.7598] [PMID: 15929895]
[24]
Correia, A.D.; Freitas, S.; Scholze, M.; Gonçalves, J.F.; Booij, P.; Lamoree, M.H.; Mañanós, E.; Reis-Henriques, M.A. Mixtures of estrogenic chemicals enhance vitellogenic response in sea bass. Environ. Health Perspect., 2007, 115(S-1)(Suppl. 1), 115-121.
[http://dx.doi.org/10.1289/ehp.9359] [PMID: 18174959]
[25]
Söffker, M.; Tyler, C.R. Endocrine disrupting chemicals and sexual behaviors in fish--a critical review on effects and possible consequences. Crit. Rev. Toxicol., 2012, 42(8), 653-668.
[http://dx.doi.org/10.3109/10408444.2012.692114] [PMID: 22697575]
[26]
Ellis, R.J.; van den Heuvel, M.R.; Smith, M.A.; Ling, N. Effects of maternal versus direct exposure to pulp and paper mill effluent on rainbow trout early life stages. J. Toxicol. Environ. Health A, 2005, 68(5), 369-387.
[http://dx.doi.org/10.1080/15287390590900787] [PMID: 15799628]
[27]
Vethaak, D.; Legler, J. Endocrine Disruption in Wildlife: background, effects and implications.Endocrine Disrupters Hazard Testing and Assessment Methods; Matthiessen, P., Ed.; Wiley & Sons: New Jersey, 2013, pp. 7-40.
[http://dx.doi.org/10.1002/9781118355961.ch2]
[28]
World Health Organization (WHO)/ United Nations Environment Programme (UNEP). State of the science of endocrine disrupting chemicals – 2012, Summary for Decision-Makers, 2013.
[29]
Khetan, S.K. Environmental Endocrine Disruptors, 1st ed; John Wiley & Sons, Inc.: New Jersey, 2014, pp. 29-55.
[http://dx.doi.org/10.1002/9781118891094.ch2]
[30]
Flett, P.A.; Leatherland, J.F. Dose-related effects of 17β-oestradiol (E2) on liver weight, plasma E2, protein, calcium and thyroid hormone levels, and measurement of the binding of thyroid hormones to vitellogenin in rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 1989, 34(4), 515-527.
[http://dx.doi.org/10.1111/j.1095-8649.1989.tb03332.x]
[31]
Miles-Richardson, S.R.; Kramer, V.J.; Fitzgerald, S.D.; Render, J.A.; Yamini, B.; Barbee, S.J.; Giesy, J.P. Effects of waterborne exposure of 17β-estradiol on secondary sex characteristics and gonads of fathead minnows (Pimephales promelas). Aquat. Toxicol., 1999, 47(2), 129-145.
[http://dx.doi.org/10.1016/S0166-445X(99)00009-0]
[32]
Devlin, R.H.; Nagahama, Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 2002, 208(3–4), 191-364.
[http://dx.doi.org/10.1016/S0044-8486(02)00057-1]
[33]
Combarnous, Y.; Nguyen, T.M.D. Comparative overview of the mechanisms of action of hormones and endocrine disruptor compounds. Toxics, 2019, 7(1), 5.
[http://dx.doi.org/10.3390/toxics7010005] [PMID: 30682876]
[34]
Windsor, F.M.; Ormerod, S.J.; Tyler, C.R. Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences. Biol. Rev. Camb. Philos. Soc., 2018, 93(1), 626-641.
[http://dx.doi.org/10.1111/brv.12360] [PMID: 28795474]
[35]
Wuttke, W.; Jarry, H.; Seidlova-Wuttke, D. Definition, classification and mechanism of action of endocrine disrupting chemicals. Hormones (Athens), 2010, 9(1), 9-15.
[http://dx.doi.org/10.1007/BF03401276] [PMID: 20363717]
[36]
Pinto, P.I.; Estêvão, M.D.; Power, D.M. Effects of estrogens and estrogenic disrupting compounds on fish mineralized tissues. Mar. Drugs, 2014, 12(8), 4474-4494.
[http://dx.doi.org/10.3390/md12084474] [PMID: 25196834]
[37]
Le Page, Y.; Vosges, M.; Servili, A.; Brion, F.; Kah, O. Neuroendocrine effects of endocrine disruptors in teleost fish. J. Toxicol. Environ. Health B Crit. Rev., 2011, 14(5-7), 370-386.
[http://dx.doi.org/10.1080/10937404.2011.578558] [PMID: 21790317]
[38]
Waye, A.; Trudeau, V.L. Neuroendocrine disruption: more than hormones are upset. J. Toxicol. Environ. Health B Crit. Rev., 2011, 14(5-7), 270-291.
[http://dx.doi.org/10.1080/10937404.2011.578273] [PMID: 21790312]
[39]
Hachfi, L.; Couvray, S.; Simide, R.; Tarnowska, K.; Pierre, S.; Gaillard, S.; Richard, S.; Coupé, S.; Grillasca, J-P.; Prévot-D’Alvise, N. Impact of endocrine disrupting chemicals [EDCs] on hypothalamic-pituitary-gonad-liver [HPGL] axis in fish. World J. Fish. Mar. Sci., 2012, 4(1), 14-30.
[40]
Guellard, T.; Kalamarz-Kubiak, H.; Arciszewski, B. Effect of short-term intermittent exposure to waterborne estradiol on the reproductive physiology of the round goby (Neogobius melanostomus). Environ. Sci. Pollut. Res. Int., 2020, 27(29), 36799-36815.
[http://dx.doi.org/10.1007/s11356-020-09702-3] [PMID: 32572740]
[41]
Banerjee, P.; Joy, K.P.; Chaube, R. Structural and functional diversity of nonapeptide hormones from an evolutionary perspective: A review. Gen. Comp. Endocrinol., 2017, 241(15), 4-23.
[http://dx.doi.org/10.1016/j.ygcen.2016.04.025] [PMID: 27133544]
[42]
Holmqvist, B.I.; Ekström, P. Hypophysiotrophic systems in the brain of the Atlantic salmon. Neuronal innervation of the pituitary and the origin of pituitary dopamine and nonapeptides identified by means of combined carbocyanine tract tracing and immunocytochemistry. J. Chem. Neuroanat., 1995, 8(2), 125-145.
[http://dx.doi.org/10.1016/0891-0618(94)00041-Q] [PMID: 7598813]
[43]
Saito, D.; Komatsuda, M.; Urano, A. Functional organization of preoptic vasotocin and isotocin neurons in the brain of rainbow trout: central and neurohypophysial projections of single neurons. Neuroscience, 2004, 124(4), 973-984.
[http://dx.doi.org/10.1016/j.neuroscience.2003.12.038] [PMID: 15026137]
[44]
Hiraoka, S.; Suzuki, M.; Yanagisawa, T.; Iwata, M.; Urano, A. Divergence of gene expression in neurohypophysial hormone precursors among salmonids. Gen. Comp. Endocrinol., 1993, 92(2), 292-301.
[http://dx.doi.org/10.1006/gcen.1993.1165] [PMID: 8282177]
[45]
Kulczykowska, E.; Warne, J.M.; Balment, R.J. Day-night variations in plasma melatonin and arginine vasotocin concentrations in chronically cannulated flounder (Platichthys flesus). Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2001, 130(4), 827-834.
[http://dx.doi.org/10.1016/S1095-6433(01)00444-5] [PMID: 11691618]
[46]
McCormick, S.D.; Bradshaw, D. Hormonal control of salt and water balance in vertebrates. Gen. Comp. Endocrinol., 2006, 147(1), 3-8.
[http://dx.doi.org/10.1016/j.ygcen.2005.12.009] [PMID: 16457828]
[47]
Kulczykowska, E. Arginine vasotocin and isotocin: Towards their role in fish osmoregulation. Fish Osmoregulation; Baldisserotto, B.; Romero Mancera, J.M.; Kapoor, B.G., Eds.; Science Publisher: Durham, NH, 2007, pp. 151-176.
[http://dx.doi.org/10.1201/b10994-7]
[48]
Mancera, J.M.; Vargas-Chacoff, L.; García-López, A.; Kleszczyńska, A.; Kalamarz, H.; Martínez-Rodríguez, G.; Kulczykowska, E. High density and food deprivation affect arginine vasotocin, isotocin and melatonin in gilthead sea bream (Sparus auratus). Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2008, 149(1), 92-97.
[http://dx.doi.org/10.1016/j.cbpa.2007.10.016] [PMID: 18054261]
[49]
Kalamarz-Kubiak, H.; Meiri-Ashkenazi, I.; Kleszczyńska, A.; Rosenfeld, H. In vitro effect of cortisol and urotensin I on arginine vasotocin and isotocin secretion from pituitary cells of gilthead sea bream Sparus aurata. J. Fish Biol., 2014, 84(2), 448-458.
[http://dx.doi.org/10.1111/jfb.12297] [PMID: 24405471]
[50]
Kalamarz-Kubiak, H.; Kleszczyńska, A.; Kulczykowska, E. Cortisol stimulates arginine vasotocin and isotocin release from the hypothalamo-pituitary complex of round goby (Neogobius melanostomus): Probable mechanisms of action. J. Exp. Zool. A Ecol. Genet. Physiol., 2015, 323(9), 616-626.
[http://dx.doi.org/10.1002/jez.1952] [PMID: 26173922]
[51]
Cádiz, L.; Román-Padilla, J.; Gozdowska, M.; Kulczykowska, E.; Martínez-Rodríguez, G.; Mancera, J.M.; Martos-Sitcha, J.A. Cortisol modulates vasotocinergic and isotocinergic pathways in the gilthead sea bream. J. Exp. Biol., 2015, 218(Pt 2), 316-325.
[http://dx.doi.org/10.1242/jeb.113944] [PMID: 25524977]
[52]
Godwin, J.; Thompson, R. Nonapeptides and social behavior in fishes. Horm. Behav., 2012, 61(3), 230-238.
[http://dx.doi.org/10.1016/j.yhbeh.2011.12.016] [PMID: 22285647]
[53]
Goodson, J.L.; Bass, A.H. Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res. Brain Res. Rev., 2001, 35(3), 246-265.
[http://dx.doi.org/10.1016/S0165-0173(01)00043-1] [PMID: 11423156]
[54]
Goodson, J.L. Nonapeptides and the evolutionary patterning of sociality. Prog. Brain Res., 2008, 170, 3-15.
[http://dx.doi.org/10.1016/S0079-6123(08)00401-9] [PMID: 18655867]
[55]
Goodson, J.L.; Bass, A.H. Forebrain peptides modulate sexually polymorphic vocal circuitry. Nature, 2000, 403(6771), 769-772.
[http://dx.doi.org/10.1038/35001581] [PMID: 10693805]
[56]
Viveiros, A.T.; Jatzkowski, A.; Komen, J. Effects of oxytocin on semen release response in African catfish (Clarias gariepinus). Theriogenology, 2003, 59(9), 1905-1917.
[http://dx.doi.org/10.1016/S0093-691X(02)01290-6] [PMID: 12600728]
[57]
Kleszczyńska, A.; Sokołowska, E.; Kulczykowska, E. Variation in brain arginine vasotocin (AVT) and isotocin (IT) levels with reproductive stage and social status in males of three-spined stickleback (Gasterosteus aculeatus). Gen. Comp. Endocrinol., 2012, 175(2), 290-296.
[http://dx.doi.org/10.1016/j.ygcen.2011.11.022] [PMID: 22137910]
[58]
Kulczykowska, E.; Kleszczyńska, A. Brain arginine vasotocin and isotocin in breeding female three-spined sticklebacks (Gasterosteus aculeatus): the presence of male and egg deposition. Gen. Comp. Endocrinol., 2014, 204, 8-12.
[http://dx.doi.org/10.1016/j.ygcen.2014.04.039] [PMID: 24852350]
[59]
Kalamarz-Kubiak, H. Cortisol in correlation to other indicators of fish welfare.Corticosteroids; Al-kaf, A.G., Ed.; IntechOpen: London, 2017, pp. 155-183.
[60]
Ota, Y.; Ando, H.; Ueda, H.; Urano, A. Seasonal changes in expression of neurohypophysial hormone genes in the preoptic nucleus of immature female masu salmon. Gen. Comp. Endocrinol., 1999, 116(1), 31-39.
[http://dx.doi.org/10.1006/gcen.1999.7343] [PMID: 10525359]
[61]
Ohya, T.; Hayashi, S. Vasotocin/isotocin-immunoreactive neurons in the medaka fish brain are sexually dimorphic and their numbers decrease after spawning in the female. Zool. Sci., 2006, 23(1), 23-29.
[http://dx.doi.org/10.2108/zsj.23.23] [PMID: 16547402]
[62]
Maruska, K.P.; Mizobe, M.H.; Tricas, T.C. Sex and seasonal co-variation of arginine vasotocin (AVT) and gonadotropin-releasing hormone (GnRH) neurons in the brain of the halfspotted goby. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2007, 147(1), 129-144.
[http://dx.doi.org/10.1016/j.cbpa.2006.12.019] [PMID: 17276115]
[63]
Kalamarz-Kubiak, H.; Gozdowska, M.; Guellard, T.; Kulczykowska, E. How does oestradiol influence the AVT/IT system in female round gobies during different reproductive phases? Biol. Open, 2017, 6(10), 1493-1501.
[http://dx.doi.org/10.1242/bio.024844] [PMID: 28860130]
[64]
Filby, A.L.; Paull, G.C.; Searle, F.; Ortiz-Zarragoitia, M.; Tyler, C.R. Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: a mechanistic analysis. Environ. Sci. Technol., 2012, 46(6), 3472-3479.
[http://dx.doi.org/10.1021/es204023d] [PMID: 22360147]
[65]
Artigas, F.; Nutt, D.J.; Shelton, R. Mechanism of action of antidepressants. Psychopharmacol. Bull., 2002, 36(Suppl. 2), 123-132.
[PMID: 12490828]
[66]
Brooks, B.W.; Chambliss, C.K.; Stanley, J.K.; Ramirez, A.; Banks, K.E.; Johnson, R.D.; Lewis, R.J. Determination of select antidepressants in fish from an effluent-dominated stream. Environ. Toxicol. Chem., 2005, 24(2), 464-469.
[http://dx.doi.org/10.1897/04-081R.1] [PMID: 15720009]
[67]
Mennigen, J.A.; Martyniuk, C.J.; Crump, K.; Xiong, H.; Zhao, E.; Popesku, J.; Anisman, H.; Cossins, A.R.; Xia, X.; Trudeau, V.L. Effects of fluoxetine on the reproductive axis of female goldfish (Carassius auratus). Physiol. Genomics, 2008, 35(3), 273-282.
[http://dx.doi.org/10.1152/physiolgenomics.90263.2008] [PMID: 18765858]
[68]
Lister, A.; Regan, C.; Van Zwol, J.; Van Der Kraak, G. Inhibition of egg production in zebrafish by fluoxetine and municipal effluents: a mechanistic evaluation. Aquat. Toxicol., 2009, 95(4), 320-329.
[http://dx.doi.org/10.1016/j.aquatox.2009.04.011] [PMID: 19493577]
[69]
Weinberger, J., II; Klaper, R. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat. Toxicol., 2014, 151, 77-83.
[http://dx.doi.org/10.1016/j.aquatox.2013.10.012] [PMID: 24210950]
[70]
Egan, R.J.; Bergner, C.L.; Hart, P.C.; Cachat, J.M.; Canavello, P.R.; Elegante, M.F.; Elkhayat, S.I.; Bartels, B.K.; Tien, A.K.; Tien, D.H.; Mohnot, S.; Beeson, E.; Glasgow, E.; Amri, H.; Zukowska, Z.; Kalueff, A.V. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res., 2009, 205(1), 38-44.
[http://dx.doi.org/10.1016/j.bbr.2009.06.022] [PMID: 19540270]
[71]
Fuller, R.W. The influence of fluoxetine on aggressive behavior. Neuropsychopharmacology, 1996, 14(2), 77-81.
[http://dx.doi.org/10.1016/0893-133X(95)00110-Y] [PMID: 8822529]
[72]
Semsar, K.; Perreault, H.A.; Godwin, J. Fluoxetine-treated male wrasses exhibit low AVT expression. Brain Res., 2004, 1029(2), 141-147.
[http://dx.doi.org/10.1016/j.brainres.2004.09.030] [PMID: 15542067]
[73]
Van der Merwe, D. Cyanobacterial (Blue-Green Algae) toxins. Handbook of toxicology of chemical warfare agents; Gupta, R.C., Ed.; Academic Press/Elsevier: Amsterdam, 2015, pp. 421-429.
[http://dx.doi.org/10.1016/B978-0-12-800159-2.00031-2]
[74]
Mikhailov, A.; Härmälä-Braskén, A.S.; Hellman, J.; Meriluoto, J.; Eriksson, J.E. Identification of ATP-synthase as a novel intracellular target for microcystin-LR. Chem. Biol. Interact., 2003, 142(3), 223-237.
[http://dx.doi.org/10.1016/S0009-2797(02)00075-3] [PMID: 12453662]
[75]
Mallia, V.; Ivanova, L.; Eriksen, G.S.; Harper, E.; Connolly, L.; Uhlig, S. Investigation of in vitro endocrine activities of microcystis and planktothrix cyanobacterial strains. Toxins (Basel), 2020, 12(4), 228.
[http://dx.doi.org/10.3390/toxins12040228] [PMID: 32260386]
[76]
Pietsch, C.; Wiegand, C.; Amé, M.V.; Nicklisch, A.; Wunderlin, D.; Pflugmacher, S. The effects of a cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environ. Toxicol., 2001, 16(6), 535-542.
[http://dx.doi.org/10.1002/tox.10014] [PMID: 11769252]
[77]
Chen, L.; Chen, J.; Zhang, X.; Xie, P. A review of reproductive toxicity of microcystins. J. Hazard. Mater., 2016, 301, 381-399.
[http://dx.doi.org/10.1016/j.jhazmat.2015.08.041] [PMID: 26521084]
[78]
Jia, X.; Cai, C.; Wang, J.; Gao, N.; Zhang, H. Endocrine-disrupting effects and reproductive toxicity of low dose MCLR on male frogs (Rana nigromaculata) in vivo. Aquat. Toxicol., 2014, 155, 24-31.
[http://dx.doi.org/10.1016/j.aquatox.2014.06.002] [PMID: 24971790]
[79]
Hou, J.; Su, Y.; Lin, W.; Guo, H.; Xie, P.; Chen, J.; Gu, Z.; Li, L. Microcystin-LR retards gonadal maturation through disrupting the growth hormone/insulin-like growth factors system in zebrafish. Ecotoxicol. Environ. Saf., 2017, 139, 27-35.
[http://dx.doi.org/10.1016/j.ecoenv.2017.01.025] [PMID: 28109900]
[80]
Chen, L.; Wang, Y.; Giesy, J.P.; Chen, F.; Shi, T.; Chen, J.; Xie, P. Microcystin-LR affects the hypothalamic-pituitary-inter-renal (HPI) axis in early life stages (embryos and larvae) of zebrafish. Environ. Pollut., 2018, 241, 540-548.
[http://dx.doi.org/10.1016/j.envpol.2018.05.024] [PMID: 29883955]
[81]
Kodavanti, P.R.; Curras-Collazo, M.C. Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front. Neuroendocrinol., 2010, 31(4), 479-496.
[http://dx.doi.org/10.1016/j.yfrne.2010.06.005] [PMID: 20609372]
[82]
Sangalang, G.B.; Freeman, H.C.; Crowell, R. Testicular abnormalities in cod (Gadus morhua) fed Aroclor 1254. Arch. Environ. Contam. Toxicol., 1981, 10(5), 617-626.
[http://dx.doi.org/10.1007/BF01054884] [PMID: 6796006]
[83]
Monosson, E. Reproductive and developmental effects of PCBs in fish: a synthesis of laboratory and field studies. Rev. Toxicol., 2000, 3, 25-75.
[84]
Kennedy, C.J. The toxicology of organics in fishesEncyclopedia of fish physiology, From genome to environment; Farrell, A.P.; Cech, Jr. J.J.; Richards, J.G.; Stevens, E.D., Eds.; Academic Press/ Elsevier Inc., 2011, 33, pp. 2069-2077.
[85]
Freeman, H.C.; Sangalang, G.; Flemming, B. The sublethal effects of a polychlorinated biphenyl (Aroclor 1254) diet on the Atlantic cod (Gadus morhua). Sci. Total Environ., 1982, 24(1), 1-11.
[http://dx.doi.org/10.1016/0048-9697(82)90053-5] [PMID: 6810461]
[86]
Costa, L.G.; Giordano, G. Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology, 2007, 28(6), 1047-1067.
[http://dx.doi.org/10.1016/j.neuro.2007.08.007] [PMID: 17904639]
[87]
Skrzynska, A.K.; Martínez-Rodríguez, G.; Gozdowska, M.; Kulczykowska, E.; Mancera, J.M.; Martos-Sitcha, J.A. Aroclor 1254 inhibits vasotocinergic pathways related to osmoregulatory and stress functions in the gilthead sea bream (Sparus aurata, Linnaeus 1758). Aquat. Toxicol., 2019, 212, 98-109.
[http://dx.doi.org/10.1016/j.aquatox.2019.04.019] [PMID: 31082703]
[88]
Patisaul, H.B.; Fenton, S.E.; Aylor, D. Animal models of endocrine disruption. Best Pract. Res. Clin. Endocrinol. Metab., 2018, 32(3), 283-297.
[http://dx.doi.org/10.1016/j.beem.2018.03.011] [PMID: 29779582]
[89]
Norton, W.H.J. Screening for drugs to reduce aggression in zebrafish. Neuropharmacology, 2019, 156, 107394.
[http://dx.doi.org/10.1016/j.neuropharm.2018.10.023] [PMID: 30336150]
[90]
Baker, M.E.; Hardiman, G. Transcriptional analysis of endocrine disruption using zebrafish and massively parallel sequencing. J. Mol. Endocrinol., 2014, 52(3), R241-R256.
[http://dx.doi.org/10.1530/JME-13-0219] [PMID: 24850832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy