Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Skeletal Survey in Multiple Myeloma: Role of Imaging

Author(s): Paolo Spinnato*, Giacomo Filonzi, Alberto Conficoni, Giancarlo Facchini, Federico Ponti, Andrea Sambri, Massimiliano De Paolis, Michele Cavo, Eugenio Salizzoni and Cristina Nanni

Volume 17, Issue 8, 2021

Published on: 26 January, 2021

Page: [956 - 965] Pages: 10

DOI: 10.2174/1573405617666210126155129

Price: $65

Abstract

Bone disease is the hallmark of multiple myeloma. Skeletal lesions are evaluated to establish the diagnosis, to choose the therapies and also to assess the response to treatments. Due to this, imaging procedures play a key role in the management of multiple myeloma.

For decades, conventional radiography has been the standard imaging modality. Subsequently, advances in the treatment of multiple myeloma have increased the need for an accurate evaluation of skeletal disease. The introduction of new high performant imaging tools, such as whole-body lowdose computed tomography, different types of magnetic resonance imaging studies, and 18F-fluorodeoxyglucose positron emission tomography, replaced the conventional radiography.

In this review, we analyze the diagnostic potentials, indications of use, and applications of the imaging tools nowadays available.

Whole-body low-dose CT should be considered as the imaging modality of choice for the initial assessment of multiple myeloma lytic bone lesions. MRI is the gold-standard for the detection of bone marrow involvement, while PET/CT is the preferred technique in the assessment of response to therapy. Both MRI and PET/CT are able to provide prognostic information.

Keywords: Multiple meloma, bone neoplasm, positron emission tomography computed tomography, magnetic resonance imaging, multidetector computed tomography, image-guided biopsy, hematologic neoplasms.

Graphical Abstract

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. Nat Rev Dis Primers 2017; 3: 17046.
[http://dx.doi.org/10.1038/nrdp.2017.46] [PMID: 28726797]
[3]
Dimopoulos MA, Terpos E. Multiple myeloma. Ann Oncol 2010; 21(Suppl. 7): vii143-50.
[http://dx.doi.org/10.1093/annonc/mdq370] [PMID: 20943607]
[4]
Seth S, Zanwar S, Vu L, Kapoor P. Monoclonal gammopathy of undetermined significance: Current concepts and future prospects. Curr Hematol Malig Rep 2020; 15(2): 45-55.
[http://dx.doi.org/10.1007/s11899-020-00569-2] [PMID: 32222885]
[5]
Melton LJ III, Kyle RA, Achenbach SJ, Oberg AL, Rajkumar SV. Fracture risk with multiple myeloma: a population-based study. J Bone Miner Res 2005; 20(3): 487-93.
[http://dx.doi.org/10.1359/JBMR.041131] [PMID: 15746994]
[6]
Baffour FI, Glazebrook KN, Kumar SK, Broski SM. Role of imaging in multiple myeloma. Am J Hematol 2020; 95(8): 966-77.
[http://dx.doi.org/10.1002/ajh.25846] [PMID: 32350883]
[7]
Zamagni E, Tacchetti P, Cavo M. Imaging in multiple myeloma: How? When? Blood 2019; 133(7): 644-51.
[http://dx.doi.org/10.1182/blood-2018-08-825356] [PMID: 30587527]
[8]
Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014; 15(12): e538-48.
[http://dx.doi.org/10.1016/S1470-2045(14)70442-5]
[9]
Daffner RH, Lupetin AR, Dash N, Deeb ZL, Sefczek RJ, Schapiro RL. MRI in the detection of malignant infiltration of bone marrow. AJR Am J Roentgenol 1996; 142(2): 353-8.
[http://dx.doi.org/10.2214/ajr.146.2.353.] [PMID: 3484586]
[10]
Durie BG. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer 2006; 42(11): 1539-43.
[http://dx.doi.org/10.1016/j.ejca.2005.11.037] [PMID: 16777405]
[11]
Shah LM, Hanrahan CJ. MRI of spinal bone marrow: part I, techniques and normal age-related appearances. AJR Am J Roentgenol 2011; 197(6): 1298-308.
[http://dx.doi.org/10.2214/AJR.11.7005] [PMID: 22109283]
[12]
Dutoit JC, Verstraete KL. Whole-body MRI, dynamic contrast-enhanced MRI, and diffusion-weighted imaging for the staging of multiple myeloma. Skeletal Radiol 2017; 46(6): 733-50.
[http://dx.doi.org/10.1007/s00256-017-2609-6] [PMID: 28289855]
[13]
Rahmouni A, Divine M, Mathieu D, et al. Detection of multiple myeloma involving the spine: efficacy of fat-suppression and contrast-enhanced MR imaging. AJR Am J Roentgenol 1993; 160(5): 1049-52.
[http://dx.doi.org/10.2214/ajr.160.5.8470574] [PMID: 8470574]
[14]
Di Giuliano F, Picchi E, Muto M, et al. Radiological imaging in multiple myeloma: review of the state-of-the-art. Neuroradiology 2020; 62(8): 905-23.
[http://dx.doi.org/10.1007/s00234-020-02417-9] [PMID: 32313979]
[15]
Dimopoulos MA, Hillengass J, Usmani S, et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol 2015; 33(6): 657-64.
[http://dx.doi.org/10.1200/JCO.2014.57.9961] [PMID: 25605835]
[16]
Spinnato P, Bazzocchi A, Brioli A, et al. Contrast enhanced MRI and 18F-FDG PET-CT in the assessment of multiple myeloma: a comparison of results in different phases of the disease. Eur J Radiol 2012; 81(12): 4013-8.
[http://dx.doi.org/10.1016/j.ejrad.2012.06.028] [PMID: 22921683]
[17]
Fechtner K, Hillengass J, Delorme S, et al. Staging monoclonal plasma cell disease: comparison of the Durie-Salmon and the Durie-Salmon PLUS staging systems. Radiology 2010; 257(1): 195-204.
[http://dx.doi.org/10.1148/radiol.10091809] [PMID: 20851941]
[18]
Hanrahan CJ, Christensen CR, Crim JR. Current concepts in the evaluation of multiple myeloma with MR imaging and FDG PET/CT. Radiographics 2010; 30(1): 127-42.
[http://dx.doi.org/10.1148/rg.301095066] [PMID: 20083590]
[19]
Zamagni E, Nanni C, Patriarca F, et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 2007; 92(1): 50-5.
[http://dx.doi.org/10.3324/haematol.10554] [PMID: 17229635]
[20]
Shortt CP, Gleeson TG, Breen KA, et al. Whole-Body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 2009; 192(4): 980-6.
[http://dx.doi.org/10.2214/AJR.08.1633] [PMID: 19304704]
[21]
Ghanem N, Lohrmann C, Engelhardt M, et al. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol 2006; 16(5): 1005-14.
[http://dx.doi.org/10.1007/s00330-005-0055-7] [PMID: 16463030]
[22]
Angtuaco EJ, Fassas AB, Walker R, Sethi R, Barlogie B. Multiple myeloma: clinical review and diagnostic imaging. Radiology 2004; 231(1): 11-23.
[http://dx.doi.org/10.1148/radiol.2311020452] [PMID: 14990813]
[23]
Baur-Melnyk A, Buhmann S, Becker C, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol 2008; 190(4): 1097-104.
[http://dx.doi.org/10.2214/AJR.07.2635] [PMID: 18356461]
[24]
Walker R, Barlogie B, Haessler J, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol 2007; 25(9): 1121-8.
[http://dx.doi.org/10.1200/JCO.2006.08.5803] [PMID: 17296972]
[25]
Moulopoulos LA, Gika D, Anagnostopoulos A, et al. Prognostic significance of magnetic resonance imaging of bone marrow in previously untreated patients with multiple myeloma. Ann Oncol 2005; 16(11): 1824-8.
[http://dx.doi.org/10.1093/annonc/mdi362] [PMID: 16087694]
[26]
Moulopoulos LA, Dimopoulos MA, Kastritis E, et al. Diffuse pattern of bone marrow involvement on magnetic resonance imaging is associated with high risk cytogenetics and poor outcome in newly diagnosed, symptomatic patients with multiple myeloma: a single center experience on 228 patients. Am J Hematol 2012; 87(9): 861-4.
[http://dx.doi.org/10.1002/ajh.23258] [PMID: 22641455]
[27]
Hillengass J, Fechtner K, Weber MA, et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 2010; 28(9): 1606-10.
[http://dx.doi.org/10.1200/JCO.2009.25.5356] [PMID: 20177023]
[28]
Stäbler A, Baur A, Bartl R, Munker R, Lamerz R, Reiser MF. Contrast enhancement and quantitative signal analysis in MR imaging of multiple myeloma: assessment of focal and diffuse growth patterns in marrow correlated with biopsies and survival rates. AJR Am J Roentgenol 1996; 167(4): 1029-36.
[http://dx.doi.org/10.2214/ajr.167.4.8819407] [PMID: 8819407]
[29]
Filonzi G, Mancuso K, Zamagni E, et al. A Comparison of Different Staging Systems for Multiple Myeloma: Can the MRI Pattern Play a Prognostic Role? AJR Am J Roentgenol 2017; 209(1): 152-8.
[http://dx.doi.org/10.2214/AJR.16.17219] [PMID: 28418695]
[30]
Mai EK, Hielscher T, Kloth JK, et al. Association between magnetic resonance imaging patterns and baseline disease features in multiple myeloma: analyzing surrogates of tumour mass and biology. Eur Radiol 2016; 26(11): 3939-48.
[http://dx.doi.org/10.1007/s00330-015-4195-0] [PMID: 26767378]
[31]
Gordon Y, Partovi S, Müller-Eschner M, et al. Dynamic contrast-enhanced magnetic resonance imaging: fundamentals and application to the evaluation of the peripheral perfusion. Cardiovasc Diagn Ther 2014; 4(2): 147-64.
[http://dx.doi.org/10.3978/j.issn.2223-3652.2014.03.01] [PMID: 24834412]
[32]
Verstraete KL, Van der Woude HJ, Hogendoorn PC, De-Deene Y, Kunnen M, Bloem JL. Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging 1996; 6(2): 311-21.
[http://dx.doi.org/10.1002/jmri.1880060210] [PMID: 9132096]
[33]
Merz M, Moehler TM, Ritsch J, et al. Prognostic significance of increased bone marrow microcirculation in newly diagnosed multiple myeloma: results of a prospective DCE-MRI study. Eur Radiol 2016; 26(5): 1404-11.
[http://dx.doi.org/10.1007/s00330-015-3928-4] [PMID: 26215436]
[34]
Lin C, Luciani A, Belhadj K, et al. Multiple myeloma treatment response assessment with whole-body dynamic contrast-enhanced MR imaging. Radiology 2010; 254(2): 521-31.
[http://dx.doi.org/10.1148/radiol.09090629] [PMID: 20093523]
[35]
Messiou C, Kaiser M. Whole-body imaging in multiple myeloma. Magn Reson Imaging Clin N Am 2018; 26(4): 509-25.
[http://dx.doi.org/10.1016/j.mric.2018.06.006] [PMID: 30316464]
[36]
Dutoit JC, Verstraete KL. MRI in multiple myeloma: a pictorial review of diagnostic and post-treatment findings. Insights Imaging 2016; 7(4): 553-69.
[http://dx.doi.org/10.1007/s13244-016-0492-7] [PMID: 27164915]
[37]
Bäuerle T, Hillengass J, Fechtner K, et al. Multiple myeloma and monoclonal gammopathy of undetermined significance: importance of whole-body versus spinal MR imaging. Radiology 2009; 252(2): 477-85.
[http://dx.doi.org/10.1148/radiol.2522081756] [PMID: 19703885]
[38]
Lecouvet FE, Malghem J, Michaux L, et al. Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br J Haematol 1999; 106(1): 35-9.
[http://dx.doi.org/10.1046/j.1365-2141.1999.01529.x] [PMID: 10444160]
[39]
Laroche M, Assoun J, Sixou L, Attal M. Myélome-Midi-Pyrénées Group. Comparison of MRI and computed tomography in the various stages of plasma cell disorders: correlations with biological and histological findings. Clin Exp Rheumatol 1996; 14(2): 171-6.
[PMID: 8737723]
[40]
Dimopoulos M, Terpos E, Comenzo RL, et al. IMWG. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma. Leukemia 2009; 23(9): 1545-56.
[http://dx.doi.org/10.1038/leu.2009.89] [PMID: 19421229]
[41]
Messiou C, Hillengass J, Delorme S, et al. Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: Myeloma response assessment and diagnosis system (MY-RADS). Radiology 2019; 291(1): 5-13.
[http://dx.doi.org/10.1148/radiol.2019181949] [PMID: 30806604]
[42]
Moreau P, Attal M, Caillot D, et al. Prospective evaluation of magnetic resonance imaging and [18F]Fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: Results of the IMAJEM study. J Clin Oncol 2017; 35(25): 2911-8.
[http://dx.doi.org/10.1200/JCO.2017.72.2975] [PMID: 28686535]
[43]
Bray TJP, Singh S, Latifoltojar A, et al. Diagnostic utility of whole body Dixon MRI in multiple myeloma: A multi-reader study. PLoS One 2017; 12(7): e0180562.
[http://dx.doi.org/10.1371/journal.pone.0180562] [PMID: 28672007]
[44]
Takasu M, Kaichi Y, Tani C, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) magnetic resonance imaging as a biomarker for symptomatic multiple myeloma. PLoS One 2015; 10(2): e0116842.
[http://dx.doi.org/10.1371/journal.pone.0116842] [PMID: 25706753]
[45]
Latifoltojar A, Hall-Craggs M, Bainbridge A, et al. Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction. Eur Radiol 2017; 27(12): 5325-36.
[http://dx.doi.org/10.1007/s00330-017-4907-8] [PMID: 28656463]
[46]
Kwee TC, Takahara T, Ochiai R, et al. Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol 2009; 70(3): 409-17.
[http://dx.doi.org/10.1016/j.ejrad.2009.03.054] [PMID: 19403255]
[47]
Messiou C, Kaiser M. Whole body diffusion weighted MRI-a new view of myeloma. Br J Haematol 2015; 171(1): 29-37.
[http://dx.doi.org/10.1111/bjh.13509] [PMID: 26013304]
[48]
Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 2011; 261(3): 700-18.
[http://dx.doi.org/10.1148/radiol.11110474] [PMID: 22095994]
[49]
Nonomura Y, Yasumoto M, Yoshimura R, et al. Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 2001; 13(5): 757-60.
[http://dx.doi.org/10.1002/jmri.1105] [PMID: 11329198]
[50]
Pearce T, Philip S, Brown J, Koh DM, Burn PR. Bone metastases from prostate, breast and multiple myeloma: differences in lesion conspicuity at short-tau inversion recovery and diffusion-weighted MRI. Br J Radiol 2012; 85(1016): 1102-6.
[http://dx.doi.org/10.1259/bjr/30649204] [PMID: 22457319]
[51]
Squillaci E, Bolacchi F, Altobelli S, et al. Pre-treatment staging of multiple myeloma patients: comparison of whole-body diffusion weighted imaging with whole-body T1-weighted contrast-enhanced imaging. Acta Radiol 2015; 56(6): 733-8.
[http://dx.doi.org/10.1177/0284185114538792] [PMID: 24973257]
[52]
Dutoit JC, Vanderkerken MA, Anthonissen J, Dochy F, Verstraete KL. The diagnostic value of SE MRI and DWI of the spine in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma. Eur Radiol 2014; 24(11): 2754-65.
[http://dx.doi.org/10.1007/s00330-014-3324-5] [PMID: 25106487]
[53]
Pawlyn C, Fowkes L, Otero S, et al. Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia 2016; 30(6): 1446-8.
[http://dx.doi.org/10.1038/leu.2015.338] [PMID: 26648535]
[54]
Sachpekidis C, Mosebach J, Freitag MT, et al. Application of (18)F-FDG PET and diffusion weighted imaging (DWI) in multiple myeloma: comparison of functional imaging modalities. Am J Nucl Med Mol Imaging 2015; 5(5): 479-92.
[PMID: 26550539]
[55]
Hillengass J, Bäuerle T, Bartl R, et al. Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol 2011; 153(6): 721-8.
[http://dx.doi.org/10.1111/j.1365-2141.2011.08658.x] [PMID: 21517815]
[56]
Messiou C, Collins DJ, Morgan VA, Desouza NM. Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility. Eur Radiol 2011; 21(8): 1713-8.
[http://dx.doi.org/10.1007/s00330-011-2116-4] [PMID: 21472473]
[57]
Messiou C, Giles S, Collins DJ, et al. Assessing response of myeloma bone disease with diffusion-weighted MRI. Br J Radiol 2012; 85(1020): e1198-203.
[http://dx.doi.org/10.1259/bjr/52759767] [PMID: 23175485]
[58]
Koutoulidis V, Fontara S, Terpos E, et al. Quantitative Ddiffusion-weighted imaging of the bone marrow: An adjunct tool for the diagnosis of a diffuse MR imaging pattern in patients with multiple myeloma. Radiology 2017; 282(2): 484-93.
[http://dx.doi.org/10.1148/radiol.2016160363] [PMID: 27610934]
[59]
Cretti F, Perugini G. Patient dose evaluation for the whole-body low-dose multidetector CT (WBLDMDCT) skeleton study in multiple myeloma (MM). Radiol Med (Torino) 2016; 121(2): 93-105.
[http://dx.doi.org/10.1007/s11547-015-0573-6] [PMID: 26286004]
[60]
Hillengass J, Moulopoulos LA, Delorme S, et al. Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma: a study of the International Myeloma Working Group. Blood Cancer J 2017; 7(8): e599.
[http://dx.doi.org/10.1038/bcj.2017.78] [PMID: 28841211]
[61]
Mangiacavalli S, Pezzatti S, Rossini F, et al. Implemented myeloma management with whole-body low-dose CT scan: a real life experience. Leuk Lymphoma 2016; 57(7): 1539-45.
[http://dx.doi.org/10.3109/10428194.2015.1129535] [PMID: 26788613]
[62]
Zambello R, Crimì F, Lico A, et al. Whole-body low-dose CT recognizes two distinct patterns of lytic lesions in multiple myeloma patients with different disease metabolism at PET/MRI. Ann Hematol 2019; 98(3): 679-89.
[http://dx.doi.org/10.1007/s00277-018-3555-7] [PMID: 30539276]
[63]
Ippolito D, Besostri V, Bonaffini PA, Rossini F, Di Lelio A, Sironi S. Diagnostic value of whole-body low-dose computed tomography (WBLDCT) in bone lesions detection in patients with multiple myeloma (MM). Eur J Radiol 2013; 82(12): 2322-7.
[http://dx.doi.org/10.1016/j.ejrad.2013.08.036] [PMID: 24074647]
[64]
Waheed S, Mitchell A, Usmani S, et al. Standard and novel imaging methods for multiple myeloma: correlates with prognostic laboratory variables including gene expression profiling data. Haematologica 2013; 98(1): 71-8.
[http://dx.doi.org/10.3324/haematol.2012.066555] [PMID: 22733020]
[65]
Breyer RJ III, Mulligan ME, Smith SE, Line BR, Badros AZ. Comparison of imaging with FDG PET/CT with other imaging modalities in myeloma. Skeletal Radiol 2006; 35(9): 632-40.
[http://dx.doi.org/10.1007/s00256-006-0127-z] [PMID: 16758246]
[66]
Zamagni E, Patriarca F, Nanni C, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 2011; 118(23): 5989-95.
[http://dx.doi.org/10.1182/blood-2011-06-361386] [PMID: 21900189]
[67]
Moulopoulos LA, Koutoulidis V, Hillengass J, et al. Recommendations for acquisition, interpretation and reporting of whole body low dose CT in patients with multiple myeloma and other plasma cell disorders: a report of the IMWG Bone Working Group. Blood Cancer J 2018; 8(10): 95.
[http://dx.doi.org/10.1038/s41408-018-0124-1] [PMID: 30287814]
[68]
Rasche L, Angtuaco E, McDonald JE, et al. Low expression of hexokinase-2 is associated with false-negative FDG-positron emission tomography in multiple myeloma. Blood 2017; 130(1): 30-4.
[http://dx.doi.org/10.1182/blood-2017-03-774422] [PMID: 28432222]
[69]
Kircher S, Stolzenburg A, Kortüm KM, et al. Hexokinase-2 expression in 11C-methionine-positive, 18F-FDG-negative multiple myeloma. J Nucl Med 2019; 60(3): 348-52.
[http://dx.doi.org/10.2967/jnumed.118.217539] [PMID: 30389821]
[70]
Dankerl A, Liebisch P, Glatting G, et al. Multiple myeloma: Molecular imaging with 11C-methionine PET/CT-initial experience. Radiology 2007; 242(2): 498-508.
[http://dx.doi.org/10.1148/radiol.2422051980] [PMID: 17179397]
[71]
Lapa C, Knop S, Schreder M, et al. 11C-Methionine-PET in multiple myeloma: Correlation with clinical parameters and bone marrow involvement. Theranostics 2016; 6(2): 254-61.
[http://dx.doi.org/10.7150/thno.13921] [PMID: 26877783]
[72]
Okasaki M, Kubota K, Minamimoto R, et al. Comparison of (11)C-4′-thiothymidine, (11)C-methionine, and (18)F-FDG PET/CT for the detection of active lesions of multiple myeloma. Ann Nucl Med 2015; 29(3): 224-32.
[http://dx.doi.org/10.1007/s12149-014-0931-9] [PMID: 25421383]
[73]
Lapa C, Garcia-Velloso MJ, Lückerath K, et al. 11C-Methionine-PET in multiple myeloma: A combined study from two different institutions. Theranostics 2017; 7(11): 2956-64.
[http://dx.doi.org/10.7150/thno.20491] [PMID: 28824728]
[74]
Ambrosini V, Farsad M, Nanni C, et al. Incidental finding of an (11)C-choline PET-positive solitary plasmacytoma lesion. Eur J Nucl Med Mol Imaging 2006; 33(12): 1522.
[http://dx.doi.org/10.1007/s00259-006-0183-6] [PMID: 16896665]
[75]
Nanni C, Zamagni E, Cavo M, et al. 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol 2007; 5: 68.
[http://dx.doi.org/10.1186/1477-7819-5-68] [PMID: 17584499]
[76]
Cassou-Mounat T, Balogova S, Nataf V, et al. 18F-fluorocholine versus 18F-fluorodeoxyglucose for PET/CT imaging in patients with suspected relapsing or progressive multiple myeloma: a pilot study. Eur J Nucl Med Mol Imaging 2016; 43(11): 1995-2004.
[http://dx.doi.org/10.1007/s00259-016-3392-7] [PMID: 27121691]
[77]
Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382(6592): 635-8.
[http://dx.doi.org/10.1038/382635a0] [PMID: 8757135]
[78]
Domanska UM, Kruizinga RC, Nagengast WB, et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 2013; 49(1): 219-30.
[http://dx.doi.org/10.1016/j.ejca.2012.05.005] [PMID: 22683307]
[79]
Alsayed Y, Ngo H, Runnels J, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 2007; 109(7): 2708-17.
[http://dx.doi.org/10.1182/blood-2006-07-035857] [PMID: 17119115]
[80]
Vande Broek I, Leleu X, Schots R, et al. Clinical significance of chemokine receptor (CCR1, CCR2 and CXCR4) expression in human myeloma cells: the association with disease activity and survival. Haematologica 2006; 91(2): 200-6.
[PMID: 16461304]
[81]
Herrmann K, Schottelius M, Lapa C, et al. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med 2016; 57(2): 248-51.
[http://dx.doi.org/10.2967/jnumed.115.167361] [PMID: 26564323]
[82]
Heyer CM, Al-Hadari A, Mueller KM, Stachon A, Nicolas V. Effectiveness of CT-guided percutaneous biopsies of the spine: an analysis of 202 examinations. Acad Radiol 2008; 15(7): 901-11.
[http://dx.doi.org/10.1016/j.acra.2008.01.020] [PMID: 18572127]
[83]
Singh DK, Kumar N, Nayak BK, et al. Approach-based techniques of CT-guided percutaneous vertebral biopsy. Diagn Interv Radiol 2020; 26(2): 143-6.
[http://dx.doi.org/10.5152/dir.2019.19268] [PMID: 32071026]
[84]
Spinnato P, Bazzocchi A, Facchini G, et al. Vertebral fractures of unknown origin: Role of computed tomography-guided biopsy. Int J Spine Surg 2018; 12(6): 673-9.
[http://dx.doi.org/10.14444/5084] [PMID: 30619670]
[85]
Dupuis MM, Tuchman SA. Non-secretory multiple myeloma: from biology to clinical management. OncoTargets Ther 2016; 9: 7583-90.
[http://dx.doi.org/10.2147/OTT.S122241] [PMID: 28008276]
[86]
Avva R, Vanhemert RL, Barlogie B, Munshi N, Angtuaco EJ. CT-guided biopsy of focal lesions in patients with multiple myeloma may reveal new and more aggressive cytogenetic abnormalities. AJNR Am J Neuroradiol 2001; 22(4): 781-5.
[PMID: 11290500]
[87]
McLynn RP, Ondeck NT, Grauer JN, Lindskog DM. What is the adverse event profile after prophylactic treatment of femoral shaft or distal femur metastases? Clin Orthop Relat Res 2018; 476(12): 2381-8.
[http://dx.doi.org/10.1097/CORR.0000000000000489] [PMID: 30260860]
[88]
Willeumier JJ, van de Sande MAJ, van der Wal RJP, Dijkstra PDS. Trends in the surgical treatment of pathological fractures of the long bones: based on a questionnaire among members of the Dutch Orthopaedic Society and the European Musculo-Skeletal Oncology Society (EMSOS). Bone Joint J 2018; 100-B(10): 1392-8.
[http://dx.doi.org/10.1302/0301-620X.100B10.BJJ-2018-0239.R1] [PMID: 30295518]
[89]
Winterbottom AP, Shaw AS. Imaging patients with myeloma. Clin Radiol 2009; 64(1): 1-11.
[http://dx.doi.org/10.1016/j.crad.2008.07.006] [PMID: 19070692]
[90]
Baur-Melnyk A, Reiser M. Staging des multiplen Myeloms mit der MRT: Vergleich zur MSCT und zur konventionellen Röntgendiagnostik [Staging of multiple myeloma with MRI: comparison to MSCT and conventional radiography]. Radiologe 2004; 44(9): 878-1.
[91]
Delorme S, Baur-Melnyk A. Imaging in multiple myeloma. Recent Results Cancer Res 2011; 183: 133-47.
[http://dx.doi.org/10.1007/978-3-540-85772-3_7] [PMID: 21509684]
[92]
Mirels H. Metastatic disease in long bones: A proposed scoring system for diagnosing impending pathologic fractures. 1989. Clin Orthop Relat Res 2003; 415: S4-S13.
[http://dx.doi.org/10.1097/01.blo.0000093045.56370.dd] [PMID: 14600587]
[93]
Benca E, Patsch JM, Mayr W, Pahr DH, Windhager R. The insufficiencies of risk analysis of impending pathological fractures in patients with femoral metastases: A literature review. Bone Rep 2016; 5: 51-6.
[http://dx.doi.org/10.1016/j.bonr.2016.02.003] [PMID: 28326347]
[94]
Toci GR, Bressner JA, Morris CD, Fayad L, Levin AS. Can a novel scoring system improve on the mirels score in predicting the fracture risk in patients with multiple myeloma? Clin Orthop Relat Res 2020.
[http://dx.doi.org/10.1097/CORR.0000000000001303] [PMID: 32420721]
[95]
Collins CD. Multiple myeloma. Cancer Imaging 2010; 10(1): 20-31.
[http://dx.doi.org/10.1102/1470-7330.2010.0013] [PMID: 20159661]
[96]
Bladé J, Rosiñol L. Complications of multiple myeloma. Hematol Oncol Clin North Am 2007; 21(6): 1231-46.
[http://dx.doi.org/10.1016/j.hoc.2007.08.006]
[97]
Chantry A, Kazmi M, Barrington S, et al. British Society for Haematology Guidelines. Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol 2017; 178(3): 380-93.
[http://dx.doi.org/10.1111/bjh.14827] [PMID: 28677897]
[98]
Wang X, Sanyal A, Cawthon PM, et al. Osteoporotic Fractures in Men (MrOS) Research Group. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res 2012; 27(4): 808-16.
[http://dx.doi.org/10.1002/jbmr.1539] [PMID: 22190331]
[99]
Kawabata Y, Matsuo K, Nezu Y, Kamiishi T, Inaba Y, Saito T. The risk assessment of pathological fracture in the proximal femur using a CT-based finite element method. J Orthop Sci 2017; 22(5): 931-7.
[http://dx.doi.org/10.1016/j.jos.2017.05.015] [PMID: 28688810]
[100]
Yosibash Z, Trabelsi N, Milgrom C. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech 2007; 40(16): 3688-99.
[http://dx.doi.org/10.1016/j.jbiomech.2007.06.017] [PMID: 17706228]
[101]
Sternheim A, Traub F, Trabelsi N, et al. When and where do patients with bone metastases actually break their femurs? Bone Joint J 2020; 102-B(5): 638-45.
[http://dx.doi.org/10.1302/0301-620X.102B5.BJJ-2019-1328.R2] [PMID: 32349590]
[102]
Terpos E, Kleber M, Engelhardt M, et al. European Myeloma Network. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica 2015; 100(10): 1254-66.
[http://dx.doi.org/10.3324/haematol.2014.117176] [PMID: 26432383]
[103]
Moreau P, San Miguel J, Sonneveld P, et al. ESMO Guidelines Committee. ESMO Guidelines Committee. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017; 28(suppl_4): iv52-61.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy