Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Iron Nanoparticle Production by the Method of Electric Explosion of Wire

Author(s): Elena Gryaznova* and Alexey Pustovalov

Volume 14, Issue 1, 2022

Published on: 26 January, 2021

Page: [50 - 58] Pages: 9

DOI: 10.2174/1876402913666210126144945

Price: $65

conference banner
Abstract

Background: The widespread use of iron nanopowders is connected with a wide range of characteristics such as size, magnetic characteristics and high surface area and that is why many researches present its different applications in the literature.

Objective: The work studies the influence of the conditions for the iron wire electrical explosion on the course of the explosion process and the dispersed composition of the resulting metal nanopowder.

Methods: Experiments on the electrical explosion of iron wires were carried out in the laboratory setup with the different initial conditions of the electrical explosion of the iron wire.

Results: The influence of the initial wire electrical explosion conditions on the explosion regime, the specific energy input into the conductor, and the specific energy released in the arc stage of discharge are definitely determined. The empirical equations for the calculation of the initial wire electrical explosion conditions for providing the critical explosion in the argon medium at a pressure of 2·105 Pa, were defined. It has been established that for the synthesis of iron nanopowders with a narrow particle size distribution, it is preferable to use modes with a high level of the energy released in the arc stage of the discharge.

Conclusion: It was found that disabling the arc stage of the discharge during EEW leads to the decrease of the average surface particle size by 50%.

Keywords: Electrical explosion of wires, nanoparticles, iron, specific energy, specific surface area, wire length.

Graphical Abstract

[1]
Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; Lima, T.M.T.; Delbem, A.C.B.; Monteiro, D.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis. Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (Basel), 2018, 7(2), 46.
[http://dx.doi.org/10.3390/antibiotics7020046] [PMID: 29890753]
[2]
Magro, M.; Baratella, D.; Bonaiuto, E. de A Roger, J.; Vianello, F. Roger, de J. A; Vianello, F. New perspectives on biomedical applications of iron oxide nanoparticles. Curr. Med. Chem., 2018, 25(4), 540-555.
[http://dx.doi.org/10.2174/0929867324666170616102922] [PMID: 28618993]
[3]
Popok, E.V.; Levashova, A.I.; Chekantsev, N.V.; Kirgina, M.V.; Rafegerst, K.V.E. Ultradispersed hydrocarbon synthesis catalyst from CO and H2 dased on electroexplosion of iron powder, XV International Scientific Conference “Chemistry and Chemical Engineering in XXI century” dedicated to Professor L.P. Kulyov, Tomsk, Russia, May 26-29, 2014, pp. 20-24.
[4]
Liua, J-X. PengWangab; Xu, Wayne; Hensena, J.M.; Particle size and crystal phase effects in Fischer-Tropsch catalysts. Engineering, 2017, 3(4), 467-476.
[http://dx.doi.org/10.1016/J.ENG.2017.04.012]
[5]
Heaney, D.F. Handbook of metal injection molding, 2nd ed; Woodhead Publishing Limited, 2012.
[http://dx.doi.org/10.1533/9780857096234]
[6]
Barrierea, Th.; Liub, B.; Gelina, J.C. Analyses of powder segregation in MIM. Met. Powder Rep., 2002, 57(5), 30-33.
[http://dx.doi.org/10.1016/S0026-0657(02)80173-4]
[7]
Saif, S.; Tahir, A.; Chen, Y. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Nanomaterials (Basel), 2016, 6(11)
[http://dx.doi.org/10.3390/nano6110209] [PMID: 28335338]
[8]
Xie, W.; Guo, Z.; Gao, F.; Gao, Q.; Wang, D.; Liaw, B.S.; Cai, Q.; Sun, X.; Wang, X.; Zhao, L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8(12), 3284-3307.
[http://dx.doi.org/10.7150/thno.25220] [PMID: 29930730]
[9]
Krajewski, M.; Tokarczyk, M.; Stefaniuk, T.; Słominska, H.; Małolepszy, A.; Kowalski, G.; Lewinska, S.; Slawska-Waniewska, A. Magnetic-field-induced synthesis of amorphous iron-nickel wire-like nanostructures. Mater. Chem. Phys., 2020, 246.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122812]
[10]
Baskoro, A.S.; Supriadi, S. Review on Plasma Atomizer Technology for Metal Powder. IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies 2019. 269
[11]
Kotov, Yu.A. The electrical explosion of wire: A method for the synthesis of weakly aggregated nanopowders. Nanotechnol. Russ., 2009, 4(7-8), 415-424.
[http://dx.doi.org/10.1134/S1995078009070039]
[12]
Kinemuchi, Y.; Murai, K.; Sangurai, C.; Cho, C-H.; Suematsu, H.; Jiang, W.; Yatsui, K. Nanosize powders of aluminum nitride synthesized by pulsed wire discharge. J. Am. Ceram. Soc., 2003, 86(3), 420-424.
[http://dx.doi.org/10.1111/j.1151-2916.2003.tb03315.x]
[13]
Sen, P.; Ghosh, J.; Abdullah, A.; Kumar, P. Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J. Chem. Sci., 2003, 115(5-6), 499-508.
[http://dx.doi.org/10.1007/BF02708241]
[14]
Jankauskas, V.; Padgurskas, J.; Žunda, A.; Prosyčevas, I. Research into nanoparticles obtained by electric explosion of conductive materials. Surg. Eng. Appl. Electrochem., 2011, 47(2), 170-175.
[http://dx.doi.org/10.3103/S1068375511020074]
[15]
Li, X.; Shi, H.; Liu, C.; Wu, J.; Chen, L.; Qiu, S.; Li, X.; Qiu, A. Discharge modes of electrical explosion of aluminum wires in argon. IEEE Trans. Plasma Sci., 2019, 47(5), 99-105.
[http://dx.doi.org/10.1109/TPS.2019.2901091]
[16]
Murai, K.; Tokoi, Y.; Suematsu, H.; Jiang, W.; Yatsui, K.; Niihara, K. Particle size controllability of ambient gas species for copper nanoparticles prepared by pulsed wire discharge. Jpn. J. Appl. Phys., 2008, 47(5), 3726-3730.
[http://dx.doi.org/10.1143/JJAP.47.3726]
[17]
Ju Park, E.; Won Lee, S.; Bang, I.C.; Park, H.W. Optimal synthesis and characterization of Ag nanofluids by electrical explosion of wires in liquids. Nanoscale Res. Lett., 2011, 6(1), 223.
[http://dx.doi.org/10.1186/1556-276X-6-223] [PMID: 21711757]
[18]
Rosa, E.B. The self and mutual inductances of linear conductors. Bulletin of the Bureau of Standards, 1908, 4(2), 301-344.
[http://dx.doi.org/10.6028/bulletin.088]
[19]
Pustovalov, A.; An, V.; Kim, J-C. Optimal modes for the fabrication of aluminum nanopowders by the electrical explosion of wires. Adv. Mater. Sci. Eng., 2017.
[http://dx.doi.org/10.1155/2017/1738949]
[20]
Song, K.; Lee, S.; Suh, C-Y.; Kim, W.; Ko, K-S.; Shin, D. Synthesis and Characterization of Iron Oxide Nanoparticles Prepared by Electrical Explosion of Fe Wire in Ar-O2 Gas Mixtures. Mater. Trans., 2012, 53(11), 2056-2059.
[http://dx.doi.org/10.2320/matertrans.M2012186]
[21]
Beketov, I.V.; Safronov, A.P.; Medvedev, A.I.; Alonso, J.; Kurlyandskaya, G.V.; Bhagat, S.M. Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids. AIP Adv., 2012, 2.
[http://dx.doi.org/10.1063/1.4730405]
[22]
Paschen, F. Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Annalen der Physik und Chemie, 1889, 273(5), 69-96.
[http://dx.doi.org/10.1002/andp.18892730505]
[23]
Kwon, Y-S.; Yavorovsky, N.; Illyn, A.P. Ultrafine powder by wire explosion method. Scr. Mater., 2001, 44(8), 2247-2251.
[http://dx.doi.org/10.1016/S1359-6462(01)00757-6]
[24]
Korshunov, A.V. Kinetics of the oxidation of an electroexplosion iron nanopowder during heating in air. Russian Journal Of Physical Chemistry B, 2012, 6(3), 368-375.
[http://dx.doi.org/10.1134/S1990793112050053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy