Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Morphological Changes in Cu2O Nanoshells During Photocatalysis

Author(s): Ailing Yang * and Lele Wang

Volume 18, Issue 1, 2022

Published on: 02 December, 2021

Page: [94 - 105] Pages: 12

DOI: 10.2174/1573413717666210129115305

Price: $65

conference banner
Abstract

Background: Semiconductor nanomaterials are being employed for the degradation of organic compounds under solar light irradiation.

Introduction: Cu2O nanomaterial is suitable for visible-light photocatalysis because the narrow band-gap (~2.17 eV) allows it to absorb visible light. However, the morphological changes of Cu2O during photocatalysis have been rarely investigated.

Methods: Porous Cu2O nanoshells (NSs) with a nearly 100% hollow structure were synthesized by a two-step addition of reducer. The synthesized NSs were characterized and employed for the photocatalysis of methyl orange (MO) in a neutral solution at 30 °C in air.

Results: The Cu2O NSs exhibited high adsorption and good photocatalysis rates with respect to the degradation of MO. Certain new phenomena were observed upon photocatalysis. Nearly all the chemical bonds in MO were fractured; however, a portion of the sulfur-containing group in MO remained on the NSs. The morphology of the Cu2O NSs changed and a large amount of nano-debris was produced. Further experimental analysis indicated the presence of some nano-debris after adsorption- desorption equilibrium (ADE). A negligible amount of nano-debris appeared during the light irradiation of the Cu2O suspension in the absence of MO. The results obtained via X-ray diffraction (XRD), scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM) proved that the nano-debris was composed of Cu2O, and essentially comprised nanosheets that were discarded from the Cu2O NSs.

Conclusion: The porous NSs were composed of Cu2O nanosheets with exposed {111} facets, which resulted in their strong adsorption ability and catalysis performance for the degradation of MO. Light irradiation accelerated this interaction and led to the discarding of Cu2O nanosheets from the Cu2O NSs. Because of the strong interaction between Cu+ and S, a portion of the sulfur-containing group in MO remained on the NSs after photocatalysis.

Keywords: Porous Cu2O nanoshells, methyl orange, adsorption rate, visible-near-infrared photocatalysis, degradation rate, morphological change, nano-debris

Graphical Abstract

[1]
Ait Ahsaine, H.; Slassi, A.; Naciri, Y.; Chennah, A.; Jaramillo Pa’ez, C.; Anfar, Z.; Zbair, M.; Benlhachemi, A.; Antonio Navı’o, J. Photo/electrocatalytic properties of nanocrystalline ZnO and La–doped ZnO: combined DFT fundamental semiconducting properties and experimental study. ChemistrySelect, 2018, 3, 7778-7791.
[http://dx.doi.org/10.1002/slct.201801729]
[2]
Zbair, M.; Anfar, Z.; Ait Ahsaine, H.; Khallokc, H. Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed. RSC Adv, 2019, 9, 1084-1094.
[http://dx.doi.org/10.1039/C8RA09337G]
[3]
Kale, M.J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal., 2014, 4, 116-128.
[http://dx.doi.org/10.1021/cs400993w]
[4]
Kisch, H. Semiconductor photocatalysis for chemoselective radical coupling reactions. Acc. Chem. Res., 2017, 50(4), 1002-1010.
[http://dx.doi.org/10.1021/acs.accounts.7b00023] [PMID: 28378591]
[5]
Yang, X.G.; Wang, D.W. Photocatalysis: from fundamental principles to materials and applications. ACS Appl. Energy Mater, 2018, 1, 6657-6693.
[http://dx.doi.org/10.1021/acsaem.8b01345]
[6]
Kim, T.G.; Park, H.J.; Woo, K.; Jeong, S.; Choi, Y.; Lee, S.Y. Enhanced oxidation-resistant Cu@Ni core−shell nanoparticles for printed flexible electrodes. ACS Appl. Mater. Interfaces, 2018, 10(1), 1059-1066.
[http://dx.doi.org/10.1021/acsami.7b14572] [PMID: 29226669]
[7]
Dai, X.F.; Xu, W.; Zhang, T.; Wang, T. Self-reducible Cu nanoparticles for conductive inks. Ind. Eng. Chem. Res., 2018, 57, 2508-2516.
[http://dx.doi.org/10.1021/acs.iecr.7b04248]
[8]
Lee, W.R.; Lim, Y.S.; Kim, S.; Jung, H.; Han, Y.K.; Yoon, S.; Piao, L.H.; Kim, S.H. Crystal-to-crystal conversion of Cu2O nanoparticles to Cu crystals and applications in printed electronics. Mater. Chem., 2011, 21, 928-6933.,
[9]
Xiang, Z.; Liu, M.X.; Ai, F.R.; Ding, X.W.; Qiu, P.; Chen, T.T.; Yang, Y.S.; Wu, H.; Xin, H.B.; Wang, X.L. “Less blue, more clean”: Cu2O nano-cubic functionalized hydrogel for the energy transformation of light-emitting screens. RSC Adv, 2018, 8, 5468-5472.
[http://dx.doi.org/10.1039/C7RA12331K]
[10]
McShane, C.M.; Choi, K.S. Junction studies on electrochemically fabricated p-n Cu(2)O homojunction solar cells for efficiency enhancement. Phys. Chem. Chem. Phys., 2012, 14(17), 6112-6118.
[http://dx.doi.org/10.1039/c2cp40502d] [PMID: 22446958]
[11]
He, Q.; Yao, K.; Wang, X.; Xia, X.; Leng, S.; Li, F. Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells. ACS Appl. Mater. Interfaces, 2017, 9(48), 41887-41897.
[http://dx.doi.org/10.1021/acsami.7b13621] [PMID: 29135219]
[12]
Li, J.S.; Zhou, N.; Song, J.Y.; Fu, L.; Yan, J.; Tang, Y.G.; Wang, H.Y. Cu−MOF-derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of ketjenblack carbon in Al-Air battery. ACS Sustain. Chem.& Eng., 2018, 6, 413-421.
[http://dx.doi.org/10.1021/acssuschemeng.7b02661]
[13]
Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev., 2016, 116(6), 3722-3811.
[http://dx.doi.org/10.1021/acs.chemrev.5b00482] [PMID: 26935812]
[14]
Liang, Y.; Chen, Z.; Yao, W.; Wang, P.; Yu, S.; Wang, X. Decorating of Ag and CuO on Cu nanoparticles for enhanced high catalytic activity to the degradation of organic pollutants. Langmuir, 2017, 33(31), 7606-7614.
[http://dx.doi.org/10.1021/acs.langmuir.7b01540] [PMID: 28723097]
[15]
Mukherjee, I.; Das, K.S.; Jena, B.K.; Saha, R.; Chatterjee, S. Dissimilitude behaviour of Cu2O nano-octahedra and nano-cubes towards photo- and electrocatalytic activities. New J. Chem., 2018, 42, 3692-3702.
[http://dx.doi.org/10.1039/C7NJ04474G]
[16]
Ranjani, G.; Nagarajan, R. Insight into copper catalysis: in situ formed nano Cu2O in Suzuki−Miyaura cross-coupling of aryl/indolyl boronates. Org. Lett., 2017, 19(15), 3974-3977.
[http://dx.doi.org/10.1021/acs.orglett.7b01669] [PMID: 28723102]
[17]
Kim, S.; Kang, S.W.; Kim, A.; Yusuf, M.; Park, J.C.; Park, K.H. A highly efficient nano-sized Cu2O/SiO2 egg-shell catalyst for C–C coupling reactions. RSC Adv, 2018, 8, 6200-6205.
[http://dx.doi.org/10.1039/C7RA13490H]
[18]
Tee, S.Y.; Teng, C.P.; Ye, E. Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. Eng. C, 2017, 70(Pt 2), 1018-1030.
[http://dx.doi.org/10.1016/j.msec.2016.04.009] [PMID: 27772701]
[19]
Zhu, Y.; Xu, Z.; Yan, K.; Zhao, H.; Zhang, J. One-step synthesis of CuO−Cu2O heterojunction by flame spray pyrolysis for cathodic photoelectrochemical sensing of L-Cysteine. ACS Appl. Mater. Interfaces, 2017, 9(46), 40452-40460.
[http://dx.doi.org/10.1021/acsami.7b13020] [PMID: 29111634]
[20]
Susman, M.D.; Vaskevich, A.; Rubinstein, I. Refractive index sensing using visible electromagnetic resonances of supported Cu2O particles. ACS Appl. Mater. Interfaces, 2017, 9(9), 8177-8186.
[http://dx.doi.org/10.1021/acsami.6b15726] [PMID: 28133959]
[21]
He, Q.; Tian, Y.; Wu, Y.; Liu, J.; Li, G.; Deng, P.; Chen, D. Electrochemical sensor for rapid and sensitive detection of tryptophan by a Cu2O nanoparticles-coated reduced graphene oxide nanocomposite. Biomolecules, 2019, 9(5), 176.,
[http://dx.doi.org/10.3390/biom9050176] [PMID: 31072043]
[22]
Cao, H.M.; Yang, A.L.; Li, H.; Wang, L.L.; Li, S.P.; Kong, J.L.; Bao, X.C.; Yang, R.Q. A non-enzymatic glucose sensing based on hollow cuprous oxide nanospheres in a Nafion matrix. Sens. Actuat. B, 2015, 214, 169-173.
[http://dx.doi.org/10.1016/j.snb.2015.03.026]
[23]
Dai, Z.; Yang, A.; Bao, X.; Yang, R. Facile non-enzymatic electrochemical sensing for glucose based on Cu2O–BSA nanoparticles modified GCE. Sensors (Basel), 2019, 19(12), 2824.,
[http://dx.doi.org/10.3390/s19122824 ] [PMID: 31238594]
[24]
Cheng, C.; Zhang, C.; Gao, X.; Zhuang, Z.; Du, C.; Chen, W. 3D network and 2D paper of reduced graphene oxide/Cu2O composite for electrochemical sensing of hydrogen peroxide. Anal. Chem., 2018, 90(3), 1983-1991.
[http://dx.doi.org/10.1021/acs.analchem.7b04070] [PMID: 29286638]
[25]
Dong, C.; Zhong, H.; Kou, T.; Frenzel, J.; Eggeler, G.; Zhang, Z. Three-dimensional Cu foam-supported single crystalline mesoporous Cu2O nanothorn arrays for ultra-highly sensitive and efficient nonenzymatic detection of glucose. ACS Appl. Mater. Interfaces, 2015, 7(36), 20215-20223.
[http://dx.doi.org/10.1021/acsami.5b05738] [PMID: 26305112]
[26]
Gao, Z.Y.; Liu, J.L.; Chang, J.L.; Wu, D.P.; He, J.J.; Wang, K.; Xu, F.; Jiang, K. Mesocrystalline Cu2O hollow nanocubes: synthesis and application in non-enzymatic amperometric detection of hydrogen peroxide and glucose. CrystEngComm, 2012, 14, 6639-6646.
[http://dx.doi.org/10.1039/c2ce25498k]
[27]
Sui, Y.; Fu, W.; Yang, H.; Zeng, Y.; Zhang, Y.; Zhao, Q.; Li, Y.; Zhou, X.; Leng, Y.; Li, M.; Zou, G. Low temperature synthesis of Cu2O crystals: shape evolution and growth mechanism. Cryst. Growth Des., 2010, 10, 99-108.
[http://dx.doi.org/10.1021/cg900437x]
[28]
Wang, D.; Mo, M.; Yu, D.; Xu, L.; Li, F.; Qian, Y. Large-scale growth and shape evolution of Cu2O cubes. Cryst. Growth Des., 2013, 3, 717-720.
[http://dx.doi.org/10.1021/cg0340547]
[29]
Paolella, A.; Brescia, R.; Prato, M.; Povia, M.; Marras, S.; De Trizio, L.; Falqui, A.; Manna, L.; George, C. Colloidal synthesis of cuprite (Cu2O) octahedral nanocrystals and their electrochemical lithiation. ACS Appl. Mater. Interfaces, 2013, 5(7), 2745-2751.
[http://dx.doi.org/10.1021/am4004073] [PMID: 23465697]
[30]
Yang, A.; Wang, Y.; Li, S.; Bao, X.; Yang, R. Stepwise synthesis of cuprous oxide nanoparticles with adjustable structures and growth model. Sci. China Technol. Sci., 2014, 57, 2287-2294.
[http://dx.doi.org/10.1007/s11431-014-5658-2]
[31]
Pang, H.; Gao, F.; Lu, Q. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities. CrystEngComm, 2010, 12, 406-412.
[http://dx.doi.org/10.1039/B904705K]
[32]
Liu, G.; He, F.; Li, X.; Wang, S.; Li, L.; Zuo, G.; Huang, Y.; Wan, Y. Three-dimensional cuprous oxide microtube lattices with high catalytic activity templated by bacterial cellulose nanofibers. J. Mater. Chem., 2011, 21, 10637-10640.
[http://dx.doi.org/10.1039/c1jm11432h]
[33]
Chang, Y.; Teo, J.J.; Zeng, H.C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir, 2005, 21(3), 1074-1079.
[http://dx.doi.org/10.1021/la047671l] [PMID: 15667192]
[34]
Xu, H.L.; Wang, W.Z.; Zhou, L. A growth model of single crystalline hollow spheres: oriented attachment of Cu2O nanoparticles to the single crystalline shell wall. Cryst. Growth Des., 2008, 8, 3486-3489.
[http://dx.doi.org/10.1021/cg800258n]
[35]
Zhu, H.T.; Wang, J.X.; Xu, G.Y. Fast synthesis of Cu2O hollow micro-spheres and their application in DNA biosensor of hepatitis B virus. Cryst. Growth Des., 2009, 9, 633-638.
[http://dx.doi.org/10.1021/cg801006g]
[36]
Kuo, C.H.; Huang, M.H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today, 2010, 5, 106-116.
[http://dx.doi.org/10.1016/j.nantod.2010.02.001]
[37]
Zhang, L.; Jing, H.; Boisvert, G.; He, J.Z.; Wang, H. Geometry control and optical tunability of metal-cuprous oxide core-shell nanoparticles. ACS Nano, 2012, 6(4), 3514-3527.
[http://dx.doi.org/10.1021/nn300546w] [PMID: 22443453]
[38]
Zhang, L.; Blom, D.A.; Wang, H. Au-Cu2O core-shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem. Mater., 2011, 23, 4587-4598.
[http://dx.doi.org/10.1021/cm202078t]
[39]
Kuo, C.H.; Chu, Y.T.; Song, Y.F.; Huang, M.H. Cu2O nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and in-situ transmission X-ray microscopy study. Adv. Funct. Mater., 2011, 21, 792-797.
[http://dx.doi.org/10.1002/adfm.201002108]
[40]
Zhu, H.; Wang, J.; Wu, D. Fast synthesis, formation mechanism, and control of shell thickness of CuS hollow spheres. Inorg. Chem., 2009, 48(15), 7099-7104.
[http://dx.doi.org/10.1021/ic900201p] [PMID: 19585979]
[41]
Lee, W.R.; Lim, Y.S.; Kim, S.; Jung, J.; Han, Y.K.; Yoon, S.; Piao, L.; Kim, S.H. Crystal-to-crystal conversion of Cu2O nanoparticles to Cu crystals and applications in printed electronics. J. Mater. Chem., 2011, 21, 6928-6933.
[http://dx.doi.org/10.1039/c1jm10110b]
[42]
Li, J.T.; Cushing, S.K.; Bright, J.; Meng, F.K.; Senty, T.R.; Zheng, P.; Bristow, A.D.; Wu, N. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal., 2013, 3, 47-51.
[http://dx.doi.org/10.1021/cs300672f]
[43]
Yang, A.L.; Li, S.P.; Wang, Y.J.; Wang, L.L.; Bao, X.C.; Yang, R.Q. Synthesis of Ag@Cu2O core-shell metal-semiconductor nanoparticles and conversion to Ag@Cu core-shell bimetallic nanoparticles. Sci. China Technol. Sci., 2015, 5, 881-888.
[http://dx.doi.org/10.1007/s11431-015-5797-0]
[44]
Yang, A.L.; Li, S.P.; Wang, Y.J.; Wang, L.L.; Bao, X.C.; Yang, R.Q. Fabrication of Cu2O@Cu2O core–shell nanoparticles and conversion to Cu2O@Cu core–shell nanoparticles in solution. Trans. Nonferrous Met. Soc. China, 2015, 25, 3643-3650.
[http://dx.doi.org/10.1016/S1003-6326(15)64005-5]
[45]
LaGrow, A.P.; Ward, M.R.; Lloyd, D.C.; Gai, P.L.; Boyes, E.D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc., 2017, 139(1), 179-185.
[http://dx.doi.org/10.1021/jacs.6b08842] [PMID: 27936677]
[46]
Xiong, L.B.; Yang, F.; Yan, L.L.; Yan, N.N.; Yang, X.; Qiu, M.Q.; Yu, Y. Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3+ in organic pollutant degradation and water splitting. J. Phys. Chem. Solids, 2011, 72, 1104-1109.
[http://dx.doi.org/10.1016/j.jpcs.2011.06.016]
[47]
Wang, Z.; Zhao, S.; Zhu, S.; Sun, Y.; Fang, M. Photocatalytic synthesis of M/Cu2O (M=Ag, Au) heterogeneous nanocrystals and their photocatalytic properties. CrystEngComm, 2011, 13, 2262-2267.
[http://dx.doi.org/10.1039/c0ce00681e]
[48]
Li, S.K.; Huang, F.Z.; Wang, Y.; Shen, Y.H.; Qiu, L.G.; Xie, A.J.; Xu, S.J. Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: Synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants. J. Mater. Chem., 2011, 21, 7459-7466.
[http://dx.doi.org/10.1039/c0jm04569a]
[49]
Jiang, T.; Xie, T.; Chen, L.; Fu, Z.; Wang, D. Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance. Nanoscale, 2013, 5(7), 2938-2944.
[http://dx.doi.org/10.1039/c3nr34219k] [PMID: 23455485]
[50]
Xu, L.; Zhang, F.; Song, X.; Yin, Z.; Bu, Y. Construction of reduced graphene oxide-supported Ag–Cu2O composites with hierarchical structures for enhanced photocatalytic activities and recyclability. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 5923-5933.
[http://dx.doi.org/10.1039/C4TA06772J]
[51]
Yang, S.; Zhang, S.; Wang, H.; Yu, H.; Fang, Y.; Peng, F. Controlled preparation of Ag–Cu2O nanocorncobs and their enhanced photocatalytic activity under visible light. Mater. Res. Bull., 2015, 70, 296-302.
[http://dx.doi.org/10.1016/j.materresbull.2015.04.061]
[52]
Xu, Y.Y.; Chen, D.R.; Jiao, X.L.; Xue, K.Y. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells. J. Phys. Chem. C, 2007, 111, 16284-16289.
[http://dx.doi.org/10.1021/jp075358x]
[53]
Seoudi, R.; Fouda, A.A.; Elmenshawy, D.A. Synthesis, characterization and vibrational spectroscopic studies of different particle size of gold nanoparticle capped with polyvinylpyrrolidone. Physica B, 2010, 405, 906-911.
[http://dx.doi.org/10.1016/j.physb.2009.10.012]
[54]
Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J.M. Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2. Appl. Catal. B, 2014, 150-151, 107-115.
[http://dx.doi.org/10.1016/j.apcatb.2013.12.010]
[55]
Parshetti, G.K.; Telke, A.A.; Kalyani, D.C.; Govindwar, S.P. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J. Hazard. Mater., 2010, 176(1-3), 503-509.
[http://dx.doi.org/10.1016/j.jhazmat.2009.11.058] [PMID: 19969416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy