Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Evaluating 3D-printed Bolus Compared to Conventional Bolus Types Used in External Beam Radiation Therapy

Author(s): Stephanie McCallum*, Sharon Maresse* and Peter Fearns

Volume 17, Issue 7, 2021

Published on: 02 February, 2021

Page: [820 - 831] Pages: 12

DOI: 10.2174/1573405617666210202114336

Price: $65

Abstract

Background: When treating superficial tumors with external beam radiation therapy, bolus is often used. Bolus increases surface dose, reduces dose to underlying tissue, and improves dose homogeneity.

Introduction: The conventional bolus types used clinically in practice have some disadvantages. The use of Three-Dimensional (3D) printing has the potential to create more effective boluses. CT data is used for dosimetric calculations for these treatments and often to manufacture the customized 3D-printed bolus.

Purpose: The aim of this review is to evaluate the published studies that have compared 3D-printed bolus against conventional bolus types.

Methods and Results: A systematic search of several databases and a further appraisal for relevance and eligibility resulted in the 14 articles used in this review. The 14 articles were analyzed based on their comparison of 3D-printed bolus and at least one conventional bolus type.

Conclusion: The findings of this review indicated that 3D-printed bolus has a number of advantages. Compared to conventional bolus types, 3D-printed bolus was found to have equivalent or improved dosimetric measures, positional accuracy, fit, and uniformity. 3D-printed bolus was also found to benefit workflow efficiency through both time and cost effectiveness. However, factors such as patient comfort and staff perspectives need to be further explored to support the use of 3Dprinted bolus in routine practice.

Keywords: Radiation therapist, 3D-printed bolus, conventional bolus, dose, tumor, CT imaging.

Graphical Abstract

[1]
Gianfaldoni S, Gianfaldoni R, Wollina U, Lotti J, Tchernev G, Lotti T. An Overview on radiotherapy: From its history to its current applications in dermatology. Open Access Maced J Med Sci 2017; 5(4): 521-5.
[http://dx.doi.org/10.3889/oamjms.2017.122] [PMID: 28785349]
[2]
Kalet IJ, Austin-Seymour MM. The use of medical images in planning and delivery of radiation therapy. J Am Med Inform Assoc 1997; 4(5): 327-39.
[http://dx.doi.org/10.1136/jamia.1997.0040327] [PMID: 9292839]
[3]
Pereira GC, Traughber M, Muzic RF Jr. The role of imaging in radiation therapy planning: past, present, and future. BioMed Res Int 2014; 2014: 231090.
[http://dx.doi.org/10.1155/2014/231090] [PMID: 24812609]
[4]
Kim MM, Kudchadker RJ, Kanke JE, Zhang S, Perkins GH. Bolus electron conformal therapy for the treatment of recurrent inflammatory breast cancer: a case report. Med Dosim 2012; 37(2): 208-13.
[http://dx.doi.org/10.1016/j.meddos.2011.07.004] [PMID: 21978532]
[5]
Zeidan OA, Chauhan BD, Estabrook WW, Willoughby TR, Manon RR, Meeks SL. Image-guided bolus electron conformal therapy - a case study. J Appl Clin Med Phys 2010; 12(1): 3311.
[PMID: 21330977]
[6]
Dipasquale G, Poirier A, Sprunger Y, Uiterwijk JWE, Miralbell R. Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner. Radiat Oncol 2018; 13(1): 203.
[http://dx.doi.org/10.1186/s13014-018-1148-1] [PMID: 30340612]
[7]
Kim SW, Shin HJ, Kay CS, Son SH. A customised bolus produced using a 3-dimensional printer for radiotherapy. PLoS One 2014; 9(10): e110749.
[http://dx.doi.org/10.1371/journal.pone.0110746] [PMID: 25354368]
[8]
Vyas V, Palmer L, Mudge R, et al. On bolus for megavoltage photon and electron radiation therapy. Med Dosim 2013; 38(3): 268-73.
[http://dx.doi.org/10.1016/j.meddos.2013.02.007] [PMID: 23582702]
[9]
Jung NH, Shin Y, Jung IH, Kwak J. Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field. Radiat Oncol J 2015; 33(3): 226-32.
[http://dx.doi.org/10.3857/roj.2015.33.3.226] [PMID: 26484306]
[10]
Turner JY, Zeniou A, Williams A, Jyothirmayi R. Technique and outcome of post-mastectomy adjuvant chest wall radiotherapy-the role of tissue-equivalent bolus in reducing risk of local recurrence. Br J Radiol 2016; 89(1064): 20160060.
[http://dx.doi.org/10.1259/bjr.20160060] [PMID: 27251295]
[11]
Lukowiak M, Boehlke M, Matias D, et al. Use of a 3D printer to create bolus for patients undergoing tele-radiotherapy. Int J Radiat Res 2016; 14(4): 287-95.
[http://dx.doi.org/10.18869/acadpub.ijrr.14.4.287]
[12]
Ricotti R, Ciardo D, Pansini F, et al. Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy. Phys Med 2017; 39: 25-32.
[http://dx.doi.org/10.1016/j.ejmp.2017.06.004] [PMID: 28711185]
[13]
Günhan B, Kemikler G, Koca A. Determination of surface dose and the effect of bolus to surface dose in electron beams. Med Dosim 2003; 28(3): 193-8.
[http://dx.doi.org/10.1016/S0958-3947(03)00072-4] [PMID: 14563440]
[14]
Hsu SH, Roberson PL, Chen Y, Marsh RB, Pierce LJ, Moran JM. Assessment of skin dose for breast chest wall radiotherapy as a function of bolus material. Phys Med Biol 2008; 53(10): 2593-606.
[http://dx.doi.org/10.1088/0031-9155/53/10/010] [PMID: 18441412]
[15]
Olofsson J, Nyholm T, Ahnesjö A, Karlsson M. Optimization of photon beam flatness for radiation therapy. Phys Med Biol 2007; 52(6): 1735-46.
[http://dx.doi.org/10.1088/0031-9155/52/6/013] [PMID: 17327659]
[16]
Chua B, Jackson JE, Lin C, Veness MJ. Radiotherapy for early non-melanoma skin cancer. Oral Oncol 2019; 98: 96-101.
[http://dx.doi.org/10.1016/j.oraloncology.2019.09.018] [PMID: 31574416]
[17]
Kudchadker RJ, Antolak JA, Morrison WH, Wong PF, Hogstrom KR. Utilization of custom electron bolus in head and neck radiotherapy. J Appl Clin Med Phys 2003; 4(4): 321-33.
[http://dx.doi.org/10.1120/jacmp.v4i4.2503] [PMID: 14604422]
[18]
Moyer RF, King GA, Hauser JF. Lead as surface bolus for high-energy photon and electron therapy. Med Phys 1986; 13(2): 263-6.
[http://dx.doi.org/10.1118/1.595955] [PMID: 3084929]
[19]
Zou W, Fisher T, Zhang M, et al. Potential of 3D printing technologies for fabrication of electron bolus and proton compensators. J Appl Clin Med Phys 2015; 16(3): 4959.
[http://dx.doi.org/10.1120/jacmp.v16i3.4959] [PMID: 26103473]
[20]
Benoit J, Pruitt AF, Thrall DE. Effect of wetness level on the suitability of wet gauze as a substitute for Superflab as a bolus material for use with 6 mv photons. Vet Radiol Ultrasound 2009; 50(5): 555-9.
[http://dx.doi.org/10.1111/j.1740-8261.2009.01573.x] [PMID: 19788044]
[21]
Nagata K, Lattimer JC, March JS. The electron beam attenuating properties of SuperFlab, Play-Doh, and wet gauze, compared to plastic water. Vet Radiol Ultrasound 2012; 53(1): 96-100.
[http://dx.doi.org/10.1111/j.1740-8261.2011.01866.x] [PMID: 22092982]
[22]
Seppälä T, Collan J, Auterinen I, et al. A dosimetric study on the use of bolus materials for treatment of superficial tumors with BNCT. Appl Radiat Isot 2004; 61(5): 787-91.
[http://dx.doi.org/10.1016/j.apradiso.2004.05.054] [PMID: 15308145]
[23]
Visscher S, Barnett E. Comparison of Bolus Materials to Highly Absorbent Polypropylene and Rayon Cloth. J Med Imaging Radiat Sci 2017; 48(1): 55-60.
[http://dx.doi.org/10.1016/j.jmir.2016.08.003] [PMID: 31047211]
[24]
Chiu T, Tan J, Brenner M, et al. Three-dimensional printer-aided casting of soft, custom silicone boluses (SCSBs) for head and neck radiation therapy. Pract Radiat Oncol 2018; 8(3): e167-74.
[http://dx.doi.org/10.1016/j.prro.2017.11.001] [PMID: 29452869]
[25]
Khan Y, Villarreal-Barajas J, Udowicz M, et al. Clinical and dosimetric implications of air gaps between bolus and skin surface during radiation therapy. J Cancer Ther 2013; 4(7): 1251-5.
[http://dx.doi.org/10.4236/jct.2013.47147]
[26]
Sharma SC, Johnson MW. Surface dose perturbation due to air gap between patient and bolus for electron beams. Med Phys 1993; 20(2 Pt 1): 377-8.
[http://dx.doi.org/10.1118/1.597079] [PMID: 8497226]
[27]
Butson MJ, Cheung T, Yu P, Metcalfe P. Effects on skin dose from unwanted air gaps under bolus in photon beam radiotherapy. Radiat Meas 2000; 32(3): 201-4.
[http://dx.doi.org/10.1016/S1350-4487(99)00276-0]
[28]
Pugh R, Lloyd K, Collins M, Duxbury A. The use of 3D printing within radiation therapy to improve bolus conformity: a literature review. J Radiother Pract 2017; 16: 319-25.
[http://dx.doi.org/10.1017/S1460396917000115]
[29]
Bieniosek MF, Lee BJ, Levin CS. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms. Med Phys 2015; 42(10): 5913-8.
[http://dx.doi.org/10.1118/1.4930803] [PMID: 26429265]
[30]
Craft DF, Howell RM. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom. J Appl Clin Med Phys 2017; 18(5): 285-92.
[http://dx.doi.org/10.1002/acm2.12162] [PMID: 28857407]
[31]
Ehler ED, Barney BM, Higgins PD, Dusenbery KE. Patient specific 3D printed phantom for IMRT quality assurance. Phys Med Biol 2014; 59(19): 5763-73.
[http://dx.doi.org/10.1088/0031-9155/59/19/5763] [PMID: 25207965]
[32]
Gear JI, Long C, Rushforth D, Chittenden SJ, Cummings C, Flux GD. Development of patient-specific molecular imaging phantoms using a 3D printer. Med Phys 2014; 41(8): 082502.
[http://dx.doi.org/10.1118/1.4887854] [PMID: 25086556]
[33]
Ju SG, Kim MK, Hong CS, et al. New technique for developing a proton range compensator with use of a 3-dimensional printer. Int J Radiat Oncol Biol Phys 2014; 88(2): 453-8.
[http://dx.doi.org/10.1016/j.ijrobp.2013.10.024] [PMID: 24315564]
[34]
Mayer R, Liacouras P, Thomas A, Kang M, Lin L, Simone CB II. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry. Rev Sci Instrum 2015; 86(7): 074301.
[http://dx.doi.org/10.1063/1.4923294] [PMID: 26233396]
[35]
Mitchell J. Justifying the use of 3D-printed accessories in radiation therapy. JMRS 2017; 64: 106-10.
[36]
Park S-Y, Kim JI, Joo YH, Lee JC, Park JM. Total body irradiation with a compensator fabricated using a 3D optical scanner and a 3D printer. Phys Med Biol 2017; 62(9): 3735-56.
[http://dx.doi.org/10.1088/1361-6560/aa6866] [PMID: 28327469]
[37]
Skinner L, Fahimian BP, Yu AS. Tungsten filled 3D printed field shaping devices for electron beam radiation therapy. PLoS One 2019; 14(6): e0217757.
[http://dx.doi.org/10.1371/journal.pone.0217757] [PMID: 31216296]
[38]
Tino R, Yeo A, Leary M, Brandt M, Kron T. A Systematic Review on 3D-Printed Imaging and Dosimetry Phantoms in Radiation Therapy. Technol Cancer Res Treat 2019; 18: 1533033819870208.
[http://dx.doi.org/10.1177/1533033819870208] [PMID: 31514632]
[39]
Yoon K, Jeong C, Kim SW, et al. Dosimetric evaluation of respiratory gated volumetric modulated arc therapy for lung stereotactic body radiation therapy using 3D printing technology. PLoS One 2018; 13(12): e0208685.
[http://dx.doi.org/10.1371/journal.pone.0208685] [PMID: 30586367]
[40]
Zhao Y, Moran K, Yewondwossen M, et al. Clinical applications of 3-dimensional printing in radiation therapy. Med Dosim 2017; 42(2): 150-5.
[http://dx.doi.org/10.1016/j.meddos.2017.03.001] [PMID: 28495033]
[41]
Choi WK, Ju SG, Chum JC, et al. Evaluation of the Efficacy and Accuracy of Customized bolus by using a 3-dimensional printer. Radiother Oncol 2017; 123(1): S796-7.
[http://dx.doi.org/10.1016/S0167-8140(17)31923-0]
[42]
Dupre PJ, Goddard L, Brodin P, Tome WA, Mehta KJ. Dosimetric comparison of existing bolus materials to a 3D printed custom bolus. Int J Radiat Oncol Biol Phys 2019; 105(1): E701.
[http://dx.doi.org/10.1016/j.ijrobp.2019.06.953]
[43]
Ha JS, Jung JH, Kim MJ, et al. Customized 3D printed bolus for breast reconstruction for modified radical mastectomy (MRM). Prog Med Phys 2016; 27: 196-202.
[http://dx.doi.org/10.14316/pmp.2016.27.4.196]
[44]
Ichikawa M, Miyasaka Y, Takagi A, et al. Effectiveness of a 3D-Printed Bolus with Gel and Silicon Materials for an Irregularly Shaped Skin Surface. Int J Radiat Oncol Biol Phys 2019; 105(1): E742.
[http://dx.doi.org/10.1016/j.ijrobp.2019.06.848]
[45]
Li G, Kuo L, Kowalski A, et al. Clinical evaluation of soft 3D-printed bolus in radiotherapy of nasal cancer. Int J Radiat Oncol Biol Phys 2019; 105(1): E686.
[http://dx.doi.org/10.1016/j.ijrobp.2019.06.916]
[46]
Perkins GH, McNeese MD, Antolak JA, Buchholz TA, Strom EA, Hogstrom KR. A custom three-dimensional electron bolus technique for optimization of postmastectomy irradiation. Int J Radiat Oncol Biol Phys 2001; 51(4): 1142-51.
[http://dx.doi.org/10.1016/S0360-3016(01)01744-8] [PMID: 11704339]
[47]
Rasmussen K, Corbett M, Pelletier C, Huang Z, Feng Y, Jung J. Dosimetric verification of 3D printed electron bolus. Med Phys 2015; 42(6): 3189.
[http://dx.doi.org/10.1118/1.4923787]
[48]
Sasaki D, Jensen M, Rickey DW, Dubey A, Harris C, McCurdy B. On the physical and dosimetric properties of 3D printed electron bolus fabricated using polylactic acid. Med Phys 2016; 43(8): 4945.
[http://dx.doi.org/10.1118/1.4961812]
[49]
Burleson S, Baker J, Hsia AT, Xu Z. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy. J Appl Clin Med Phys 2015; 16(3): 5247.
[http://dx.doi.org/10.1120/jacmp.v16i3.5247] [PMID: 26103485]
[50]
Wilke CT, Ferreira C, Sterling D, Mathew DC, Ehler E. Dosimetric evaluation of 3D printed bolus material for electron beam radiation therapy. Int J Radiat Oncol 2018; 102(3): e480.
[http://dx.doi.org/10.1016/j.ijrobp.2018.07.1370]
[51]
Michiels S, Barragán AM, Souris K, et al. Patient-specific bolus for range shifter air gap reduction in intensity-modulated proton therapy of head-and-neck cancer studied with Monte Carlo based plan optimization. Radiother Oncol 2018; 128(1): 161-6.
[http://dx.doi.org/10.1016/j.radonc.2017.09.006] [PMID: 28951008]
[52]
Baltz GC, Chi PM, Wong PF, et al. Development and validation of a 3D-printed bolus cap for total scalp irradiation. J Appl Clin Med Phys 2019; 20(3): 89-96.
[http://dx.doi.org/10.1002/acm2.12552] [PMID: 30821903]
[53]
Su S, Moran K, Robar JL. Design and production of 3D printed bolus for electron radiation therapy. J Appl Clin Med Phys 2014; 15(4): 4831.
[http://dx.doi.org/10.1120/jacmp.v15i4.4831] [PMID: 25207410]
[54]
Kmet LM, Lee RC, Cook LS. Standard quality assessment criteria for evaluating primary research papers from a variety of fields. Edmonton: Alberta Heritage Foundation for Medical Research (AHFMR). AHFMR – HTA Initiative #13. 2004.
[55]
Park K, Park S, Jeon MJ, et al. Clinical application of 3D-printed-step-bolus in post-total-mastectomy electron conformal therapy. Oncotarget 2017; 8(15): 25660-8.
[http://dx.doi.org/10.18632/oncotarget.12829] [PMID: 27784001]
[56]
Łukowiak M, Jezierska K, Boehlke M, et al. Utilization of a 3D printer to fabricate boluses used for electron therapy of skin lesions of the eye canthi. J Appl Clin Med Phys 2017; 18(1): 76-81.
[PMID: 28291910]
[57]
Sasaki DK, McGeachy P, Alpuche Aviles JE, McCurdy B, Koul R, Dubey A. A modern mold room: Meshing 3D surface scanning, digital design, and 3D printing with bolus fabrication. J Appl Clin Med Phys 2019; 20(9): 78-85.
[http://dx.doi.org/10.1002/acm2.12703] [PMID: 31454148]
[58]
Kong Y, Yan T, Sun Y, et al. A dosimetric study on the use of 3D-printed customized boluses in photon therapy: A hydrogel and silica gel study. J Appl Clin Med Phys 2019; 20(1): 348-55.
[http://dx.doi.org/10.1002/acm2.12489] [PMID: 30402935]
[59]
Rodríguez-Panes A, Claver J, Camacho AM. The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis. Materials (Basel) 2018; 11(8): 1333.
[http://dx.doi.org/10.3390/ma11081333] [PMID: 30071663]
[60]
Van der Walt M, Crabtree T, Albantow C. PLA as a suitable 3D printing thermoplastic for use in external beam radiotherapy. Australas Phys Eng Sci Med 2019; 42(4): 1165-76.
[http://dx.doi.org/10.1007/s13246-019-00818-6] [PMID: 31728939]
[61]
Canters RA, Lips IM, Wendling M, et al. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer. Radiother Oncol 2016; 121(1): 148-53.
[http://dx.doi.org/10.1016/j.radonc.2016.07.011] [PMID: 27475278]
[62]
Robar JL, Moran K, Allan J, et al. Intrapatient study comparing 3D printed bolus versus standard vinyl gel sheet bolus for postmastectomy chest wall radiation therapy. Pract Radiat Oncol 2018; 8(4): 221-9.
[http://dx.doi.org/10.1016/j.prro.2017.12.008] [PMID: 29452866]
[63]
Ehler E, Sterling D, Dusenbery K, Lawrence J. Workload implications for clinic workflow with implementation of three-dimensional printed customized bolus for radiation therapy: A pilot study. PLoS One 2018; 13(10): e0204944.
[http://dx.doi.org/10.1371/journal.pone.0204944] [PMID: 30273403]
[64]
Park JW, Oh SA, Yea JW, Kang MK. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner. PLoS One 2017; 12(5): e0177562.
[http://dx.doi.org/10.1371/journal.pone.0177562] [PMID: 28494012]
[65]
Craft DF, Kry SF, Balter P, Salehpour M, Woodward W, Howell RM. Material matters: Analysis of density uncertainty in 3D printing and its consequences for radiation oncology. Med Phys 2018; 45(4): 1614-21.
[http://dx.doi.org/10.1002/mp.12839] [PMID: 29493803]
[66]
Dancewicz OL, Sylvander SR, Markwell TS, Crowe SB, Trapp JV. Radiological properties of 3D printed materials in kilovoltage and megavoltage photon beams. Phys Med 2017; 38: 111-8.
[http://dx.doi.org/10.1016/j.ejmp.2017.05.051] [PMID: 28610691]
[67]
Huang KM, Hsu CH, Jeng SC, Ting LL, Cheng JC, Huang WT. The application of Aquaplast Thermoplastic as a bolus material in the radiotherapy of a patient with classic Kaposi’s sarcoma at the lower extremity. Anticancer Res 2006; 26(1B): 759-62.
[PMID: 16739350]
[68]
Jaya GW, Sutanto H. Fabrication and characterization of bolus material using polydimethyl-siloxane. Mater Res Express 2018; 5(1): 015307.
[http://dx.doi.org/10.1088/2053-1591/aaa447]
[69]
Park JM, Son J, An HJ, Kim JH, Wu HG, Kim JI. Bio-compatible patient-specific elastic bolus for clinical implementation. Phys Med Biol 2019; 64(10): 105006.
[http://dx.doi.org/10.1088/1361-6560/ab1c93] [PMID: 31022714]
[70]
Vitzthum L, Ehler E, Sterling D, Reynolds T, Higgins P, Dusenbery K. Evaluation of a composite copper‐plastic material for a 3D printed radiation therapy bolus. Med Phys 2015; 42(6): 3189.
[http://dx.doi.org/10.1118/1.4923786]
[71]
Kruth JP, Leu MC, Nagakawa T. Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Techn 1998; 47: 525-40.
[http://dx.doi.org/10.1016/S0007-8506(07)63240-5]
[72]
Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 2016; 15(1): 115.
[http://dx.doi.org/10.1186/s12938-016-0236-4] [PMID: 27769304]
[73]
Holtzer NA, Galis J, Paalman MI, Heukelom S. 3D printing of tissue equivalent boluses and molds for external beam radiotherapy. Radiother Oncol 2014; 111: S279.
[http://dx.doi.org/10.1016/S0167-8140(15)31895-8]
[74]
Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: review of medical applications. Int J CARS 2010; 5(4): 335-41.
[http://dx.doi.org/10.1007/s11548-010-0476-x] [PMID: 20467825]
[75]
Berman B. 3-D printing: the new industrial revolution. Bus Horiz 2012; 55(2): 155-62.
[http://dx.doi.org/10.1016/j.bushor.2011.11.003]
[76]
Samuel BP, Pinto C, Pietila T, Vettukattil JJ. Ultrasound-derived three-dimensional printing in congenital heart disease. J Digit Imaging 2015; 28(4): 459-61.
[http://dx.doi.org/10.1007/s10278-014-9761-5] [PMID: 25537458]
[77]
Ripley B, Levin D, Kelil T, et al. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses. J Magn Reson Imaging 2017; 45(3): 635-45.
[http://dx.doi.org/10.1002/jmri.25526] [PMID: 27875009]
[78]
Albantow C, Hargrave C, Brown A, Halsall C. Comparison of 3D printed nose bolus to traditional wax bolus for cost-effectiveness, volumetric accuracy and dosimetric effect. J Med Radiat Sci 2020; 67(1): 54-63.
[http://dx.doi.org/10.1002/jmrs.378] [PMID: 32011102]
[79]
Fujimoto K, Shiinoki T, Yuasa Y, Hanazawa H, Shibuya K. Efficacy of patient-specific bolus created using three-dimensional printing technique in photon radiotherapy. Phys Med 2017; 38: 1-9.
[http://dx.doi.org/10.1016/j.ejmp.2017.04.023] [PMID: 28610688]
[80]
Park JW, Yea JW. Three-dimensional customized bolus for intensity-modulated radiotherapy in a patient with Kimura’s disease involving the auricle. Cancer Radiother 2016; 20(3): 205-9.
[http://dx.doi.org/10.1016/j.canrad.2015.11.003] [PMID: 27020714]
[81]
Park SY, Choi CH, Park JM, Chun M, Han JH, Kim JI. A patient-specific polylactic acid bolus made by a 3D printer for breast cancer radiation therapy. PLoS One 2016; 11(12): e0168063.
[http://dx.doi.org/10.1371/journal.pone.0168063] [PMID: 27930717]
[82]
Biau DJ, Kernéis S, Porcher R. Statistics in brief: the importance of sample size in the planning and interpretation of medical research. Clin Orthop Relat Res 2008; 466(9): 2282-8.
[http://dx.doi.org/10.1007/s11999-008-0346-9] [PMID: 18566874]
[83]
Lee J, Liu SH, Lin JB, et al. Image-guided study of inter-fraction and intra-fraction set-up variability and margins in reverse semi-decubitus breast radiotherapy. Radiat Oncol 2018; 13(1): 254.
[http://dx.doi.org/10.1186/s13014-018-1200-1] [PMID: 30587208]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy