Review Article

来自干细胞和祖细胞的细胞外囊泡用于无细胞再生疗法

卷 22, 期 2, 2022

发表于: 25 January, 2021

页: [120 - 131] 页: 12

弟呕挨: 10.2174/1566524021666210125114828

价格: $65

摘要

涉及干细胞或祖细胞的基于细胞的再生疗法被认为是治疗非传染性和退行性疾病的可能治疗方式。最近,基于细胞的疗法的再生结果与移植细胞而不是移植细胞本身释放的旁分泌因子和细胞外囊泡[EV]有关。EV包含的货物包括microRNA [miRNA],mRNA以及蛋白质。它们在介导细胞间通讯中的作用已经在几项研究中得到承认。然而,EV中存在的miRNA,mRNA和蛋白质的再生潜力是一个正在进行的科学争论问题。在这篇综述中,我们讨论了细胞外囊泡[EV]作为基于干细胞的疗法的替代方案,以治疗一些非传染性和退行性疾病。此外,我们还提出,细胞的预处理可以帮助产生富含特定miRNA,mRNA和/或蛋白质的EV,这些蛋白质可以支持靶器官的成功再生。

关键词: 外泌体,间充质干细胞,微囊泡,miRNA,mRNA,旁分泌因子。

Next »
[1]
GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1603-58.
[http://dx.doi.org/10.1016/S0140-6736(16)31460-X] [PMID: 27733283]
[2]
Chen S, Kuhn M, Prettner K, Bloom DE. The macroeconomic burden of noncommunicable diseases in the United States: Estimates and projections. PLoS One 2018; 13(11)e0206702
[http://dx.doi.org/10.1371/journal.pone.0206702] [PMID: 30383802]
[3]
Mayor S. Non-communicable diseases now cause two thirds of deaths worldwide. BMJ 2016; 355: i5456.
[http://dx.doi.org/10.1136/bmj.i5456]
[4]
Chen X, Pan W. The Treatment Strategies for Neurodegenerative Diseases by Integrative Medicine. Integr Med Int 2014; 1(4): 223-5.
[http://dx.doi.org/10.1159/000381546]
[5]
Said A, Lucey MR. Liver transplantation: an update 2008. Curr Opin Gastroenterol 2008; 24(3): 339-45.
[http://dx.doi.org/10.1097/MOG.0b013e3282f8e27e] [PMID: 18408462]
[6]
Beegle JR, Magner NL, Kalomoiris S, et al. Preclinical evaluation of mesenchymal stem cells overexpressing VEGF to treat critical limb ischemia. Mol Ther Methods Clin Dev 2016; 3: 16053.
[http://dx.doi.org/10.1038/mtm.2016.53] [PMID: 27610394]
[7]
Malliaras K, Marbán E. Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull 2011; 98: 161-85.
[http://dx.doi.org/10.1093/bmb/ldr018] [PMID: 21652595]
[8]
Beegle J, Lakatos K, Kalomoiris S, et al. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells 2015; 33(6): 1818-28.
[http://dx.doi.org/10.1002/stem.1976] [PMID: 25702874]
[9]
Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy 2016; 18(1): 13-24.
[http://dx.doi.org/10.1016/j.jcyt.2015.10.008] [PMID: 26631828]
[10]
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[11]
Geraili A, Jafari P, Hassani MS, et al. Controlling Differentiation of Stem Cells for Developing Personalized Organ-on-Chip Platforms. Adv Healthc Mater 2018; 7(2)1700426
[http://dx.doi.org/10.1002/adhm.201700426] [PMID: 28910516]
[12]
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7(14)e1701046
[http://dx.doi.org/10.1002/adhm.201701046] [PMID: 29656561]
[13]
Santucci L, Bruschi M, Del Zotto G, et al. Biological surface properties in extracellular vesicles and their effect on cargo proteins. Sci Rep 2019; 9(1): 13048.
[http://dx.doi.org/10.1038/s41598-019-47598-3] [PMID: 31506490]
[14]
Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig 2019; 6: 19.
[http://dx.doi.org/10.21037/sci.2019.06.04] [PMID: 31463312]
[15]
Shtrichman R, Germanguz I, Itskovitz-Eldor J. Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine. Curr Mol Med 2013; 13(5): 792-805.
[http://dx.doi.org/10.2174/1566524011313050010] [PMID: 23642060]
[16]
Haque N, Abdullah BJJ, Kasim NHA. Secretome: Pharmaceuticals for Cell-Free Regenerative TherapyStem Cell Drugs - A New Generation of Biopharmaceuticals Stem Cells in Clinical Applications. Cham: Springer International Publishing 2018; pp. 17-35.
[http://dx.doi.org/10.1007/978-3-319-99328-7_2]
[17]
Stoddart MJ, Bara J, Alini M. Cells and secretome--towards endogenous cell re-activation for cartilage repair. Adv Drug Deliv Rev 2015; 84: 135-45.
[http://dx.doi.org/10.1016/j.addr.2014.08.007] [PMID: 25174306]
[18]
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2020; 100: 29-51.
[http://dx.doi.org/10.1016/j.semcdb.2019.10.011] [PMID: 31862220]
[19]
Harding C, Heuser J, Stahl P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 1984; 35(2): 256-63.
[PMID: 6151502]
[20]
Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983; 33(3): 967-78.
[http://dx.doi.org/10.1016/0092-8674(83)90040-5] [PMID: 6307529]
[21]
Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183(3): 1161-72.
[http://dx.doi.org/10.1084/jem.183.3.1161] [PMID: 8642258]
[22]
EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. S ELA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347-57.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
[23]
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[24]
Willms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 2016; 6: 22519.
[http://dx.doi.org/10.1038/srep22519] [PMID: 26931825]
[25]
Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009; 19(2): 43-51.
[http://dx.doi.org/10.1016/j.tcb.2008.11.003] [PMID: 19144520]
[26]
Atkin-Smith GK, Tixeira R, Paone S, et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun 2015; 6: 7439.
[http://dx.doi.org/10.1038/ncomms8439] [PMID: 26074490]
[27]
Bakhshandeh B, Kamaleddin MA, Aalishah K. A Comprehensive Review on Exosomes and Microvesicles as Epigenetic Factors. Curr Stem Cell Res Ther 2017; 12(1): 31-6.
[http://dx.doi.org/10.2174/1574888X11666160709211528] [PMID: 27396390]
[28]
Matula Z, Németh A, Lőrincz P, et al. The Role of Extracellular Vesicle and Tunneling Nanotube-Mediated Intercellular Cross-Talk Between Mesenchymal Stem Cells and Human Peripheral T Cells. Stem Cells Dev 2016; 25(23): 1818-32.
[http://dx.doi.org/10.1089/scd.2016.0086] [PMID: 27596268]
[29]
Alcayaga-Miranda F, Varas-Godoy M, Khoury M. Harnessing the Angiogenic Potential of Stem Cell-Derived Exosomes for Vascular Regeneration. Stem Cells Int 2016; 20163409169
[http://dx.doi.org/10.1155/2016/3409169] [PMID: 27127516]
[30]
Mrvar-Brecko A, Sustar V, Jansa V, et al. Isolated microvesicles from peripheral blood and body fluids as observed by scanning electron microscope. Blood Cells Mol Dis 2010; 44(4): 307-12.
[http://dx.doi.org/10.1016/j.bcmd.2010.02.003] [PMID: 20199878]
[31]
Ratajczak J, Miekus K, Kucia M, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20(5): 847-56.
[http://dx.doi.org/10.1038/sj.leu.2404132] [PMID: 16453000]
[32]
Quesenberry PJ, Aliotta JM. Cellular phenotype switching and microvesicles. Adv Drug Deliv Rev 2010; 62(12): 1141-8.
[http://dx.doi.org/10.1016/j.addr.2010.06.001] [PMID: 20558219]
[33]
Rosca AM, Rayia DM, Tutuianu R. Emerging Role of Stem Cells - Derived Exosomes as Valuable Tools for Cardiovascular Therapy. Curr Stem Cell Res Ther 2017; 12(2): 134-8.
[http://dx.doi.org/10.2174/1574888X10666151026115320] [PMID: 26496883]
[34]
Cervio E, Barile L, Moccetti T, Vassalli G. Exosomes for Intramyocardial Intercellular Communication. Stem Cells Int 2015; 2015482171
[http://dx.doi.org/10.1155/2015/482171] [PMID: 26089917]
[35]
Sun K, Zhou Z, Ju X, et al. Combined transplantation of mesenchymal stem cells and endothelial progenitor cells for tissue engineering: a systematic review and meta-analysis. Stem Cell Res Ther 2016; 7(1): 151.
[http://dx.doi.org/10.1186/s13287-016-0390-4] [PMID: 27724974]
[36]
Zhang H, Xiang M, Meng D, Sun N, Chen S. Inhibition of Myocardial Ischemia/Reperfusion Injury by Exosomes Secreted from Mesenchymal Stem Cells. Stem Cells Int 2016; 20164328362
[http://dx.doi.org/10.1155/2016/4328362] [PMID: 27212952]
[37]
Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res (Amst) 2010; 4(3): 214-22.
[http://dx.doi.org/10.1016/j.scr.2009.12.003] [PMID: 20138817]
[38]
Bobis-Wozowicz S, Kmiotek K, Sekula M, et al. Human Induced Pluripotent Stem Cell-Derived Microvesicles Transmit RNAs and Proteins to Recipient Mature Heart Cells Modulating Cell Fate and Behavior. Stem Cells 2015; 33(9): 2748-61.
[http://dx.doi.org/10.1002/stem.2078] [PMID: 26031404]
[39]
Lai RC, Yeo RW, Tan KH, Lim SK. Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation. Regen Med 2013; 8(2): 197-209.
[http://dx.doi.org/10.2217/rme.13.4] [PMID: 23477399]
[40]
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res (Amst) 2013; 10(3): 301-12.
[http://dx.doi.org/10.1016/j.scr.2013.01.002] [PMID: 23399448]
[41]
Ibrahim AG, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2014; 2(5): 606-19.
[http://dx.doi.org/10.1016/j.stemcr.2014.04.006] [PMID: 24936449]
[42]
Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2(100): ra81.
[http://dx.doi.org/10.1126/scisignal.2000610] [PMID: 19996457]
[43]
Ong SG, Lee WH, Huang M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 2014; 130(11)(Suppl. 1): S60-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.007917] [PMID: 25200057]
[44]
Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 2014; 103(4): 530-41.
[http://dx.doi.org/10.1093/cvr/cvu167] [PMID: 25016614]
[45]
Dai B, Pan Q, Li Z, et al. Multilayer Membranes of Glycosaminoglycans and Collagen I Biomaterials Modulate the Function and Microvesicle Release of Endothelial Progenitor Cells. Stem Cells Int 2016; 20164796578
[http://dx.doi.org/10.1155/2016/4796578] [PMID: 27190523]
[46]
Chen T, Bai H, Shao Y, et al. Stromal cell-derived factor-1/CXCR4 signaling modifies the capillary-like organization of human embryonic stem cell-derived endothelium in vitro. Stem Cells 2007; 25(2): 392-401.
[http://dx.doi.org/10.1634/stemcells.2006-0145] [PMID: 17038674]
[47]
Kang K, Ma R, Cai W, et al. Exosomes Secreted from CXCR4 Overexpressing Mesenchymal Stem Cells Promote Cardioprotection via Akt Signaling Pathway following Myocardial Infarction. Stem Cells Int 2015; 2015659890
[http://dx.doi.org/10.1155/2015/659890] [PMID: 26074976]
[48]
Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011; 6: 425-56.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130246] [PMID: 21073339]
[49]
Fonsato V, Collino F, Herrera MB, et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 2012; 30(9): 1985-98.
[http://dx.doi.org/10.1002/stem.1161] [PMID: 22736596]
[50]
Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi G. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 2013; 22(5): 758-71.
[http://dx.doi.org/10.1089/scd.2012.0304] [PMID: 23034046]
[51]
Nong K, Wang W, Niu X, et al. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy 2016; 18(12): 1548-59.
[http://dx.doi.org/10.1016/j.jcyt.2016.08.002] [PMID: 27592404]
[52]
Huang R, Pan Q, Ma X, et al. Hepatic Stellate Cell-Derived Microvesicles Prevent Hepatocytes from Injury Induced by APAP/H2O2. Stem Cells Int 2016; 20168357567
[http://dx.doi.org/10.1155/2016/8357567] [PMID: 27239205]
[53]
Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22(6): 845-54.
[http://dx.doi.org/10.1089/scd.2012.0395] [PMID: 23002959]
[54]
Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 2014; 5(3): 76.
[http://dx.doi.org/10.1186/scrt465] [PMID: 24915963]
[55]
Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017; 121: 27-42.
[http://dx.doi.org/10.1016/j.addr.2017.05.007] [PMID: 28506744]
[56]
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14(7): 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[57]
Fierabracci A, Del Fattore A, Luciano R, Muraca M, Teti A, Muraca M. Recent advances in mesenchymal stem cell immunomodulation: the role of microvesicles. Cell Transplant 2015; 24(2): 133-49.
[http://dx.doi.org/10.3727/096368913X675728] [PMID: 24268069]
[58]
Kisseleva T, Cong M, Paik Y, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA 2012; 109(24): 9448-53.
[http://dx.doi.org/10.1073/pnas.1201840109] [PMID: 22566629]
[59]
Li L, Piontek K, Ishida M, et al. Extracellular vesicles carry microRNA-195 to intrahepatic cholangiocarcinoma and improve survival in a rat model. Hepatology 2017; 65(2): 501-14.
[http://dx.doi.org/10.1002/hep.28735] [PMID: 27474881]
[60]
Luarte A, Bátiz LF, Wyneken U, Lafourcade C. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche. Stem Cells Int 2016; 20165736059
[http://dx.doi.org/10.1155/2016/5736059] [PMID: 27195011]
[61]
Farinazzo A, Turano E, Marconi S, Bistaffa E, Bazzoli E, Bonetti B. Murine adipose-derived mesenchymal stromal cell vesicles: in vitro clues for neuroprotective and neuro-regenerative approaches. Cytotherapy 2015; 17(5): 571-8.
[http://dx.doi.org/10.1016/j.jcyt.2015.01.005] [PMID: 25743633]
[62]
Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, Venalis A, Pivoriūnas A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy 2015; 17(7): 932-9.
[http://dx.doi.org/10.1016/j.jcyt.2014.07.013] [PMID: 25981557]
[63]
Xin H, Li Y, Buller B, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 2012; 30(7): 1556-64.
[http://dx.doi.org/10.1002/stem.1129] [PMID: 22605481]
[64]
Xin H, Li Y, Liu Z, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 2013; 31(12): 2737-46.
[http://dx.doi.org/10.1002/stem.1409] [PMID: 23630198]
[65]
Rong Y, Liu W, Wang J, et al. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell Death Dis 2019; 10(5): 340.
[http://dx.doi.org/10.1038/s41419-019-1571-8] [PMID: 31000697]
[66]
Lu Y, Zhou Y, Zhang R, et al. Bone Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Recovery Following Spinal Cord Injury via Improvement of the Integrity of the Blood-Spinal Cord Barrier. Front Neurosci 2019; 13: 209.
[http://dx.doi.org/10.3389/fnins.2019.00209] [PMID: 30914918]
[67]
Romanelli P, Bieler L, Scharler C, et al. Extracellular Vesicles Can Deliver Anti-inflammatory and Anti-scarring Activities of Mesenchymal Stromal Cells After Spinal Cord Injury. Front Neurol 2019; 10: 1225.
[http://dx.doi.org/10.3389/fneur.2019.01225] [PMID: 31849808]
[68]
Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res 2019; 52(12)e8735
[http://dx.doi.org/10.1590/1414-431x20198735] [PMID: 31826179]
[69]
Vikartovska Z, Kuricova M, Farbakova J, et al. Stem Cell Conditioned Medium Treatment for Canine Spinal Cord Injury: Pilot Feasibility Study. Int J Mol Sci 2020; 21(14): 5129.
[http://dx.doi.org/10.3390/ijms21145129] [PMID: 32698543]
[70]
Chen CC, Liu L, Ma F, et al. Elucidation of Exosome Migration across the Blood-Brain Barrier Model In Vitro. Cell Mol Bioeng 2016; 9(4): 509-29.
[http://dx.doi.org/10.1007/s12195-016-0458-3] [PMID: 28392840]
[71]
Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc 2000; 5(1): 40-6.
[http://dx.doi.org/10.1046/j.1087-0024.2000.00014.x] [PMID: 11147674]
[72]
Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E. Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro. Stem Cells Dev 2015; 24(14): 1635-47.
[http://dx.doi.org/10.1089/scd.2014.0316] [PMID: 25867197]
[73]
Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007; 110(7): 2440-8.
[http://dx.doi.org/10.1182/blood-2007-03-078709] [PMID: 17536014]
[74]
Nagano M, Yamashita T, Hamada H, et al. Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood. Blood 2007; 110(1): 151-60.
[http://dx.doi.org/10.1182/blood-2006-10-047092] [PMID: 17379743]
[75]
Tu TC, Nagano M, Yamashita T, et al. A Chemokine Receptor, CXCR4, Which Is Regulated by Hypoxia-Inducible Factor 2α, Is Crucial for Functional Endothelial Progenitor Cells Migration to Ischemic Tissue and Wound Repair. Stem Cells Dev 2016; 25(3): 266-76.
[http://dx.doi.org/10.1089/scd.2015.0290] [PMID: 26620723]
[76]
Fang S, Xu C, Zhang Y, et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing. Stem Cells Transl Med 2016; 5(10): 1425-39.
[http://dx.doi.org/10.5966/sctm.2015-0367] [PMID: 27388239]
[77]
Zhang B, Wang M, Gong A, et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells 2015; 33(7): 2158-68.
[http://dx.doi.org/10.1002/stem.1771] [PMID: 24964196]
[78]
Zhang B, Shi Y, Gong A, et al. HucMSC Exosome-Delivered 14-3-3ζ Orchestrates Self-Control of the Wnt Response via Modulation of YAP During Cutaneous Regeneration. Stem Cells 2016; 34(10): 2485-500.
[http://dx.doi.org/10.1002/stem.2432] [PMID: 27334574]
[79]
Nair R, Santos L, Awasthi S, et al. Extracellular vesicles derived from preosteoblasts influence embryonic stem cell differentiation. Stem Cells Dev 2014; 23(14): 1625-35.
[http://dx.doi.org/10.1089/scd.2013.0633] [PMID: 24641099]
[80]
Martins M, Ribeiro D, Martins A, Reis RL, Neves NM. Extracellular Vesicles Derived from Osteogenically Induced Human Bone Marrow Mesenchymal Stem Cells Can Modulate Lineage Commitment. Stem Cell Reports 2016; 6(3): 284-91.
[http://dx.doi.org/10.1016/j.stemcr.2016.01.001] [PMID: 26923821]
[81]
Narayanan R, Huang CC, Ravindran S. Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells. Stem Cells Int 2016; 20163808674
[http://dx.doi.org/10.1155/2016/3808674] [PMID: 26880957]
[82]
Furuta T, Miyaki S, Ishitobi H, et al. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Transl Med 2016; 5(12): 1620-30.
[http://dx.doi.org/10.5966/sctm.2015-0285] [PMID: 27460850]
[83]
Berglund AK, Fortier LA, Antczak DF, Schnabel LV. Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Res Ther 2017; 8(1): 288.
[http://dx.doi.org/10.1186/s13287-017-0742-8] [PMID: 29273086]
[84]
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 2014; 32(3): 252-60.
[http://dx.doi.org/10.1038/nbt.2816] [PMID: 24561556]
[85]
Zhao L, Chen S, Yang P, Cao H, Li L. The role of mesenchymal stem cells in hematopoietic stem cell transplantation: prevention and treatment of graft-versus-host disease. Stem Cell Res Ther 2019; 10(1): 182.
[http://dx.doi.org/10.1186/s13287-019-1287-9] [PMID: 31227011]
[86]
Elgaz S, Kuçi Z, Kuçi S, Bönig H, Bader P. Clinical Use of Mesenchymal Stromal Cells in the Treatment of Acute Graft-versus-Host Disease. Transfus Med Hemother 2019; 46(1): 27-34.
[http://dx.doi.org/10.1159/000496809] [PMID: 31244579]
[87]
Giebel B, Kordelas L, Börger V. Clinical potential of mesenchymal stem/stromal cell-derived extracellular vesicles. Stem Cell Investig 2017; 4: 84.
[http://dx.doi.org/10.21037/sci.2017.09.06] [PMID: 29167805]
[88]
Gomzikova MO, James V, Rizvanov AA. Therapeutic Application of Mesenchymal Stem Cells Derived Extracellular Vesicles for Immunomodulation. Front Immunol 2019; 10: 2663.
[http://dx.doi.org/10.3389/fimmu.2019.02663] [PMID: 31849929]
[89]
Xie M, Xiong W, She Z, et al. Immunoregulatory Effects of Stem Cell-Derived Extracellular Vesicles on Immune Cells. Front Immunol 2020; 11: 13.
[http://dx.doi.org/10.3389/fimmu.2020.00013] [PMID: 32117221]
[90]
Seo Y, Kim H-S, Hong I-S. Stem Cell-Derived Extracellular Vesicles as Immunomodulatory Therapeutics. Stem Cells Int 2019; 20195126156
[http://dx.doi.org/10.1155/2019/5126156] [PMID: 30936922]
[91]
Wang L, Gu Z, Zhao X, et al. Extracellular Vesicles Released from Human Umbilical Cord-Derived Mesenchymal Stromal Cells Prevent Life-Threatening Acute Graft-Versus-Host Disease in a Mouse Model of Allogeneic Hematopoietic Stem Cell Transplantation. Stem Cells Dev 2016; 25(24): 1874-83.
[http://dx.doi.org/10.1089/scd.2016.0107] [PMID: 27649744]
[92]
Del Fattore A, Luciano R, Pascucci L, et al. Immunoregulatory Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles on T Lymphocytes. Cell Transplant 2015; 24(12): 2615-27.
[http://dx.doi.org/10.3727/096368915X687543] [PMID: 25695896]
[93]
Kordelas L, Rebmann V, Ludwig AK, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 2014; 28(4): 970-3.
[http://dx.doi.org/10.1038/leu.2014.41] [PMID: 24445866]
[94]
Di Trapani M, Bassi G, Midolo M, et al. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep 2016; 6: 24120.
[http://dx.doi.org/10.1038/srep24120] [PMID: 27071676]
[95]
Koch M, Lemke A, Lange C. Extracellular Vesicles from MSC Modulate the Immune Response to Renal Allografts in a MHC Disparate Rat Model. Stem Cells Int 2015; 2015486141
[http://dx.doi.org/10.1155/2015/486141] [PMID: 26351463]
[96]
Kordelas L, Schwich E, Dittrich R, et al. Individual immune-modulatory capabilities of MSC-derived extracellular vesicle [EV] preparations and recipient-dependent responsiveness. Int J Mol Sci 2019; 20(7): 20.
[http://dx.doi.org/10.3390/ijms20071642] [PMID: 30987036]
[97]
Qi S, Wu D. Bone marrow-derived mesenchymal stem cells protect against cisplatin-induced acute kidney injury in rats by inhibiting cell apoptosis. Int J Mol Med 2013; 32(6): 1262-72.
[http://dx.doi.org/10.3892/ijmm.2013.1517] [PMID: 24126885]
[98]
Duffield JS, Park KM, Hsiao LL, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 2005; 115(7): 1743-55.
[http://dx.doi.org/10.1172/JCI22593] [PMID: 16007251]
[99]
Peired AJ, Sisti A, Romagnani P. Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence. Stem Cells Int 2016; 20164798639
[http://dx.doi.org/10.1155/2016/4798639] [PMID: 27721835]
[100]
Tomasoni S, Longaretti L, Rota C, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 2013; 22(5): 772-80.
[http://dx.doi.org/10.1089/scd.2012.0266] [PMID: 23082760]
[101]
Gu D, Zou X, Ju G, Zhang G, Bao E, Zhu Y. Mesenchymal Stromal Cells Derived Extracellular Vesicles Ameliorate Acute Renal Ischemia Reperfusion Injury by Inhibition of Mitochondrial Fission through miR-30. Stem Cells Int 2016; 20162093940
[http://dx.doi.org/10.1155/2016/2093940] [PMID: 27799943]
[102]
Akcay A, Nguyen Q, Edelstein CL. Mediators of inflammation in acute kidney injury. Mediators Inflamm 2009; 2009137072
[http://dx.doi.org/10.1155/2009/137072] [PMID: 20182538]
[103]
Du T, Zhu YJ. The regulation of inflammatory mediators in acute kidney injury via exogenous mesenchymal stem cells. Mediators Inflamm 2014; 2014261697
[http://dx.doi.org/10.1155/2014/261697] [PMID: 24839354]
[104]
Shen B, Liu J, Zhang F, et al. CCR2 Positive Exosome Released by Mesenchymal Stem Cells Suppresses Macrophage Functions and Alleviates Ischemia/Reperfusion-Induced Renal Injury. Stem Cells Int 2016; 20161240301
[http://dx.doi.org/10.1155/2016/1240301] [PMID: 27843457]
[105]
Maffi P, Secchi A. Clinical results of islet transplantation. Pharmacol Res 2015; 98: 86-91.
[http://dx.doi.org/10.1016/j.phrs.2015.04.010] [PMID: 25931317]
[106]
Cantaluppi V, Biancone L, Figliolini F, et al. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant 2012; 21(6): 1305-20.
[http://dx.doi.org/10.3727/096368911X627534] [PMID: 22455973]
[107]
Aliotta JM, Sanchez-Guijo FM, Dooner GJ, et al. Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells 2007; 25(9): 2245-56.
[http://dx.doi.org/10.1634/stemcells.2007-0128] [PMID: 17556595]
[108]
Aliotta JM, Lee D, Puente N, et al. Progenitor/stem cell fate determination: interactive dynamics of cell cycle and microvesicles. Stem Cells Dev 2012; 21(10): 1627-38.
[http://dx.doi.org/10.1089/scd.2011.0550] [PMID: 22214238]
[109]
Aliotta JM, Pereira M, Wen S, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res 2016; 110(3): 319-30.
[http://dx.doi.org/10.1093/cvr/cvw054] [PMID: 26980205]
[110]
Zhu YG, Feng XM, Abbott J, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 2014; 32(1): 116-25.
[http://dx.doi.org/10.1002/stem.1504] [PMID: 23939814]
[111]
Di Rocco G, Baldari S, Toietta G. Towards Therapeutic Delivery of Extracellular Vesicles: Strategies for In Vivo Tracking and Biodistribution Analysis. Stem Cells Int 2016; 20165029619
[http://dx.doi.org/10.1155/2016/5029619] [PMID: 27994623]
[112]
Kubikova I, Konecna H, Sedo O, et al. Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin. Cytotherapy 2009; 11(3): 330-40.
[http://dx.doi.org/10.1080/14653240802595531]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy